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Abstract
Delineating the mechanisms underlying cell state changes is key to gaining insights into
organismal development and disease prognosis. Various methods have been proposed
to study cellular differentiation and cell fate specification. However, they either do not
incorporate temporal information or do not consider the vital role of intercellular
communication in cellular differentiation and cell fate determination. Furthermore,
many of these methods lack interpretability, making it difficult to identify the critical
genes and pathways that influence the differentiation process. Here we propose
CC-Tempo, a cell-cell communication-aware model of cellular dynamics that leverages
intercellular communication scores and can help identify important genes and pathways
crucial for different stages of differentiation in various lineages. While previous studies
have indicated that scRNA-seq data alone may not suffice for accurately predicting cell
fates, CC-Tempo demonstrates that incorporating intercellular communication
significantly enhances the performance of such models. CC-Tempo can predict the
significance of genes and pathways at different stages of the differentiation process. By
perturbing these genes in silico, CC-Tempo reveals their efficacy for manipulating cell
fate, which can be crucial for defining efficient reprogramming factors.

Introduction

In multicellular organisms, life begins with a single zygote cell that gives rise to a
complex organism comprising specialized cell states. The process determining such
specialization is known as cellular differentiation, a cornerstone topic in developmental
biology1. Researchers actively study this field to answer key questions, such as tracing a
cell’s differentiation history, understanding the transcriptional regulatory mechanisms
governing differentiation, and predicting its transcriptional state (“cell fate”) at future
time points. Traditional bulk data fall short in answering these questions as they cannot
capture variations between individual cells or track them over time. Single-cell RNA
sequencing (scRNA-seq) has the potential to address these limitations by providing
transcriptomic data at the single-cell level2. However, scRNA-seq technologies
necessitate cell death for data collection, making it impossible to track a cell over time.
Recent computational models of temporally resolved scRNA-seq data have shown
promising advances to mitigate this issue, although there remain critical gaps in
building mechanistic models that elicit actionable hypotheses. In this manuscript, we
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propose CC-Tempo (A cell-cell communication aware temporal model of cellular
dynamics) to address this gap.

A large number of methods have applied “pseudo-time ordering” to study cell state
transitions in scRNA-seq data. These methods order cells along pseudo-temporal axes.
The inferred pseudo-temporal values have been employed to forecast cellular
trajectories and, ultimately, cell fate3,4. However, for temporally-resolved scRNA-seq data,
these pseudo-time ordering methods are unable to take advantage of the information on
distinct time points5,6. In order to model cellular differentiation and cell state changes
using temporally-resolved data, several new approaches have emerged7–10. Among them,
some attempted to model differentiation as a process but faced limitations in their
solving or modeling capabilities9. There exist other methods as well, mostly centered
around the concept of optimal transport (OT)11. These methods essentially construct
maps between the scRNA-seq data of consecutive time points to form a continuum of
cell states akin to Waddington’s metaphorical epigenetic landscape12,13. Schiebinger et
al.8 proposed a framework aimed at learning this metaphorical epigenetic landscape
from scRNA-seq data. Their approach is grounded in the concept that cells at specific
time points are drawn from a distribution within the gene expression space,
encompassing both ancestral and descendant cellular distributions. This underlying
distribution was estimated using an unbalanced OT formulation. Overall, these methods
have set a strong rationale that computational modeling can elicit a deeper
understanding of cellular differentiation by leveraging temporally-resolved scRNA-seq
data. Further opportunities for rigorously building these models are offered by the
cutting-edge LT-scSeq technology (lineage tracing with single-cell RNA sequencing)14,15.
In LT-scSeq, cells are tagged during initial time points to subsequently track their
descendant cells at later stages. LT-scSeq data combines lineage tracing information
with scRNA-seq measurements and are considered gold standards for benchmarking the
aforementioned computational models16.

Weinreb et al.17 featured an LT-scSeq dataset of mouse hematopoiesis. They evaluated
various existing methods for predicting cell fate based on single-cell RNA sequencing
(scRNA-seq) data, including Population Balance Analysis (PBA)9, WaddingtonOT8, and
FateID7. Importantly, they concluded that single-cell gene expressions alone are
insufficient for accurately predicting cell fate outcomes. Following up, Yeo et al.18

proposed a model named PRESCIENT that takes cell proliferation into account and
outperformed the above methods on Weinreb et al.’s dataset. Introducing the notion of
“potentials” within the space of transcriptional cell states, PRESCIENT viewed cellular
differentiation as a change of potentials over time, which can be described by a diffusion
equation. In contrast to the other methods, PRESCIENT is a generative model, and Yeo et
al. showed interesting applications of PRESCIENT on unobserved data points and to
predict cell fates under transcription factor perturbations.

Notably, all existing methods model cell state transitions by considering each cell as an
independent, isolated entity. Yet, cells do not exist in isolation within an organism; they
coexist within tissues and engage in cell-cell interaction. Indeed, Schiebinger et al.8

discussed that the assumption of a cell’s autonomous trajectory is likely inaccurate. It is
well understood that cells attain distinct functional states not only through their
individual gene expressions but also through local cell-cell communication19. This
intercellular crosstalk, often facilitated by ligand-receptor pairs, is crucial for steering
diverse cellular decisions, spanning from cell cycle regulation, cell death, and migration
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to lineage-specific differentiation 20–22. Thus, we propose CC-Tempo, a cell-cell
communication aware temporal model of cellular dynamics. Even though single-cell
RNA sequencing (scRNA-seq) data doesn’t explicitly offer insights into cell-to-cell
communication, it inherently carries details about ligand-receptor interactions, which
can be harnessed to deduce intercellular communication potentials 23,24. CC-Tempo
demonstrates that incorporating these intercellular interactions makes it possible to
more accurately capture the underlying dynamics of cell trajectories compared to
existing methods. A second notable feature of CC-Tempo is its easy and immediate
interpretability.

Results

CC-Tempo: A cell-cell communication aware temporal model of cellular dynamics.

CC-Tempo defines the temporal changes in cells as a combination of two interrelated
diffusion processes (See Sec. 4 (Methods)). The first one is a diffusion process over the
single-cell RNA expression space, which is modeled by a linear potential function (Eq. 1)
following previous studies8,18. This linear potential function is learned from the temporal
snapshots of single-cell RNA expression data using a feed-forward neural network.
However, to incorporate intercellular communication into our model and to evaluate its
contribution on cell fate prediction, we added a seperate diffusion process for the
cell-cell interaction potential derived from single-cell RNA expression data (Fig 1A, See
Eq. 2). This second difussion process is also learned by a feed-forward neural network
and the output of these two aforementioned networks are combined to derive next state
of a cell (Fig 1B). Thus, to CC-Tempo, a cell state is a tuple comprising single-cell RNA
expression data and intercellular communication score. Unlike existing methods 8,9,18,
CC-Tempo learns this potential directly from the single-cell RNA expression data without
reducing the data into a low dimensional space (Fig 1C, See Sec. 4 (Methods)). Utilizing
the full gene expression data as CC-Tempo’s input allows it to be interpretable in various
ways (Fig 1Di-iii).

