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Abstract 

Liquid biopsies based on peripheral blood oYer a minimally invasive alternative to solid 

tissue biopsies for the detection of diseases, primarily cancers. However, such tests 

currently consider only the serum component of blood, overlooking a potentially rich source 

of biomarkers: adaptive immune receptors (AIRs) expressed on circulating B and T cells. 

Machine learning-based classifiers trained on AIRs have been reported to accurately identify 

not only cancers, but also autoimmune and infectious diseases as well. However, when 

using the conventional “clonotype cluster” representation of AIRs, donors within a disease 

or healthy cohort exhibit vastly diYerent features, limiting the generalizability of these 

classifiers. This paper addresses the challenge of classifying specific diseases from 

circulating B or T cells by developing a novel representation of AIRs based on similarity 

networks constructed from their antigen-binding regions (paratopes). Features based on this 

novel representation, paratope cluster occupancies (PCOs), significantly improved disease 

classification performance for infectious disease, autoimmunity and cancer.  Under 
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identical methodological conditions, classifiers trained on PCOs achieved a mean ROC AUC 

of 0.893 when applied to new donors, compared to clonotype cluster-based classifiers 

(0.714) or the best-performing published classifier (0.777). Surprisingly, for cancer patients, 

we observed that some of the AIRs that were important for classification were significantly 

more abundant in healthy controls than in individuals with disease. These “healthy-biased” 

AIRs were predicted to target known cancer-associated antigens at dramatically higher rates 

than healthy AIRs as a whole (Z scores > 75), suggesting the existence of an overlooked 

reservoir of cancer-targeting immune cells that are diagnostic and identifiable from a routine 

blood test. Consequently, PCOs not only enhance classification of a broad range of diseases 

but also identify immune cells with therapeutic potential. 

 

 

Introduction 

Liquid biopsies that extract circulating tumor DNA, extracellular vesicles, or circulating 

tumor cells from peripheral blood oYer a range of advantages over traditional methods of 

medical diagnosis1. Compared to solid tissue biopsies, these test are minimally invasive, 

which facilitates routine monitoring, which oYers the promise of disease detection before 

clinical symptoms manifest2. More broadly, such approaches have the potential to empower 

individuals to manage their own health and thus to reduce the cost of and accessibility to 

healthcare.  Furthermore, liquid biopsies may provide molecular profiles of heterogeneous 

diseases, which can inform personalized treatment interventions3. Finally, technological 

improvement of next-generation sequencing (NGS) and machine learning (ML) are expected 

to further accelerate improvements in the sensitivity and specificity of these tests4.  

 

Despite their great promise, current blood-based liquid biopsies have limitations as well. 

The sensitivity of circulating tumor DNA detection can be low, especially in early-stage 

cancers or diseases with low tumor burden5. Another shortcoming is the exclusive focus on 

serum. Blood is a rich source of immune cells, which play a direct role in responses to many 
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diseases. Incorporating the sequences of adaptive immune receptors (AIRs) would greatly 

enrich the information content of liquid biopsies, potentially improving diagnostic 

sensitivity6. As AIR sequencing and computational analysis technologies have continued to 

improve, application of AIR data has grown from basic research to application to biomarkers 

for disease and for guiding immunotherapies7. Taken together, expanding current liquid 

biopsies to include AIR sequence information warrants further exploration. 

 

Each adaptive immune cell expresses a unique AIR, whose coding sequence is generated by 

rearrangement of germline V D and J genes8 (Fig. S1A).  The number of possible 

combinations far exceeds the number of B or T cells in any one individual9, 10. The resulting 

extraordinary diversity allows adaptive immune cells to engage with and remember nearly 

any disease-associated antigen. Upon antigen engagement, adaptive immune cells 

proliferate, resulting in dramatic diYerences in the levels of specific AIR clones in peripheral 

blood. For use as a liquid biopsy, the diverse AIR signals in a given donor must be formulated 

as a single feature vector that can be compared to those of other donors. In recent years, 

statistics- and ML-based approaches have been actively explored in order to construct such 

features in order to classify donors according to their disease status11-20. 

 

The main obstacle to the use of AIRs features of disease status is their diversity. The pairwise 

sharing of AIRs between diYerent donors from typical blood samples ranges from 1-6% and 

decreases rapidly with an increase in the number of donors21, 22.  This “donor sharing problem” 

has severely hindered the use of AIRs as traditional biomarkers as it prevents ML classifiers 

from being able to identify general features associated with particular disease. The extent of 

donor sharing depends, however, on the way of constructing the AIR features. The traditional 

representation of an AIR is as “clonotype”: its V and J gene names, along with its CDR3 amino 

acid sequence. A clonotype is a useful qualitative nomenclature because it describes the 

receptor’s gene rearrangement history. However, because clonotypes mix categorical (gene 
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names) and continuous (CDR3 amino acid sequence) variables, it is not ideal for quantifying 

the similarities or diYerences between AIRs.  