Both components of the state evolve over time by their corresponding drift velocity,
which takes incremental movement towards the direction of lower potential in their
corresponding potential space (Fig 1C). Particularly, the drift velocity is the negative
gradient of their corresponding potential value (Fig 1Bii). The linear potential drives the
cells into lower potential space as the cells continue shifting to their final cell fate over
time. The cell-cell interaction potential maps how cell communication changes with
each other as they proceed to their final fate state. These two stochastic processes are
simulated by their first-order time discretized equations to obtain the cell’s movement
at each time step. These equations can be used iteratively to obtain the cell state at the
final time point, which is then fitted with the observed cell state tuple using the
objective function (Fig 1C). The gene expression loss is calculated by minimizing the
Wassenstein loss between the scRNA-seq data and model-predicted gene expressions,
while the intercellular communication score loss is a Wasserstein loss between
intercellular communication scores estimated from the data and those predicted by the
model. The final loss is the summation of these two losses and a regularization term.
Wasserstein loss has been widely used in learning such a diffusion process25,26.
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CC-Tempo outperforms existing methods when applied to mouse hematopoiesis
data.

We apply CC-Tempo to Weinreb et al.’s mouse hematopoiesis LT-scSeq dataset17

comprising 130,887 cells of 11 cell types and collected at three time points: Day 2, Day
4, and Day 6. Furthermore, LT-scSeq provided clonal data for 49,302 out of the total
cells. A "clone" refers to a group of cells originating from the same progenitors in
previous time points. In total, there are 5,864 unique clones in this dataset (Fig. 2A, B).
The lineage tracing data allows us to validate CC-Tempo’s performance on
developmental cell differentiation and benchmark CC-Tempo with others. Specifically,
following the dataset17 and subsequent methods8,18, we calculate the metric clonal fate
bias to evaluate CC-Tempo’s predictions on cell fate specification. In the original dataset,
clonal fate bias is defined as the total number of neutrophils divided by the total number
of neutrophils and monocytes for that specific clone. So, a clonal fate bias closer to 0
denotes the fate of a progenitor cell to be a monocyte, while a clonal fate bias closer to 1
denotes the fate of a neutrophil (Fig. 2A, C). Following PRESCIENT18, we derive clonal
fate bias from CC-Tempo by making 100 copies of progenitor cells and then simulating
them till Day 6 via CC-Tempo to get the final state. Each of these simulated Day 6 cells
will possess unique states as a result of the model's random noise component. We
classify the final state of each copy as neutrophil, monocyte, or other types via a simple
Logistic Regression classifier to emphasize on the learning capability of CC-Tempo,
rather than using sophisticated classfier to obtain better results.. Finally, following the
original study17, we assess the performance of CC-Tempo by measuring the Pearson
correlation coefficient (PCC) of the model predicted fate bias with respect to the actual
clonal fate bias provided by the lineage tracing data. We benchmarked CC-Tempo on the
aforementioned metrics against PRESCIENT18 since it was shown to outperform the
other existing methods on Weinreb et al.’s dataset. These other methods are Population
Balance Analysis (PBA), WaddingtonOT, and FateID. When our manuscript was in the
editing stage, another relevant tool named TIGON was published by Sha et al.27. It is a
theoretically appealing model that simultaneously infers cell velocity, growth, and
dynamics. Similar to our CC-Tempo and Yeo et al.'s PRESCIENT, Sha et al. evaluated
TIGON on Weinreb et al.'s lineage tracing data. Both of the models had competitive
performance, but PRESCIENT had a simpler network. Hence, we were attracted to it.
CC-Tempo outperformed PRESCIENT in both Pearson correlation coefficients (PCC).
Compared to PRESCIENT, CC-Tempo achieved a 4% improvement in PCC (improved to
0.52 from 0.50) and (Fig. 2D). To confirm that the intercellular communication actually
playing some role in model’s output, we dropped top 5 and then top 10 signaling
pathways ranked by CC-Tempo (See Methods). Dropping top 5 signaling pathways
decreased the PCC to 0.512 and dropping the top 10 signaling pathways declined the
PCC to 0.50, signifying that intercellular communication has helped CC-Tempo capture
cell fate more accurately. Additionally, we calculate clonal fate bias deviation (See Sec. 4
(Methods)) and draw the distribution plot of this deviation (Supplementary Figure 1A).
As is evident from the figure, CC-Tempo has a much shorter tail than PRESCIENT,
signifying that CC-Tempo tends to stick closer to actual clonal fate bias than PRESCIENT.

Furthermore, while comparing the potential value of CC-Tempo and PRESCIENT, we find
that cells in PRESCIENT tend to stay in high potential even after the bifurcation of the
monocyte and neutrophil in UMAP, but cells in CC-Tempo tend to go into lower potential
at the bifurcation points which suggests that CC-Tempo tends to capture cell fate
information much earlier in time than PRESCIENT (Fig. 2E). We have plotted some
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examples of the cell trajectory where PRESCIENT fails to capture the clonal fate bias
while CC-Tempo accurately predicts the score (Fig. 2F). Overall, this benchmarking set a
strong premise for applying CC-Tempo to define the genes and intercellular
communications underlying cell state specification during hematopoiesis.

CC-Tempo accurately predicts marker gene expression in Day 6 cells and identifies
the cell-fate-defining genes.

We next investigated why CC-Tempo outperforms PRESCIENT. We posited that a
method’s performance in predicting cell fate bias depends on its accuracy in predicting
marker gene expression in Day 6 cells. Thus, we used both methods to predict marker
gene expressions in Day 6 cells. Checking these details is straightforward for CC-Tempo
since it directly works with high-dimensional gene expression data and outputs the final
cell’s gene expression as well as intercellular communication score in the same
high-dimensional gene space. However, many models, including PRESCIENT, use low
dimensional representation to train their model, hence making it complicated to
interpret the model. The advantage of CC-Tempo is that, it incorporates the
dimensionality reduction (expansion) as a part of the Neural Network (See Methods),
which allows us to individual genes as inputs to CC-Tempo and leverage different model
interpretability techniques to assign predictive importance to each gene. The previous
methods use reduced dimensional representation of gene expression data as inputs,
which limits model interpretation techniques to prioritize only the important
dimensions, but not individual genes..

Following the dataset17 and subsequent methods8,18, we evaluated CC-Tempo on
Neutrophil vs Monocyte cell fate specifications. We obtained the monocyte and
neutrophil marker gene annotations from Weinreb et al.’s original study
(Supplementary Table 1). We visualized their expression as predicted by CC-Tempo and
PRESCIENT in Day 6 cells. We focused on the cells where CC-Tempo’s predictions are
more accurate than PRESCIENT’s in cell fate specification(Fig. 2G). This comparison
indicates that a model’s accuracy is highly dependent on its ability to predict marker
gene expression. As an orthogonal approach to defining the genes driving CC-Tempo’s
accurate predictions, we applied SHAP (SHapley Additive exPlanations) on the fates
predicted by CC-Tempo for Day 6 cell. SHAP (SHapley Additive exPlanations) is a widely
used local model explanation tool for neural networks28–30. For a given input, it identifies
the most influential variables in determining the output and ranks them according to
their importance. Here, we used SHAP to identify and rank the genes driving
CC-Tempo’s classification accuracy for Day 6 cells. Briefly, we take all the progenitor cells
(Day 2), simulate them via CC-Tempo, and derive their Day 6 (final day) cell state. We
then use our trained logistic regression classifier to classify these predicted cells into
neutrophils, monocytes, or other cells. We pass the predicted monocyte cells’ gene
expression to obtain the linear potential and explain this with SHAP to determine which
genes were highly important for that potential. Interestingly, the top 15 most important
genes for the monocyte lineage showed one out of ten of the previous monocyte
markers reported by Weinreb et al. (Fabp5; Fig. 3A). However, 14 of these 15 genes are
indeed significantly differentially expressed between monocytes and all other cell types,
as we confirmed using the Wilcoxon’s rank-sum test (Fig. 3C, Supplementary Table 2).

Additionally, we find a new gene 1110002J07Rik, suggested by SHAP. However,
Wilcoxon’s rank-sum test shows that it is not significantly differentially expressed
between monocytes and all other cell types. (Supplementary Figure 1B).
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Following the similar method above, we derive the most important genes for neutrophil
lineage. In a similar fashion, the top 15 most important genes for the neutrophil lineage
showed three of the previous neutrophil markers reported by Weinreb et al. (Lcn2,
S100a9, S100a8; Fig. 3B). Moreover, 14 of these 15 genes are indeed significantly
differentially expressed between neutrophils and all other cell types, as we confirmed
using the Wilcoxon’s rank-sum test (Fig. 3D, Supplementary Table 3). Additionally, we
find that 1110002J07Rik plays an important role in neutrophils’ fate determination as
well, according to SHAP. Again, it is not significantly differentially expressed between
neutrophils and all other cell types.

CC-Tempo predicts expected fate changes in cells with progenitor transcription
factors’ perturbation.

By design, CC-Tempo can predict the differentiation trajectory starting from any cell
state. Thus, as long as it captures the mechanisms underlying cellular differentiation
dynamics from the observed data, CC-Tempo can reliably predict the outcome of genetic
perturbations (See Sec. 4 (Methods)). We next utilized CC-Tempo to perturb
transcription factor (TF) expression in early progenitor cells and investigate how that
affects the final day cell fate.

In particular, as above, we choose the Day 2 progenitor cells with at least one monocyte
or neutrophil in their clone on the final day and perturb the corresponding TFs for
neutrophils or monocytes to check if CC-Tempo predicts a fate bias change toward the
correct fate. A comprehensive list of TFs expressed in monocytes and neutrophil
progenitor cells is available in the literature31–35. The following transcription factors are
available in Weinreb et al. dataset for monocytes F13a1, Ms4a6c, Ly6c2, S100a4, Rassf4,
Csf1r, Hpse, Ly86, Emb, Papss2, Ctss, Slpi, Irf8, Nr4a1, and Klf4. The transcription factors
for neutrophils that are available are Ltf, Ngp, Lcn2, Cd177, Camp, S100a9, Ifitm6, Itgb2l,
Pglyrp1, S100a8, Lrg1, Fcnb, Gp1bb, Lyz2, and Syne1.

First, we derive the percentage of different types of cells in final fate when none of the
transcription factors are perturbed. Then we upregulate or knock down different
transcription factors following the methods proposed by Yeo et al. They set the scaled
normalized z-score expression value of target genes to less than 0 for knockdowns and
greater than 0 for upregulation. For our experiments, holding the neutrophil
transcription factors the same, we upregulate monocytes’ transcription factors gradually
from unperturbed to . This results in the increase of monocytes’ percentage in the 2. 5
final cell states from while unperturbed to while35. 59 ± 0. 11 77. 72 ± 0. 09
monocyte transcription factors were set (Fig. 3E). Similarly, we upregulate2. 5
neutrophils transcription factors gradually from unperturbed to while holding the2. 5
monocyte transcription factors the same. This increases neutrophil percentage in the
final cell state from the unperturbed setting to (Fig. 3F).37. 4 ± 0. 12 87. 30 ± 0. 06

Secondly, while holding the monocyte transcription factors constant, we gradually knock
down the neutrophil transcription factors from an unperturbed state to -2.5. We see that
the percentage of neutrophils decreases from to (Fig. 3E)37. 4 ± 0. 12 32. 45 ± 0. 09
while the percentage of monocytes increases from to . In a35. 59 ± 0. 11 50. 15 ± 0. 11
similar manner, we hold the neutrophil transcription factors constant while we knock
down the monocyte transcription factors from unperturbed to -2.5. This decreases
monocyte from to . On the other hand, the percentage of35. 59 ± 0. 11 10. 80 ± 0. 08
neutrophils increases from to .37. 4 ± 0. 12 43. 77 ± 0. 11
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Finally, totally knocking down the neutrophils’ transcription factors (-2.5) and totally
upregulating the monocyte transcription factors (2.5) results in the percentage of
monocyte of and the percentage of neutrophils to be . While89. 31 ± 0. 07 6. 39 ± 0. 05
totally knocking down the monocyte transcription factors and totally upregulating the
neutrophil transcription factors results in the percentage of neutrophil being

and the percentage of monocyte being .94. 49 ± 0. 05 0. 71 ± 0. 01

CC-Tempo identifies genes whose activation at intermediate time points
determines the final cell fate.

We next applied CC-Tempo to investigate cellular differentiation mechanisms at
intermediate time points. Such analyses can detect a “window of opportunity” and the
most promising target genes (signaling pathways) for effective perturbation. We again
used SHAP to find the initial day progenitor cells’ gene expressions that are imperative
to determining final cell fate. CC-Tempo finds us that the progenitor cells’ top genes10
that determine the monocyte fate are Igfbp4, Casp6, Samhd1, Ifi203, Prdx1, Muc13,
Rbms1, Spint2, Srgn, Tpd52 (Fig. 4A). On the other hand, the top genes for neutrophil10
progenitor cells are Srgn, Tmed3, Calr, Gstm1, Igfbp4, Dstn, Muc13, Spint2, Prdx1, Ifi203
(Fig. 4B).

We further divided the progenitor cells into monocyte progenitor cells and other
progenitor cells and plotted the gene dot plot for these important genes to check if they
are actually differentially expressed between the aforementioned two types of
progenitor cells (Fig 4C). The dot plot shows the significant distinction in many genes
between the two types of progenitor cells. We further validated if these genes are indeed
significantly differentially expressed between monocytes’ progenitors and all other cell
types progenitors using Wilcoxon’s rank-sum test (Supplementary Table 4). The test
yields that, indeed, all of the 15 genes are significantly differentially expressed between
the two progenitor types. In a similar fashion, we did the same for neutrophils’
progenitor cells vs. all other types of cells and plotted their gene dot plot (Fig. 4D). We
further calculated Wilcoxon’s rank-sum test to check if these genes are actually
significantly differentially expressed between the two progenitor types. The test yielded
13 out of the 15 genes are significantly expressed between these two types of
progenitors. Only Igfbp4 and Rbms1 were not significantly expressed (Supplementary
Table 5).

Interestingly, not the high expression of all of these genes is helpful for a particular
lineage; rather, some genes’s low expression can be important for final fate
determination. For example, we can see that Igfbp4 is an important gene for monocyte
lineage, but the low expression of the gene is required to play a role in monocyte
production. The same can be seen for Muc13, Spint2, and some other cells. The gene dot
plot also shows a similar result. This phenomenon is also present in neutrophil
progenitor cells where the low expression for Muc13, Ifi203, Cd34, and some other genes
are important in neutrophil production. Moreover, the high expression of Calr is
important for neutrophil lineage, while the low expression is important for monocytes.
The same can be said for Ifi203 and Prdx1

Next, we perturb some of these important genes in the progenitor cells and check if they
can actually change the fate of the final day cells. We posited that if the expression of
these genes is important for the final day’s fate, then their expression at the initial time
point will have a significant effect on the fate of the final day cells, and changing their
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expression will change the cells’ fate. First, we calculated the percentage of different cell
types at an unperturbed setting and found out that the percentage of monocytes is

. If we set the expression of Igfbp4 to -5 and keep the expression of all35. 62 ± 0. 12
other genes the same, we see that the percentage of monocytes increases to

. Similarly, setting the expression of Casp6 and Samhd1 to +5 increases the45. 85 ± 0. 12
percentage of monocytes to and respectively (Fig 4Ea).47. 58 ± 0. 13 41. 49 ± 0. 12
We perturbed some of the important genes for neutrophils in a similar fashion as well.
The percentage of neutrophils in an unperturbed setting was . We set the37. 45 ± 0. 11
expression of Srgn, Tmed3, and Gstm1 to +5 separately, and this increased the
percentage of neutrophils to , and52. 71 ± 0. 08 48. 76 ± 0. 11 56. 45 ± 0. 11
respectively (Fig 4Eb).