 

An alternative approach is to represent AIRs by a single amino acid sequence containing the 

residues near the antigen binding interface, also known as the “paratope”.  Paratopes bring 

together three distinct segments called complementarity determining regions (CDR1, CDR2, 

add CDR3) (Fig. S1B). Most physical contacts between AIRs and antigens occur within or 

near the CDRs (Fig. S1C). By concatenating the three complementarity regions23 or by 

predicting the paratope24 a single paratope sequence can be constructed that is readily 

handled by standard protein sequence analysis methods for alignment, clustering, or 

searching25, 26. This approach has thus been used for grouping BCRs that target a common 

antigen23, 24, 27, 28 or TCRs that target a given peptide-MHC complex17, 29.  In the context of 

disease diagnosis, an important strength of the paratope representation is that AIRs form 

extended networks that join together diYerent clonotypes and, importantly, diYerent donors. 

 
 
Results 

 

Paratope adjacencies connect diDerent clonotypes and donors 

The impact of the paratope representation is best seen from an example. For this purpose, 

we constructed clonotype (Fig. 1A) and paratope (Fig. 1B) networks using the BCRs of ten 

COVID-19 from a previous study30.   Notably, none of the clonotype networks connected 

diYerent donors, consistent with the previously reported low sharing of BCR clones9, 22. The 

frequency of cluster sizes was systematically lower for clonotypes, than for paratopes, 

which formed a number of very large networks (Fig. 1C). Importantly, the larger paratope 

networks often contained many diYerent clonotypes and connected many donors (Fig. 1D). 

In this context, we refer to the AIRs that are connected in the paratope networks as 

“adjacent”.  These observations on clonotype and paratope networks form the basis of the 

features introduced here. The key observation is that AIRS can be “paratope adjacent” even 

if they come from diYerent donors. Therefore, features based on such adjacency are likely to 
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have elements that are shared among diYerent donors. This is essential to group donors 

belonging to a common disease class. 

 

Feature engineering 

We describe the details of our approach in the Methods section. Briefly, our goal is to derive 

a single feature vector for each donor. We assume each AIR belongs to a cluster. Such 

clusters can be defined in terms of clonotypes or paratopes. An individual donor can be 

represented by the frequency of clusters. We denote such features as “cluster frequencies” 

(CFs) (Fig. S2A). In this way, CFs consist of “clonotype cluster frequencies” (CCFs) or 

“paratope cluster frequencies” (PCFs) ), depending on whether we use clonotype or 

paratope clustering. We next extend the CFs by considering the networks of paratopes (Fig. 

1B). The networks are represented mathematically by an adjacency matrix 𝐴  of pairwise 

paratope edges (Fig. S2B). Importantly, a given AIR can have edges with AIRs in the same 

cluster as well to AIRs belonging to diYerent clusters. We denote the frequency of edges to 

all clusters as “occupancies” to emphasize the notion that a given AIR can “occupy” multiple 

clusters. Cluster occupancies (COs) consist of “clonotype cluster occupancies” (CCOs) or 

“paratope cluster occupancies” (PCOs), depending on whether we use clonotype or 

paratope clustering (Fig. S2C). Because all features are indexed by a specific cluster, the 

feature importance, as calculated by XGBoost, can be used to identify biologically important 

AIRs. 

 
AIR data downsizing  

Because AIR frequencies follow a long-tailed distribution (Fig. S1D), cluster frequencies also 

have a long-tailed distribution, which results in very long feature vectors. We thus require a 

way to drop clusters that are not populated by many donors. We introduce a parameter 𝑑!"# 

that sets a threshold for the required donor diversity. By discarding features with low donor 

diversity, we can reduce the sparsity of the features, reduce the dimensionality of the feature 

vectors, and reduce the number of AIRs in the paratope adjacency matrix. The parameter 

𝑑!"#	is thus tuned in the training process, as described in the Results section. 
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To evaluate the classifiers for a wide range of diseases, we collected AIR sequences for 6 

diseases covering 3 general categories (Table S1): infectious disease (COVID-19, HIV), 

autoimmune disease (autoimmune hepatitis, type 1 diabetes), and cancer (colorectal 

cancer, non-small cell lung cancer). Wherever possible, we utilized disease and healthy 

control data from the same study to minimize batch eYects (i.e., any bias other than that of 

the disease of interest) or used diYerent studies for training and testing. 

 

Classifier training 

We randomly split the donors into training (70%) and test (30%) groups. For the classifiers 

described here, we separately selected the optimal hyperparameter 𝑑!"# by leave-one-out 

cross validation (LOOCV) using the training donors. Two previously published methods, 

DeepRC20 and immuneML19, were identically trained, as described in the Methods section. 

We then evaluated all the trained classifiers on the test set (Fig. S2C). Aside from the feature 

generation steps (CCF, CCO, PCF, and PCO), all steps in the pipeline were identical for all of 

the newly developed classifiers. In the following sections, we discuss two representative 

diseases—COVID-19 (using single cell BCR sequence data) and NSCLC (using bulk TCR 

sequence data)—in depth. Our findings for the remaining diseases are described in Figs S3-

6 and the Suppl text. XXX  

  

Classification of COVID-19 patients and healthy donors from BCR data 

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

which initially targets the epithelial tissue of the nasal cavity and spreads to the upper 

respiratory tract, lung, and other organs31. Diagnosis is usually confirmed by polymerase 

chain reaction (PCR), which can detect the presence of viral nucleic acids32. To evaluate the 

performance of a theoretical AIR-based diagnostic system, we utilized BCR heavy chain data 

from a single-cell sequencing study of peripheral blood mononuclear cells (PBMCs) from 44 

COVID-19 patients (106,640 BCRs) and 58 healthy donors (174,139 BCRs), all of whom were 
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unvaccinated30. After splitting the data randomly, 71 donor datasets were used for training, 

and 31 were used for testing. The sparsity of the features decreases roughly linearly with  

𝑑!"#, while the LOOCV target function reached a maximum at a 𝑑!"#value of 0.7 (Fig. 2A).  