CC-Tempo can be used to determine important genes for any lineage at any intermediate
time points rather than just the initial and final time points. Weinreb et al. dataset
contain three time points: Day 2, Day 4, and Day 6. CC-Tempo can determine genes that
are important at the intermediate time point, Day 4, for determining the final day fate of
a cell. We first take all the monocyte or neutrophil progenitor cells as previously
determined. We then simulate these cells to Day 4 via CC-Tempo. Then, again, we use
SHAP to interpret the model. This time, we pass the Day 4 cells' gene expression as input
to CC-Tempo, simulate it till the final day, and determine the potential. Then, we use
SHAP to explain which genes of Day 4 are highly influential in determining the final
day’s fate.

We carry a similar analysis as we did for Day 2 and find out the genes that are important
on Day 4 for the final day (Day 6) fate determination. The important genes at Day 4 for
monocytes and neutrophils are determined using SHAP in a similar fashion (Fig. 5A, B).
The corresponding gene dot plots are also shown, and they again show significantly
differential expression for most of the genes (Fig. 5C, D). We further carried out
Wilcoxon’s rank-sum test to check if these genes are actually significantly differentially
expressed between the two cell types. The test yielded all of the 20 genes are
significantly expressed between monocyte and other cell types cell while 17 out of 20
genes are significantly expressed between neutrophil and other cell types
(Supplementary Table 6,7). It also shows that some of the marker genes of monocytes
and neutrophils start to differentially express and also play a significant role as early as
Day 4. For example, the monocyte marker Ctss is an important gene for monocyte
lineage on Day 4, while the neutrophil markers S100a9, S100a8, and Lcn2 are important
genes for neutrophil lineage on the same day.

In a similar fashion as above, we perturb some of these important genes in the Day 4
cells and check if they can actually change the fate of the final day cells. As we progress
further in time, the perturbation of different genes tends to change the cell fate in a
smaller amount. So, we set the value of the gene to +10/-10 to see if these important
genes on Day 4 can actually change the final fate. First, we calculated the percentage of
different cell types at an unperturbed setting and found out that the percentage of
monocytes is . If we set the expression of Vim to +10 and keep the35. 39 ± 0. 06
expression of all other genes the same, we see that the percentage of monocytes
increases to .42. 97 ± 0. 07

Similarly, setting the expression of Lgals3 and Mmp8 to +10 increases the percentage of
monocytes to and respectively (Fig 5Ea). We perturbed39. 89 ± 0. 07 42. 07 ± 0. 07
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some of the important genes for neutrophils in a similar fashion as well. The percentage
of neutrophils in an unperturbed setting was . We set the expression of37. 77 ± 0. 05
Itgam, S100a9, and Gstm1 to +10 separately, and this increased the percentage of
neutrophils to , and respectively (Fig 5Eb).39. 77 ± 0. 06 41. 96 ± 0. 05 51. 33 ± 0. 05

We find that Anxa2, Sirpa, S100a4, Igfbp4, Casp6, and Myc are important genes
throughout all time points in determining the fate of monocytes. Among them, except
Anxa2, all other genes are differentially expressed among monocytes and all other cell
types at each of the time points (Supplementary Table 8). We find out that the
expression of Anxa2, Sirpa, S100a4, and Casp6 keeps increasing for monocytes with time
while the expression for other cell types remains almost the same or keeps decreasing.
On the other hand, the expression of Igfbp4 and Myc keeps decreasing over time for
monocytes (Supplementary Figure 1C). Similarly, we find that the expression of Msrb1
keeps increasing for neutrophils with time but not for other cell types, but the
expression of Eef1a1 keeps decreasing over time (Supplementary Figure 1D). All genes
are differentially expressed among neutrophils and all other cell types at each of the
time points (Supplementary Table 9).

Furthermore, CC-Tempo can be used to find important genes in unseen time points, for
example, Day 3 or Day 5 as well in a similar fashion.

CC-Tempo can find cell-cell signaling pathways that determine cell fate bias and
align with existing literature

CC-Tempo not only focuses on gene expression data but also the way cells communicate
with each other to determine each other’s final fate. We used SHAP in the same fashion
as above (See Sec. 4 (Methods)) to find the signaling pathways that were highly
influential in determining the final cell fate.

For the Weinreb et al. dataset, we found out that 29 pathways are used for cell-cell
communication using CellChat19 (See Sec. 4 (Methods)). Interestingly, for all the cell fate,
CC-Tempo suggested that only two signaling pathways are highly important in
determining cell fate, while most of the other pathways are mostly irrelevant. These
pathways are CD34 and SELL. CD34 was important in sending signals, while SELL was
used to receive signals in all cell types. CC-Tempo suggests that these pathways affect
cell fate negatively for both monocytes and neutrophils, while for all other cells, these
pathways affect cell fate positively (Fig. 6A).

To validate this suggestion by CC-Tempo, we first calculate the percentage of monocyte,
neutrophil, and other cells in the unperturbed settings, and then we perturb the cell-cell
interaction score (+5) as well as the score of corresponding ligand and receptor (+5).
When the perturbation is not introduced, the percentage of monocyte, neutrophil, and
other cells were , , and , respectively. When35. 59 ± 0. 11 37. 4 ± 0. 12 27. 01 ± 0. 14
we upregulate the signaling pathways as well as the corresponding ligand-receptor
expressions (+5), the number of other cells increases to while we38. 13 ± 0. 13
downregulate the pathway and ligand-receptor to -5, the percentage of other cells
decline to which fits exactly with the suggestions of CC-Tempo (Fig. 6B).18. 10 ± 0. 12

Such use of cell-cell interaction in determining cell fate has been largely ignored in the
literature. However, CC-Tempo suggests a novel way to incorporate this vital information
better to understand cellular developmental dynamics.
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CC-Tempo consistently orders signaling pathways in terms of importance without
artificially inflating them, even when the most critical ones are excluded.

Finally, we conducted an experimental evaluation of the role of signaling pathways in
CC-Tempo's ability to learn cellular dynamics. We assessed and ordered these pathways
based on their significance by employing SHAP analysis, as shown in Figure 6A. This
analysis identified the five key signaling pathways that play a pivotal role in determining
the fate of monocytes, neutrophils, and other cell types: CD34, SELL, CCL, SELPLG, and
PARs (Fig 6Ca). When CC-Tempo was trained without these key signaling pathways, the
clonal fate bias metric decreased from 0.520 to 0.512, as shown in Figure 2D, indicating
a slight performance reduction without these critical pathways. Upon reassessing the
importance of the remaining pathways using SHAP analysis, the new top five critical
pathways identified were ICAM, CSF, APP, GRN, and ITGAL-ITGB2, as depicted in Figure
6Cb. Notably, these pathways were already ranked within the top 15 for importance
when CC-Tempo included all signaling pathways, as per Figure 6Ca. Despite the removal
of the initially top-ranked pathways, these five signaling pathways did not increase in
relative importance, confirmed by a Wilcoxon test (p-value > 0.01, see Supplementary
Table 10). Furthermore, excluding the top 10 pathways revealed COMPLEMENT, SPP1,
JAM, THY1, and LAMININ as the next five key pathways, shown in Figure 6Cc. These also
were among the top 17 initially and maintained their levels of importance without any
statistical significance in change (Wilcoxon test, p-value > 0.01, Supplementary Table
11). The exclusion of the top 10 pathways significantly impacted CC-Tempo's efficacy,
reducing the clonal fate bias metric from 0.52 to 0.50 (Fig. 2D). These findings suggest
that CC-Tempo has a consistent methodology for ranking signaling pathways based on
their contributions to cellular dynamics learning without artificially inflating the
importance of any signaling pathways, even when some significant ones are absent.

Discussion

Using only scRNA-seq data to comprehend the potential trajectory of cells can result in
misidentification of their fate decisions. Approaches like Population Balance Analysis
(PBA), WaddingtonOT, and FateID have been found to underperform compared to
predictions based on the top ten genes17. Yeo et al. later demonstrated that
incorporating a cell proliferation score improves the model's ability to grasp the
potential trajectory, leading to more accurate clonal fate determinations. Now, CC-Tempo
demonstrates that leveraging inherent intercellular communication information within
scRNA-seq data can significantly enhance decision accuracy. Importantly, CC-Tempo
does not require any additional data beyond what previous methods use. It can extract
intercellular communication scores directly from scRNA-seq data and, when integrated
into the model, outperforms existing methods. CC-Tempo reveals that models relying
solely on scRNA-seq data can be enhanced further by reusing scRNA-seq data from
various dimensions. This suggests the possibility of future models that can predict cell
fate decisions exclusively using scRNA-seq data, with CC-Tempo representing a step in
that direction.
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With its improved accuracy, CC-Tempo opens up new opportunities to hone a more
accurate mechanistic understanding of how cells progress through differentiation or
other temporal trajectories. Also, CC-Tempo prioritizes the genes and intercellular
communication pathways whose perturbation can modulate the abundance of specific
cell types. This can immediately help improve the efficiency of cellular differentiation
protocols.

CC-Tempo's second key feature lies in its interpretability. Many existing methods rely on
low-dimensional principal components (PCs) of scRNA gene expression space, making it
challenging to discern which genes influence cellular trajectories at various stages. In
contrast, CC-Tempo uses the raw scRNA-seq data as its input, enabling it to be
interpreted using various neural network explanation techniques. CC-Tempo introduces
a method for elucidating the outcomes of cellular dynamics models and ranking the
genes and pathways that play a crucial role in guiding cells toward their ultimate fate.
This interpretative framework can be applied to any neural network-based model,
extending beyond CC-Tempo itself. This development opens up a novel avenue for
comprehending the functioning of diverse neural networks in the realm of biology.

Looking ahead, CC-Tempo holds promise for applications in understanding various
cellular dynamics processes and disease progression. There is an exciting potential for
incorporating additional data modalities, such as spatiotemporal data and epigenetics
data, in future research directions.

Methods

Learning cellular differentiation dynamics through diffusion. Recent studies have
used diffusion processes to model cell state evolution in single-cell populations18,25.
However, prior models have focused exclusively on the evolution of transcriptomic
states (gene expression values). We propose a model, CC-Tempo (A cell-cell
communication aware temporal model of cellular dynamics), where we incorporate
cell-cell communication in modeling cellular differentiation and cell state evolution. In
particular, we model cellular differentiation as a tuple of differentiation processes

represented by the following stochastic differential equations((𝑋 𝑡( ), 𝐶 𝑡( ))

(1)𝑑𝑋 𝑡( ) = µ
𝐿

𝑋 𝑡( )( )𝑑𝑡 + 2σ2𝑑𝑊 𝑡( ) 

(2)   𝑑𝐶 𝑡( ) = µ
𝐶

𝐶 𝑡( )( )𝑑𝑡

where represents the -dimensional gene expression component of the state of a𝑋 𝑡( ) 𝑘
cell at time point while represents -dimensional intercellular communication𝑡 𝐶 𝑡( ) 𝑙
score component of the state of a cell at time point . and are two functions𝑡 µ

𝐿
.( ) µ

𝐶
.( )

representing drift velocities: represents the drift velocity of the cell in linearµ
𝐿

𝑋 𝑡( )( )
potential space due to force acting upon the cell to move from higher to lower potential.
Similarly, denotes the drift velocity of the cell in the intercellularµ

𝐶
𝐶 𝑡( )( )

communication potential space, and finally is the Wiener process that adds some𝑊 𝑡( )
noise. This noise is only added to the linear potential space rather than in intercellular
communication space because adding it to the later space didn’t improve performance
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any further. Both of the drift velocities are negative gradients of their corresponding
potential function, i.e.,

(3)µ
𝐿

𝑥( ) =− ∇ψ
𝐿

𝑥( )

(4)µ
𝐶

𝑐( ) =− ∇ψ
𝐶

𝑐( )

These potentials invoke a gradient field that drives cells from higher potential to lower
potential regions in their corresponding space. We can simulate this process via a
first-order time discretized equation as follows

(5)𝑋 𝑡 + ∆𝑡( ) = 𝑋 𝑡( ) + µ
𝐿

𝑋 𝑡( )( )∆𝑡 + 2σ2∆𝑡 𝑍 𝑡( ) 

(6) 𝐶 𝑡 + ∆𝑡( ) = 𝐶 𝑡( ) + µ
𝐶

𝐶 𝑡( )( )∆𝑡         

where are i.i.d standard Gaussian noise, ). These equations will converge to𝑍 𝑡( ) 𝑁(0, 1
the diffusion process when .∆𝑡 → 0

We define two marginal probability distributions at a particular time point t which are
) and . In particular, we suppose that weρ

𝐿
𝑥, 𝑡( ) = 𝑃

𝐿
(𝑋 𝑡( ) = 𝑥 ρ

𝐶
𝑐, 𝑡( ) = 𝑃

𝐶
(𝐶 𝑡( ) = 𝑐)

are given some observed samples from these distributions at a few particular snapshots
of time, which are and{𝑥 𝑡( )

𝑖
∼ ρ

𝐿
𝑥, 𝑡( )|𝑖 ∈ {1 ... 𝑚

𝑡
}, 𝑡 ∈ {1 ... 𝑛}}

where is the number of cells sampled at{𝑐 𝑡( )
𝑖

∼ ρ
𝐶

𝑐, 𝑡( )|𝑖 ∈ {1 ... 𝑚
𝑡
}, 𝑡 ∈ {1 ... 𝑛}} 𝑚

𝑡
the time point and is the numbers of timepoints where data were observed, is𝑡 𝑛 𝑥 𝑡( )

𝑖
obtained directly from gene expression data while is obtained from the𝑐 𝑡( )

𝑖
intercellular communication module using the gene expression as input. Now, we try to
learn the potential functions and which in turn allows us to learn theψ

𝐿
𝑥( ) ψ

𝐶
𝑐( )

corresponding drift velocity via simulating these samples in the above first-order time
discretized equation and the corresponding marginal probability distribution.