Using this value of 𝑑!"#,the classifier trained on the PCO features achieved an area under 

the receiver operating characteristic curve (ROC AUC) of 0.896 for test data, which was close 

to the LOOCV result on training data (0.946), indicating that the classifier was not overfitted 

and generalized well to new donors (Fig. 2B). When compared with the other new classifiers, 

only the model trained on CCF features was unable to classify the test donors (Fig. 2C), 

presumably due to the poor sharing of clonotypes across donors, as described above. The 

performance of the previously published classifiers ranged from 0.407 to 0.838, highlighting 

the importance of the technology in achieving robust results. The precision‒recall (PR) AUCs 

indicate that the PCO-based classifier achieved the highest value (0.932) among all the 

trained models (Fig. 2D). The above results demonstrate the improved generalizability of the 

PCO-based classifier, in particular in comparison to the CCF-based classifier. XXX 

 

The stark diYerence in performance between the CCF-based classifiers and the remaining 

types classifiers suggests that the computation of paratope occupancies had a critical 

impact on diYerentiating healthy individuals from those with COVID-19. To understand this 

eYect, we examined diYerences between CCF and CCO features, the latter of which utilized 

the same clonotype clusters as the former but were transformed to occupancies using 

paratope similarities. To this end, we first identified the feature with the highest CCO 

importance. We subsequently examined the clonotype cluster (Cluster 1) corresponding to 

this feature. This cluster consisted of only three AIRs from 2 of 104 possible donors: donor 

10 and donor 32 (Fig. 2E). By examining the CCO calculations, we found that AIRs from many 

donors shared paratope-level similarity with one or more of the three members of cluster 1 

(Fig. 2F). Thus, while the CCF feature corresponding to this cluster was zero for all but the 

two donors (10 and 32), the corresponding CCO feature was nonzero for many donors (898 

AIRs from 75 of 104 donors) (Fig. 2G). This example highlights the fact that an AIR that 

belongs to a given clonotype cluster can also have significant paratope similarity to AIRs in 
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diYerent clusters and that including such paratope-level similarities was therefore critical to 

the good performance of the CCO- and PCO-based COVID-19 classifiers. 

 

Classification of Non-small cell lung cancer patients from healthy donors using TCR 
data 

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer; it consist 

primarily of squamous cell carcinoma, large cell carcinoma, and adenocarcinoma, but 

several rarer subtypes have also been identified33. Diagnosis traditionally relies upon a wide 

variety of evidence, including symptoms (e.g., persistent cough), imaging data, and tissue 

biopsy; however, diagnoses based on blood-based biomarkers (EGFR, HER2, BRAF, KRAS, 

MET etc)34 have recently become more common in the application of liquid biopsy in NSCLC 
35. Like in many other cancers, in NSCLC, disease-specific T cells often infiltrate tumors, but 

whether these T cells also circulate in the blood remains poorly understood. A TCR-based 

diagnosis would be beneficial as a less invasive approach than biopsy. Unlike for the other 

diseases, we were unable to find a single study that included PBMCs from both NSCLC 

patients and healthy controls. Therefore, we constructed a diverse dataset from seven 

studies: three with data from healthy individuals36-38 and two with data from individuals with 

NSCLC39, 40 to serve as the training set and one each with data from healthy individuals41 and 

from individuals with NSCLC42 to serve as the testing set. Across the studies, a total of 204 

NSCLC donors (6,734,867 TCRs) and 294 healthy donors (4,120,597 TCRs) were ultimately 

included. After the data were split, 344 donors were used for classifier training, and 152 were 

retained for testing. Fig. 3A shows the sparsity of the resulting features, indicating that the 

occupancy-based features (CCO, PCO) were approximately 20% less sparse than the 

frequency-based features at small values of 𝑑!"# and converged at larger values, while the 

LOOCV target function remained perfect at all values. Fig. 3B shows that the PCO-based 

classifier trained using the highest 𝑑!"#  (0.9) achieved an ROC AUC of 0.985 for the test 

donors. Figs. 3C-D indicate that, among the new classifiers, only the those trained on 

occupancy-based features (CCO, PCO) performed well on test donors and that their 

performance was close to perfect (ROC AUC 0.985; PR AUC 0.982). The ROC AUCs of the 
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previously published methods ranged from 0.317 to 0.895. Taken together, PCO-based 

classifiers demonstrated the potential for nearly perfect diagnosis on a large cohort of 

cancer patients and healthy controls. The less than perfect performance of the next-best 

classifier--0.895 by immuneML(RF)—indicated that merely increasing the size of the training 

data was not suYicient for robust classification. 

 

Assessment across infectious disease, autoimmunity and cancer  

In addition to COVID-19 and NSCLC, we extended our benchmark to include an additional 

infectious disease, Human immunodeficiency virus (HIV); autoimmunity (Autoimmune 

hepatitis (AIH), Type 1 Diabetes (T1D); and, an additional cancer, Colorectal cancer (CRC) 

(Figs. S3-4). When we assessed all classifiers on all six independent test donor sets, we 

found that the PCO-based classifier exhibited the best overall performance (Table 1). The 

PCO-based classifier achieved the greatest ROC AUC among all the classifiers for all six 

diseases except for CRC, the disease with the fewest patients (20), and for which the 

diYerence (0.850 vs 0.821) was rather small. The mean ROC AUC of the PCO-based classifier 

(0.893) was substantially greater than that of the CCF-based classifier (0.714) and the 

previously published methods (0.537-0.777). Three of the PCO ROC AUCs—those for HIV 

(0.985), autoimmune hepatitis (AIH, 0.947) and NSCLC (0.985)—were close to perfect. The 

remaining three diseases—COVID-19 (0.896), type 1 diabetes (T1D, 0.725), and CRC 

(0.821)—were represented by fewer disease donors, suggesting that at least 50 disease 

donors may be needed for robust classifier performance. In contrast, the CCF-based 

classier ROC AUCs exceeded 0.9 for only one disease (HIV), for which the sequencing depth 

was much greater than that of the remaining diseases and performed no better than chance 

for T1D. It is noteworthy that, removal of the paratope features reduced performance (CCF, 

0.714) to a value similar to that of immuneML(RF) (0.777), suggesting that the improvement 

was likely due to this innovation. The above results demonstrate that PCO-based classifiers 

can successfully distinguish disease patients from healthy donors in infectious disease, 

autoimmunity and cancer. 
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   COVID-
19 

HIV AIH T1D CRC NSCLC 
Average 

AUC 
Donors 

Healthy 58 128 59 11 88 294 

Disease 44 94 59 34 20 204 

ROC 
AUC 

DeepRC 
(CNN) 0.407 0.888 0.66 0.5 0.541 0.715 0.619 

DeepRC 
(LSTM) 0.813 0.861 0.5 0.5 0.458 0.741 0.646 

immuneML 
(LR) 0.717 0.946 0.688 0.65 0.780 0.802 0.764 

immuneML 
(SVM) 0.781 0.744 0.5 0.5 0.750 0.836 0.685 

immuneML 
(KNN) 0.565 0.851 0.656 0.525 0.760 0.795 0.692 

immuneML 
(RF) 0.838 0.876 0.706 0.5 0.850 0.895 0.777 

immuneML 
(PBC) 0.533 0.5 0.713 0.5 0.660 0.317 0.537 

CCF 0.648 0.941 0.653 0.500 0.779 0.762 0.714 

PCF 0.867 0.968 0.787 0.500 0.800 0.967 0.815 

CCO 0.863 0.975 0.828 0.625 0.700 0.409 0.733 

PCO 0.896 0.985 0.947 0.725 0.821 0.985 0.893 

 

PR 
AUC 

DeepRC 
(CNN) 0.706 0.796 0.636 0.714 0.451 0.651 0.659 

DeepRC 
(LSTM) 0.928 0.856 0.444 0.714 0.416 0.696 0.676 

immuneML 
(LR) 0.796 0.914 0.729 0.871 0.718 0.802 0.805 
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immuneML 
(SVM) 0.894 0.774 0.722 0.857 0.719 0.905 0.812 

immuneML 
(KNN) 0.71 0.785 0.7 0.835 0.782 0.827 0.773 

immuneML 
(RF) 0.878 0.831 0.757 0.857 0.810 0.851 0.831 

immuneML 
(PBC) 0.767 0.723 0.722 0.857 0.560 0.31 0.657 

CCF 0.818 0.936 0.544 0.857 0.332 0.605 0.682 

PCF 0.893 0.930 0.740 0.857 0.565 0.965 0.825 

CCO 0.890 0.947 0.808 0.829 0.390 0.371 0.706 

PCO 0.932 0.966 0.953 0.902 0.468 0.982 0.867 

Rand 0.516 0.236 0.444 0.714 0.152 0.421 0.413 

Table 1. Summary of performance metrics. Performance of previously published 
methods (DeepRC, immuneML) using various settings, along with the classifiers developed 
in this study, each trained on one of the four features (CCF, PCF, CCO, and PCO) and 
applied to six diseases (COVID-19, HIV, AIH, T1D, CRC, and NSCLC). The numbers of 
donors are listed under each disease. Areas under both the receiver operating 
characteristic (ROC AUC) and precision-recall (PR AUC) curves are given. For the PR AUC 
values, the expected performance of a random predictor (Rand) is given by the ratio of 
positive to negative donors. The abbreviations in the second column are as follows: 
convolutional neural network (CNN), long short-term memory (LSTM), logistic regression 
(LR), support vector machine (SVM), K-nearest neighbor (KNN), random forest (RF), and 
probabilistic binary classifier (PBC). 

 

Classifiers trained on PCOs were robust against batch eDects 

Because our large NSCLC dataset was composed of data from multiple studies, it provided 

the opportunity to systematically explore the robustness of the diYerent features against 

batch eYects: eYects that arise from diYerences between samples that are not rooted in the 

experimental design and can have various sources43. To this end, we sampled all possible 

splits of the datasets where the test set consisted of the data from one healthy study and 
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one NSCLC study, while the data from the remaining studies were used for training. This 

process resulted in twelve splits with various numbers of AIRs in the training and test sets. 