The learning proceeds by deriving the set of potential functions in the families of
function space that minimizes the objective loss function𝐾, 𝑀( )

ψ
𝐿
∈𝐾,ψ

𝐶
∈𝑀

min [
𝑖=1

𝑛

∑ 𝑊
2

ρ
^

𝐿
𝑡

𝑖
, 𝑥( ), ρ

ψ
𝐿

𝑡
𝑖
, 𝑥( )( )2

+  
𝑖=1

𝑛

∑ 𝑊
2

ρ
^

𝐶
𝑡

𝑖
, 𝑐( ), ρ

ψ
𝐶

𝑡
𝑖
, 𝑐( )( )2

] + τ
𝑗=1

𝑚
𝑛

∑
ψ

𝐿
𝑥

𝑗( )+ψ
𝐶

𝑐
𝑗( )

σ2   (7)

where is the Wasserstein distance between the empirical
𝑖=1

𝑛

∑ 𝑊
2

ρ
^

𝐿
𝑡

𝑖
, 𝑥( ), ρ

ψ
𝐿

𝑡
𝑖
, 𝑥( )( )2

distribution obtained from observed gene expression data and the distributionρ
^

𝐿
(𝑡

𝑖
, 𝑥)

of the candidate potential function . Similarly, is theρ
ψ

𝐿

𝑡
𝑖
, 𝑥( )

𝑖=1

𝑛

∑ 𝑊
2

ρ
^

𝐶
𝑡

𝑖
, 𝑐( ), ρ

ψ
𝐶

𝑡
𝑖
, 𝑐( )( )2

Wasserstein distance between the empirical distribution obtained from theρ
^

𝐶
𝑡

𝑖
, 𝑐( )

observed intercellular communication data and the distribution of the candidate

CC_Tempo 12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2023.12.04.569835doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569835
http://creativecommons.org/licenses/by/4.0/


potential function . is the parameter that controls the strength of theρ
ψ

𝐶

𝑡
𝑖
, 𝑐( ))2 τ

entropic regularizer term. Wasserstein loss function has been widely used in literature
for such optimization 36.

Incorporating Cellular Proliferation. Following the notation of Feydy et al.37, we
define the optimization problem using Wasserstein distance as follows

<π,𝐶>
min {

𝑖,𝑗
∑ π

𝑖,𝑗
𝐶

𝑖,𝑗
|∀𝑖, 𝑗, π

𝑖,𝑗
≥ 0,

𝑖=1

𝑁

∑ π
𝑖,𝑗

= α
𝑖
,

𝑗=1

𝑀

∑ π
𝑖,𝑗

= β
𝑗
}                  (8) 

where is the optimal transport plan that maps points from source distribution to theπ
𝑖,𝑗

target distribution and is the square of the Euclidean distance between𝐶
𝑖,𝑗

=‖ 𝑥
𝑖

− 𝑦
𝑗
‖2

the sample and sample , and finally and are positive weights associated with𝑥
𝑖

𝑦
𝑗

α
𝑖
 β

𝑗
each sample and . Following Yeo et al., we incorporated cellular proliferation into𝑖 𝑗
CC-Tempo by setting to the number of descendant cells the sample is expected toα

𝑖
𝑖

have and keep constant. In particular, we estimate the number of descendants in theβ
𝑗

following manner. Let denote the number of descendants of the sample , denote the𝑛 𝑖 𝑏
birth rate, denote the death rate, and finally denote the growth rate. Following the𝑑 𝑔
birth-death process, for a given clone,

𝑛 = 𝑒𝑥𝑝 𝑑𝑡 × 𝑏 − 𝑑( )( )                                   (9) 

𝑔 = 𝑏 − 𝑑 = 𝑙𝑜𝑔𝑛
𝑑𝑡                                          (10)

To calculate the birth score , we calculated the mean of z-scores of the genes𝑠
𝑏

annotated to the cell cycle pathway (KEGG Cell Cycle). Similarly, to calculate, we𝑠
𝑑
,

calculated the mean z-scores of the genes annotated to the cell death pathway (KEGG
Apoptosis). Then these scores were smoothed over the cells using the following iterative
procedure:

β
𝑠

𝑖

+ 1
𝑁

𝐾
𝑛𝑛 𝑘∈𝐾

𝑛𝑛

∑ 1 − β( )𝑠
𝑘
                                 (11) 

where is the score for a sample i at the current iteration while is the score for𝑠
𝑖

𝑠
𝑘

𝑘
nearest neighbors of the cell i.

Finally, the birth and death scores are obtained using the following equations

(12)𝑏 = 𝐿
0

+ 𝐿
(1+𝑒𝑥𝑝 −𝑘

𝑏
𝑠

𝑏( )  

𝑑 = 𝐿
0

+ 𝐿
1+𝑒𝑥𝑝 −𝑘

𝑑
𝑠

𝑑( )                                        (13) 

We set the value of the hyperparameters using the values proposed by Yeo et al. Note,
however, that we did not incorporate the same in our cell-cell interaction potential
function learning as it did not improve our performance any further.
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Running CellChat to infer Signaling Pathways Score.

We use CellChat to find out the enriched signaling pathways in our desired dataset, In
this case, mouse hematopoesis data by Weinreb et al. We used the traditional pipeline
described in the CellChat documentation with no parameters tweaking. The following
methods were run sequentially to obtain the score for signaling pathways.

cellchat <- subsetData(cellchat)

cellchat <- identifyOverExpressedGenes(cellchat)

cellchat <- identifyOverExpressedInteractions(cellchat)

cellchat <- computeCommunProb(cellchat)

cellchat <- filterCommunication(cellchat, min.cells = 10)

cellchat <- computeCommunProbPathway(cellchat)

cellchat <- aggregateNet(cellchat)

Incorporating Intercellular Communication Score. First, we use CellChat to calculate
the incoming communication and outgoing communication matrix and respectively.𝐼 𝑂
Each entry of the incoming communication matrix denotes the probability𝐼

𝑃
𝑖
,𝐶

𝑖

𝐼 ∈ 𝑅𝐶×𝑃

scores of cell type receiving an intercellular signal via pathway . In a similar manner,𝐶
𝑖

𝑃
𝑖

each entry of the outgoing communication matrix denotes the𝑂
𝑃

𝑖
,𝐶

𝑖

𝑂 ∈ 𝑅𝐶×𝑃

probability scores of cell type sending an intercellular signal via pathway . Each𝐶
𝑖

𝑃
𝑖

pathway is defined in terms of its ligand-receptor pairs, i.e., it has a set of ligands and𝐿
𝑃

1

a set of receptors . So, initially, we calculate the ligand score and𝑅
𝑃

1

𝑆
𝐿

= 𝑆
𝐿

𝑃
1

, 𝑆
𝐿

𝑃
1

... 𝑆
𝐿

𝑃
𝑝

⎡⎢⎢⎣

⎤⎥⎥⎦

the receptor score of each cell via the Seurat38 function𝑆
𝑅

= 𝑆
𝑅

𝑃
1

, 𝑆
𝑅

𝑃
1

... 𝑆
𝑅

𝑃
𝑝

⎡⎢⎢⎣

⎤⎥⎥⎦
. Then using the cell type information, we take the Hadamard product𝐴𝑑𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑆𝑐𝑜𝑟𝑒

corresponding row of the incoming matrix and receptor score to obtain our sending𝐼 𝑆
𝑅

score for the corresponding cell.