These results indicated that, in terms of the ROC (Fig. 3E) and PR AUCs (Fig. 3F), the 

classifiers based on PCF and PCO features performed well overall, but those based on the 

CCF and CCO features performed inconsistently, in agreement with the data shown in Figs. 

3C-D. Furthermore, two of the twelve splits showed that it was possible to combine the 

NSCLC studies in such a way that the PCO model failed to generalize to the test data. 

Interestingly, in these two splits, the size of the training dataset was much smaller than that 

of the test dataset, which was consistent with the findings for the other diseases like T1D 

and CRC, again emphasizing the need for suYicient training data. Overall, however, the 

performance of the PCO-based classifier was more robust than that of the alternative new 

classifiers. 

 

Cancer data reveals a surprising relationship between healthy-biased clusters and 
cancer antigen specificity 

The underlying AIRs can be investigated using the XGBoost importance to identify clusters 

of interest. Because each feature corresponds to an AIR cluster, we hypothesized that AIRs 

within clusters corresponding to important features with high importance values might be 

more likely to target antigens that are specific to the disease in question. To test this 

hypothesis, we again examined the NSCLC dataset, for which we had the largest amount of 

data. First, we ranked the PCO clusters by their feature importance (Fig. 4A) and examined 

the proportions of healthy- and NSCLC-derived TCRs in each. We observed clusters both 

with significantly more TCRs from healthy donors (“healthy-biased” clusters) and with 

significantly more TCRs from disease donors (“NSCLC-biased” clusters) using a t test p 

value cutoY of 0.001 (Fig. 4B). The features of these class-imbalanced clusters are shown 

as a heatmap in Fig. 4C. Next, using these class-imbalanced clusters, we searched two 

databases (McPAS44 and VDJdb45), whose TCRs are annotated by their targeted antigen and 

associated disease. Interestingly, we identified strong hits to cancer-associated antigens 

using the TCRs from both the healthy- and NSCLC-biased clusters, but surprisingly, there 
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were more hits from the healthy-biased clusters than from the NSCLC-biased clusters (Fig. 

5A). Fig. 5B illustrates some of these hits, which included antigens such as MLANA46, 

EphA247, BST248, TKT49 and IGF2BP250, which have been reported as prognostic markers for 

NSCLC. These findings demonstrate the further application of PCO-based features as a 

means of identifying potential cancer-fighting T cells. 

 

We speculated that T cells that target cancer-associated antigens might be more common 

in healthy donors if, in NSCLC patients, they migrate from the peripheral blood toward tumor-

presenting tissues (i.e., the lungs). To test this idea, we repeated the database queries using 

randomly selected TCRs from healthy donors. Compared to TCRs from healthy biased 

clusters, randomly selected TCRs from healthy donors resulted in dramatically fewer hits (Z 

score = 75), as shown in Fig. 5C. In contrast, TCRs from NSCLC-biased clusters exhibited a 

similar level of cancer-associated hits to randomly selected TCRs from donors with NSCLC 

(Z score = 1.41), as shown in Fig. 5D. These observations were not qualitatively sensitive to 

the similarity threshold used to define a hit (Fig. S4). Taken together, they show that the 

healthy-biased TCRs are indeed distinct from typical healthy donor-derived TCRs, 

supporting the notion that they would have the potential to migrate out of the periphery in 

cancer patients. 

 

We next performed an analogous analysis for colorectal cancer (CRC) cases (Fig. S5-6). 

Consistently, TCRs from healthy-biased clusters had significantly more cancer-related hits 

than did randomly selected TCRs from healthy donors (Z score = 39.5) (Fig. S6C), regardless 

of the similarity threshold (Fig. S7). A recent report showed that several cancer-specific 

TCRs could target multiple tumor types via the HLA A*02:01-restricted epitopes EAAGIGILTV, 

LLLGIGILVL, and NLSALGIFST from Melan A (MLANA), BST2, and IMP2 (IGF2BP2) and that 

PBMCs from healthy donors expressed such TCRs51. Consistently, many TCRs from healthy-

biased, important clusters were predicted to target MLANA and BST2 or MLANA and IGF2BP2 

via highly similar epitopes in both the NSCLC (Fig. S8) and CRC (Fig. S9) datasets. Taken 
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together, these results strongly suggest that the TCRs in the healthy-biased clusters migrate 

out of the peripheral blood to infiltrate tumors in individuals with NSCLC and CRC.   These 

findings highlight the interpretability of our ML classifiers to identify underlying mechanisms 

and potentially therapeutic immune cells. 

 

Discussion 

Liquid biopsies that can detect specific diseases from blood have the potential to reshape 

the future of medical diagnosis.  Adaptive immune cells, which circulate in peripheral blood, 

are highly sensitive to a broad range of diseases. However, harnessing this sensitivity in a 

reproducible and general manner has presented a challenge, due to the high diversity and 

low inter-donor sharing of AIRs. Moreover, the natural inclination to gather more extensive 

and larger datasets for machine learning purposes is at odds with the goal of achieving 

widespread mutual sharing among all donors. This problem is exacerbated by the use of the 

clonotype nomenclature, which separates AIRs into discrete clusters defined by their V and 

J gene usage and CDR3 length. Our results demonstrate that an AIR representation that 

incorporates the extended networks of paratopes allows donors to be connected and 

improves classifier performance compared to clonotype-based classifiers.  

 

We found that there was obvious improvement with additional training data, which is 

encouraging given the rapid growth of publicly available AIR data. Beyond a threshold value 

of 200 donors, the PCO-based classifiers were very robust, achieving ROC AUC values of 

0.985 (HIV and NSCLC). This suggests that initial clinical validation of specific diseases 

could be performed with smaller numbers of donors (e.g. 20 patients) and then scaled up to 

larger numbers (e.g. 50 patients) based on initial results. 

 

The network view of adaptive immunity makes sense from the perspective of host defense, 

as pathogens represent a diverse and unpredictable set of threats. Indeed, Immune Network 
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Theory, originally proposed by Jerne and HoYmann helped to explain the immune system’s 

ability to distinguish self from non-self52,53.  Here, we see from the perspective of disease 

classification that dense features based on paratope networks generalize much better to 

new donors than sparse features based on less connected clonotypes and that these 

observations were consistent across three broad categories of disease.  

 

In addition to these general observations, we found that in the two cancer datasets, clusters 

that corresponded to important features included both healthy- and disease-biased clusters. 

Typically, in repertoire analysis, there is a tendency to focus on clusters that are 

overrepresented in patients54, 55. However, we observed the reverse: healthy-biased clusters 

were important for disease classification as well.  One possible explanation for the 

importance of healthy-biased clusters is that they are not relevant to cancer and are thus 

downregulated in individuals with cancer. However, the opposite interpretation—that these 

clusters are relevant to cancer but have migrated out of the peripheral blood (e.g., to the site 

of the tumor)—is also conceivable. The latter explanation is consistent with the observation 

that tumor-infiltrating lymphocytes (TILs) have been observed in almost all cancers56. 

Although we cannot determine what happens to the T cells missing from cancer patients, 

the extremely high hit rate of cancer-associated TCRs in healthy-biased clusters with respect 

background healthy TCRs supports the idea that these T cells leave the periphery of cancer 

patients as a result of targeting tumors. Moreover, the close resemblance of the TCRs 

identified here to those found to be reactive to multiple types of cancer51 further strengthens 

this argument. The notion that tumors can aYect global migration from peripheral blood has 

been demonstrated in brain cancer and metastatic melanoma57. In one NSCLC source 

report42, the authors discovered that many expanded intratumoral TCRs were detectable in 

blood samples at the time of lung tumor resection from NSCLC patient, consistent with the 

notion that T cells in peripheral blood, and TCR-based classification of cancer cells from 

PBMCs, can be used for disease monitoring and personalized immunotherapy development.   
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XXX 

Undoubtedly, there are limitations to this study that suggest future directions. One concerns 

the focus on specific disease and limited sample sizes. In this study, we focused on 

classifying single disease patients from a healthy donor cohort. However, future work must 

also explore the classification of diYerent cancer types or multiple diseases simultaneously. 

To achieve this, larger and higher-quality AIR datasets with accompanying clinical 

information, such as tumor stage, treatment history, and survival outcomes, will be 

necessary. Expanding the scope of the study to include more diverse disease types and 

larger cohorts will also help validate the generalizability of our findings and provide a more 

comprehensive understanding of the TCR repertoire's role in disease diagnosis and 

monitoring.  Another area we have not yet explored is the combination of BCR and TCR 

information. Our study focused on BCRs for infectious diseases and TCRs for autoimmune 

diseases and cancer; however, it would be valuable to investigate the potential of combining 

both BCR and TCR information, including paired (light-heavy, alpha-beta) chains, to train the 

classifier. By integrating data from both arms of the adaptive immune system, future studies 

may potentially improve classification performance and provide a more holistic view of the 

immune response in various disease states. In addition, incorporating more advanced ML 

model is of interest. With the advancement of large language models, it will be interesting to 

explore whether paratope networks emerge naturally from training rather than through 

explicit calculation of the adjacency matrix. By leveraging these advanced models, we may 

capture more complex patterns and interactions within TCR and BCR repertoires. In parallel, 

extending our approach through use of deep learning models, such as graph neural networks, 

may further improve diagnostic performance. 

 

XXX In conclusion, our study represents a proof of concept showing the use of paratope 

networks improves the robustness of disease classifiers with the potential to diagnose 

infectious diseases, autoimmune disorders, and cancer from adaptive immune receptor 

repertoire data. These findings highlight the potential of our method to provide a deeper 

understanding of the role of the adaptive immune system in three major disease states and 
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contributes to the development of more accurate and widely applicable liquid biopsies. 

Moreover, since most liquid biopsies utilizing peripheral blood utilize only the serum 

component, our technology is entirely compatible with such tests and may well add breadth 

and sensitivity to existing tests. As the field of AIR repertoire analysis continues to evolve, we 

anticipate that further refinement will enhance the performance and generalizability of this 

approach, ultimately leading to improved patient care and outcomes. 