Similarly, we take the Hadamard product corresponding row of the outgoing matrix 𝑂
and ligand score to obtain our receiving score. Finally, we concatenate these two𝑆

𝐿
scores, the sending score and receiving score to get the input of our intercellular
communication network, i,e. intercellular communication score (Fig. 1B).

Model Definition. We followed a modularized implementation of CC-Tempo and built
different components of CC-Tempo in part. We describe each of them in the following
points.

• Potential Learning Network. We have two feed-forward neural networks to
learn the linear potential and intercellular communication potential, respectively.
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Both of them have two layers where the linear potential network takes the low
dimensional representation of gene expression as its input and outputs a scalar
linear potential value. In contrast, the intercellular communication network takes
the concatenated vector of the sending and receiving score as derived above as
input and outputs a scalar intercellular communication potential. Finally, we take
the sum of these potentials and output the total potential (Fig. 1Ai).

• Gradient Calculator To calculate the drift velocity from potential, we need the
gradient of our corresponding potential function. So, in this network, we pass the
potential score provided by our Potential Learning Network and calculate the
gradient with respect to our two inputs and . Thus, the outputs of this network𝑥 𝑐
are two gradient scores and respectively which are our drift velocities (Fig.∆

𝑥
∆

𝑐
1Aii).

• SHAP For calculating the SHAP score, two implementations from the Captum39

library were used, one is GradientSHAP, and another is KernelSHAP. Both of them
are two different implementations to calculate SHAP scores and require the
corresponding model to be implemented in the PyTorch framework (Fig. 1Aiii).

captum.attr.GradientShap(model).attribute(inputs, baselines, n_samples=5,
stdevs=0.0, target=None, additional_forward_args=None,
return_convergence_delta=False)

captum.attr.KernelShap(model).attribute(inputs, baselines=None, target=None,
additional_forward_args=None, feature_mask=None, n_samples=25,
perturbations_per_eval=1, return_input_shape=True, show_progress=False)

• PCA and inverse-PCA We built a feed-forward neural network to implement the
Principal Component Analysis. First, we calculated the PCA of high-dimensional
gene expression using scikit-learn40, which reduced the high-dimensional input
gene expression into Low-dimensional PCs. Then we created a neural network
whose input is High-dimensional input gene expression and output is

Low-dimensional PCs. scikit-learn provides a matrix of dimension ,𝑅𝑔𝑒𝑛𝑒×𝑃𝐶

which we set as the weight of our neural network instead of training the
network. We need our dimension reduction model to be a neural network in
order to evaluate it using SHAP, as we describe later. Hence, we need to build PCA
as such. Similarly, we can transpose the matrix from scikit-learn and build
another feed-forward neural network that converts the low-dimensional PC
input into high-dimensional gene expression input (Fig. 1Aiv).

class sklearn.decomposition.PCA(n_components=50, *, copy=True,
whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10,
power_iteration_normalizer='auto', random_state=None)

• Cell Type Classifier We use logistic regression as our classifier to compare
CC-Tempo with PRESCIENT so that the performance improvement is solely
based on the model itself, not on the strength of the classifier. But for SHAP, we
need CC-Tempo to be a fully neural network. So, where CC-Tempo is required to
be a fully neural network, we used a two layer neural network to classify our cells
(Fig. 1Av).
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class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False,
tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0,
warm_start=False, n_jobs=None, l1_ratio=None)

• CC-Tempo. Finally, CC-Tempo takes a high-dimensional gene expression as its
input. Then it passes a copy of this expression to the Cell-Cell Interaction Module
to get the intercellular communication score which is used as an input to the
intercellular communication potential network. while we pass the first copy of
gene expression through our PCA adapter and get the low dimensional
representation and pass it to our linear potential network. Then, we get the
output of both of these potential networks, sum them, and pass it to our gradient
calculator to get the drift velocity. Then we use (Equation 1) to simulate the cell
to the next time point and continue simulating it till the last time point, where we
again use the inverse-PCA adapter to convert the cell back into gene expression
space, and this is the final output of CC-Tempo (Fig. 1C).

Model Optimization. Both of our potential learning networks have identical structures
with different input dimensions. In particular, the linear potential takesψ

𝐿
𝑥( )

50-dimensional input, which is the output of our PCA Adapter, and has two fully
connected layers with 500 units and 1 unit, respectively. On the other hand, the
intercellular communication potential takes the concatenated input of sendingψ

𝐶
𝑐( )

and receiving scores which is dimensional and has the same two fully29 × 2 = 58
connected layers as the architecture. We used PyTorch41 as our framework, and we used
PyTorch’s automatic differentiation to derive our corresponding drift velocity. We set
our time step to be while the entropic regularizer parameter to be . On𝑑𝑡 0. 1 τ 1𝑒 − 6
each iteration, we took of the training data and simulated through the network to10%
compute cost and backpropagate. We used Adam Optimizer to optimize CC-Tempo. We
used the pretraining methods of the model described by Hashimoto et al. to pre-train
CC-Tempo before the final training stage. The Wasserstein distance was calculated by the
Sinkhorn algorithm implemented by the GeomLoss library37, which is compatible with
PyTorch GPU tensors. The model was pre-trained for 500 epochs while it was trained for
2500 epochs.

All of the models were trained in Google Colab Pro+ with a single NVIDIA A100 GB40
GPU and GB memory. On average, training the full network on the full Weinreb et al.81
dataset took .∼ 30𝑚𝑖𝑛𝑠

Predicting Clonal Fate bias. Clonal fate bias is the metric defined by Weinreb et al. to
evaluate the performance of the model in determining cell fate. It is calculated as the
number of neutrophils divided by the total number of neutrophils and monocytes in the
particular clone. Following Prasad et al.42, we extract only those Day 2 progenitor cells
that have at least one neutrophil or monocyte in their Day 4 or Day 6 fate and use these
cells to validate CC-Tempo (Fig. 2B). We simulated these progenitor cells via our trained
model till Day 6. Then we used the trained logistic regression classifier to classify the
cell into monocyte, neutrophil, or other cell types. In particular, we made 2000 copies of
each of our progenitor cells and simulated via CC-Tempo to get the final state of the cells.
Due to the random component in CC-Tempo, 2,000 cells went into 2,000 different states.
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Then we classified these 2000 cells again into monocyte, neutrophil, or other cells via
our logistic regression classifier. Finally, we calculated the clonal fate bias of that cell as
the number of neutrophils divided by the total number of neutrophils and monocytes.
Since CC-Tempo did not always predict neutrophils or monocytes as the cell fate, we
added a pseudocount of 1 to avoid division by zero, and hence in that case, our clonal
fate bias score will be . Finally, we calculated the PCC and AUROC score between the0. 5
CC-Tempo predicted value and values scored from lineage tracing data to benchmark
CC-Tempo (Fig. 1Di).

Benchmarking with PRESCIENT. We used the default implementation of PRESCIENT,
provided with paper without tweaking any default parameters.

prescient train_model -i data.pt --out_dir /experiments/ --weight_name
'kegg-growth' --seed 2

Clonal Fate Deviation. We define a new metric for clonal fate deviation to calculate how
close the model’s predicted fate bias is to actual fate bias. To do so, we take the absolute
value of the difference between the model-predicted bias and actual fate bias and divide
it via actual fate bias.