 

Figure Captions 

Figure 1. Paratope networks enable donor sharing. BCR heavy chain networks were 

constructed for 10 COVID-19 patients, where nodes are colored by donor and edges 

represent BCR sharing the same clonotype or similar paratope. Only networks larger than 10 

are shown for simplicity.  A, Clonotype networks are typically  small and do not connect 

diYerent donors. B, Paratope networks are much larger and generally connect many donors.  

C, The network sizes and frequencies were distinct even on a log scale. D, A close-up view 

of one of the larger paratope networks (circled in B), whch is made up of many diYerent 

clonotypes, includes all 10 donors.    

 

Figure 2. Assessment of COVID-19 diagnosis based on BCRs A, The sparsity of each of the 

four feature matrices as a function of 𝑑!"# . The vertical cyan line shows the value from 

LOOCV hyperparameter optimization, and the pink line indicates the target function (mean 

of training ROC AUC and PR AUC). B, ROC curves for the LOOCV and test predictions using 

the PCO classifier. C, ROC AUCs for all four classifiers in the test set. D, PR AUCs for all four 

classifiers in the test set; the performance of a random classifier is indicated as a gray bar. 

E, Impact of occupancy on important features. The clonotype cluster corresponding to the 

most important feature in the COVID-19 CCO training (cluster 1) has three members 

representing two donors (donor 10 and donor 32). The small size and low sharing of cluster 

1 result in a sparse CCF feature. F, AIRs with similar paratopes from other clonotype clusters 
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are visualized as a chord diagram, where each color denotes a diYerent donor. The original 

two donors are colored purple and cyan, as in the clonotype cluster. G, A high degree of 

paratope-level similarity across multiple BCRs from multiple donors results in a dense CCO 

feature vector. 

 

Figure 3. Assessment of NSCLC diagnosis based on TCRs A, The sparsity of each of the 

four feature matrices as a function of 𝑑!"#, with the vertical cyan line showing the value from 

LOOCV hyperparameter optimization and the pink line indicating the target function (mean 

of training ROC AUC and PR AUC). B, ROC curves for the LOOCV and test predictions using 

the PCO classifier. C, ROC AUCs for all four classifiers in the test set. D, PR AUCs for all four 

classifiers in the test set; the AUC of a random classifier is indicated as a gray bar. E, 

Summary of 12 ROC AUC values in the test sets of NSCLC using diYerent combinations of 

studies for training and testing. F, PR AUC values in the same 12 test sets. 

 

Figure 4. Assessment of cluster features in NSCLC patient classification A, Feature 

importance. The Y-axis shows the importance of the XGBoost features in descending order. 

B, The six most important features. Each dot represents the proportions of healthy (HD) and 

disease (NSCLC) donors exhibiting those features. A t test was performed to compare the 

proportions between the HD and NSCLC cohorts (***p≤0.001). C, Heatmap of the top 100 

significant disease and healthy (HD) cluster features. p values were calculated with the t 

test; by sorting the p values in ascending order, the ranks of the corresponding features are 

determined. The value of each cell is the normalized ratio from 0 (white) to 1 (blue). The left 

Y-axis shows each donor from the healthy and NSCLC cohorts grouped by the corresponding 

study. 

 

Figure 5. Functional annotation of healthy- and NSCLC-biased clusters. A, Histogram of 

hits to TCRs targeting the indicated antigens from healthy- (blue bars) and NSCLC-biased 
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(pink bars) clusters after querying the McPAS and VDJdb cancer databases. Each count 

represents one database hit. B, Sequences from important clusters matching known 

cancer-targeting antigens, as shown by their alignments and sequence logos based on all 

members of the same cluster. C, Hit rates of TCRs from healthy-biased clusters to cancer-

targeting TCRs (vertical red line) and the corresponding hit rates of 100 randomly selected 

sets of queries from the same donors (green bars with blue vertical lines representing the 

means). The horizontal arrow indicates the Z score. D, Hit rates of TCRs from NSCLC-biased 

clusters to cancer-targeting TCRs (vertical red line) and the corresponding hit rates of 100 

randomly selected sets of queries from the same donors (green bars with blue vertical lines 

representing the means). The horizontal arrow indicates the Z score. 

 

Figure S1. Adaptive immune receptors. A, B-cell receptors (also known as antibodies in 

their soluble form) consist of two heavy and two light chains, while T-cell receptors (TCRs) 

consist of a single beta and a single alpha chain. BCR and TCR coding sequences are 

generated by combinatorial rearrangement of V, D and J genes, which results in diverse 

complementarity determining regions (CDRs 1-3). B, CDRs 1-3 are arranged to form a 

continuous molecular surface called a “paratope” (in blue). C, Contact with an antigen (light 

blue) most often occurs with the CDRs than with the background assessable surface (light 

brown). D, The distribution of BCRs and TCRs for each donor follows a long-tailed 

distribution, with the large majority of clones having very low frequencies (clones with 

counts less than 10 are not shown). 

 

Figure S2. Cluster frequency and occupancy strategy in the classification algorithm. A, 

Cluster frequencies are illustrated with two example donors (A and B) whose AIRs form 6 

clusters, which are one-hot encoded in matrix C. The cluster frequency feature of a donor is 

obtained by summing the rows of this matrix that belong to that donor. B, Cluster 

occupancies are derived similarly to cluster frequencies except that we introduce an 

adjacency matrix describing the pairwise similarities between each AIR. If there are 
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similarities between AIRs belonging to diYerent clusters, the occupancy matrix O will diYer 

from C. Summing the rows for each donor yields a feature vector that is generally less sparse 

than that derived from cluster frequencies. C, Flowchart of the classification pipeline. 

Starting from a set of training and test donors, the first step is feature generation using one 

of four methods, which diYer in the type of clustering (clonotype or paratope) and whether 

the clusters are transformed into features based on frequencies or occupancies. Thereafter, 

the remaining steps are identical and consist of training/hyperparameter selection and 

testing the classifier on the test features. 

 

Figure S3. Assessment of HIV diagnosis based on BCRs and AIH diagnosis based on 

TCRs. A/E, The sparsity of each of the four feature matrices as a function of 𝑑!"#, with the 

vertical cyan line showing the value from LOOCV hyperparameter optimization and the pink 

line indicating the target function (mean of training ROC AUC and PR AUC). B/F, ROC curves 

for the LOOCV and test predictions using the PCO classifier. C/G, ROC AUCs for all four 

classifiers in the test set. D/H, PR AUCs for all four classifiers in the test set; the AUC of a 

random classifier is indicated as a gray bar. Impact of occupancy on important features. 

 

Figure S4. Assessment of T1D and CRC diagnosis based on TCRs. A/E, The sparsity of 

each of the four feature matrices as a function of 𝑑!"#, with the vertical cyan line showing 

the value from LOOCV hyperparameter optimization and the pink line indicating the target 

function (mean of training ROC AUC and PR AUC). B/F, ROC curves for the LOOCV and test 

predictions using the PCO classifier. C/G, ROC AUCs for all four classifiers in the test set. 

D/H, PR AUCs for all four classifiers in the test set; the AUC of a random classifier is indicated 

as a gray bar. Impact of occupancy on important features. 

 

Figure S5. Cancer-associated hit rates from healthy-biased clusters and NSCLC-biased 

clusters using various similarity thresholds. TCRs from healthy-biased clusters had 
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significantly more cancer-related hits than did those from randomly selected background 

TCRs under three diYerent CDR3 sequence identity thresholds (80%, 90% and 100%). 

 

Figure S6. Assessment of cluster features in CRC patient classification. A, Feature 

importance. The Y-axis shows the importance of the XGBoost features in descending order. 

B, The top six most important features. Each dot represents the proportion of healthy (HD) 

and disease (CRC) donors with that feature. A t test was performed to compare the 

proportions between the HD and CRC cohorts (***p≤0.001). C, Heatmap of the top 100 

CRC- and healthy (HD)-biased cluster features. p values were calculated with the t test; by 

sorting the p values in ascending order, the ranks of the corresponding features was 

determined. The value of each cell is the normalized ratio from 0 (white) to 1 (blue). The left 

Y-axis shows each donor from the healthy and CRC cohorts grouped by the corresponding 

study. 

 

Figure S7. Functional annotation of healthy- and CRC-biased clusters. Histogram of hits 

to TCRs targeting the indicated antigens from healthy- (blue bars) and CRC-biased (pink 

bars) clusters after querying the McPAS and VDJdb cancer databases. Each count 

represents one database hit. B, Sequences from important clusters matching known 

cancer-targeting antigens, as shown by their alignments and sequence logos based on all 

members of the same cluster. C, Hit rates of TCRs from healthy-biased clusters to cancer-

targeting TCRs (vertical red line) and the corresponding hit rates of 100 randomly selected 

sets of queries from the same donors (green bars with blue vertical lines representing the 

means). The horizontal arrow indicates the Z score. D, Hit rates of TCRs from CRC-biased 

clusters to cancer-targeting TCRs (vertical red line) and the corresponding hit rates of 100 

randomly selected sets of queries from the same donors (green bars with blue vertical lines 

representing the means). The horizontal arrow indicates the Z score. 
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Figure S8. Cancer-associated hit rates from healthy-biased clusters and CRC-biased 

clusters using various similarity thresholds. TCRs from healthy-biased clusters had 

significantly more cancer-related hits than did those from randomly selected background 

TCRs under three diYerent CDR3 sequence identity thresholds (80%, 90% and 100%). 

 

 

Figure S9. Predicted MLANA, BST2, and IGF2BP2-targeting TCRs. A, The UpSet plot shows 

the TCR hit numbers for the predicted MLANA, BST2, and IGF2BP2-targeting TCRs from 

healthy (left) and NSCLC-biased (right) clusters under a CDR3 sequence identity of 80 or 

90%. Some TCRs are predicted to target two antigens. B, Sequence alignments of query-

template hits indicating that multiple healthy donors harbor TCRs predicted to target two 

cancer-related antigens. 

 

Figure S10. Predicted MLANA, BST2, and IGF2BP2-targeting TCRs. A, The UpSet plot 

shows the TCR hit numbers for the predicted MLANA, BST2, and IGF2BP2-targeting TCRs 

from healthy (left) and CRC-biased (right) clusters with CDR3 sequence identities of 80 or 

90%. Some TCRs are predicted to target two antigens. B, Sequence alignments of query-

template hits indicating that multiple healthy donors harbor TCRs predicted to target two 

cancer-related antigens. 
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