Wilcoxon’s rank-sum Test. We used Python’s Scipy libraries implementation of
Wilcoxon’s rank-sum test. All the tests were conducted using 5% statistical significance.

scipy.stats.ranksums(x, y, alternative='two-sided', *, axis=0, nan_policy='propagate',
keepdims=False)

Obtaining cell-fate-defining genes. We used SHAP values to determine the potential
cell-fate-defining genes in different cell types. We took all the progenitor cells in our
dataset and simulated through CC-Tempo to get the Day 6 cell state. Then, we classified
the cells using our trained logistic regression to classify them into neutrophils,
monocytes, or other cells. Then, we took the final day states (calculated by CC-Tempo) of
the cells that were predicted monocytes and then used the SHAP score to determine
which genes were responsible for determining their fate as monocytes. In particular, the
inputs of our SHAP model are the final day cell state predicted by CC-Tempo, and the
output is the total potential value. We determined the inputs(genes) that were
responsible for taking those cells into that particular potential score on the final day. In a
similar fashion, we determined the cell-fate-defining genes for neutrophils as well (Fig.
1Dii).

Transcription Factor’s Perturbation and Evaluation. We have already obtained
transcription factors for neutrophils and monocytes from the literature. We manually
set the value of these transcription factors in the dataset and re-simulated the cells via
CC-Tempo to check whether the introduction of progenitor cell’s transcription factors’
perturbation changes the trajectory of progenitor cells. To upregulate a transcription
factor, we gradually increased the expression value for that gene from the initial value to

. Then we simulated all the progenitor cells 100 times to get the percentage of1, 2, 2. 5
monocytes or neutrophils and plotted them with 95% Confidence Interval. Similarly,
when downregulating a transcription factor, we decreased the transcription factor’s
value from the initial value to and followed similar steps.− 1, − 2, − 2. 5

Obtaining cell fate-defining genes in progenitor cells and perturbation evaluation.
We then tried to predict whether CC-Tempo can determine the progenitor cells’ genes
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that were influential in the determination of the final day cell fate. In Particular, we took
the progenitor cells whose fate were monocytes(neutrophils) and simulated through
CC-Tempo to get the Day 6 cell state and then the potential value from that state. We
used SHAP to evaluate the importance of progenitor cells’ genes importance in
determining final day potential value. Specifically, the input of our SHAP model is the
Day 2 progenitor cells, and the output of CC-Tempo is the Day 6 potential value. In this
way, we obtained the genes that are important for the Day 6 cell fate determination (Fig.
1Diii).

Obtaining Relevant Signaling Pathway. We also focused on determining different
signaling pathways' importance in progenitor cells that determine the final day cell fate.
Like above, we again used SHAP to order our signaling pathway according to their
importance in determining the corresponding cell fate. Particularly, our input now is the
intercellular communication score of Day 2 progenitor cells, and the output is the cell
fate, i.e., whether the cell is monocyte, neutrophil, or other types of cell. Then we sorted
the pathways according to their importance and found the relevant pathways for each
cell type (Fig. 1Div).

Perturbing Signaling Pathway and Evaluation. Finally, we validated if the signaling
pathways determined by CC-Tempo can actually change cell fate. So, we set the
intercellular communication of the pathway as well as the gene expression of the
ligand-receptor pairs of that pathway to upregulate the pathway and to+ 5 − 5
downregulate the signaling pathway. Finally, we simulated each perturbed configuration
100 times to get the percentage of cell type in those configurations.

Code & Data Availability
All the code, from data preprocessing to model evaluation, can be found at
https://github.com/Srj/CC-Tempo. The raw LT-scSeq mouse hematopoiesis dataset was
obtained from
https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transc
riptional_landscapes_links_state_to_fate_during_differentiation.
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Figures

Figure 1:

A) The cell-cell interaction module calculates the intercellular communication scores
given scRNAseq gene expression data and cell type. It calculates the score using a set of
signaling pathways that are enriched in the dataset and their incoming and outgoing
score matrix. It calculates the Hadamard product of the corresponding row determined
by the cell type with the corresponding ligand and receptor score of that cell to produce
the sending and receiving score. B) An overview of all the components of CC-Tempo. i)
The potential learning network and its components. It consists of two separate neural
networks, of which the first takes intercellular communication score as input and
outputs cell-cell interaction potential as output. In contrast, the second neural network
takes the PCs of scRNA-seq gene expression data and outputs linear potential . Finally,
the network sums both of the aforementioned potentials and outputs the total potential
as its final output. ii) The gradient calculator - this component takes the total potential
as input. It calculates the gradient of this potential with respect to both of the inputs, i.e.,
intercellular communication score and the PCs of scRNA-seq expression data. iii) SHAP
is used to find out the importance of different input features for a given output/outputs
and ranks the inputs based on shap score accordingly. iv) The PCA Adapter works in
both directions, i.e., it can project the high dimensional input to low dimensional input
or vice versa. It consists of a layer of neural networks. v) The cell type classifier takes
the PCs of the scRNA-seq gene expression data and classifies that input into either
monocytes, neutrophils, or other cell types. C) The full CC-Tempo model: It takes high
dimensional gene expression of cells as an earlier time point, simulates the cells over
the specified time points, and outputs the final day high dimensional gene expression of
those cells. D) Different usage of CC-Tempo i) CC-Tempo can be used to simulate cells to
later time points and classify them into different cell types. ii) CC-Tempo can be used to
evaluate the gene expression of the final day and determine genes that are significant for
determining final fates. iii) CC-Tempo can be used to simulate any intermediate time
points and the genes that are important on those time points to determine the final day
cell fates. iv) CC-Tempo can be used to evaluate the importance of signaling pathways in
a similar fashion as well.

Figure 2:

A) UMAP of Weinreb et al.’s mouse hematopoiesis LT-scSeq dataset. The dataset contains
11 different cell types. B) A quick overview of the number of cells in total in the dataset,
the number of cells having clonal information (from Lineage Tracing), and the number
of cells that are progenitors on Day 2 for monocytes or neutrophils. C) Examples of
different clonal fate biases. (Top-Left) A group of trajectories having very low ( ~0)
clonal fate bias. This fate corresponds to monocytes and went into the monocyte branch.
(Top-Right) A group of trajectories having very high ( ~1) clonal fate bias. This fate
corresponds to neutrophil went into the neutrophil branch. (Bottom-Left) A group of
trajectories entering both of the possible paths and having a possible 0.5 clonal fate bias.
(Bottom-Right) A group of trajectories entering none of the monocyte or neutrophil
paths and hence resulting in a 0.5 clonal fate bias solely due to pseudo-count. D) Plots
showing the comparison of PCC scores of CC-Tempo trained on different sets of
intercellular communication pathways and a state-of-the-art model, PRESCIENT. E) The
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total potential of different cells in the UMAP predicted by PRESCIENT (Left) and
CC-Tempo (Right). F) Two random examples of trajectories where CC-Tempo predicts
the correct trajectories, hence correct fate bias, while PRESCIENT fails to do so. G) The
expression of marker genes of monocytes or neutrophils in the final day cells by
CC-Tempo and PRESCIENT for the previous two examples.

Figure 3:

Beeswarm plot showing the most important genes for determining final day cell fate for
A) monocyte lineages and B) neutrophil lineages along with gene expression. C) The dot
plot of gene expression of these important genes for monocyte cells and all other cells
from the dataset on the final day (Day 6). D) The dot plot of gene expression of these
important genes for neutrophil cells and all other cells from the dataset on the final day
(Day 6). E) A plot of the percentage of cells in different lineages (monocytes,
neutrophils, and others) when different transcription factors of monocytes are gradually
upregulated while the transcription factors of neutrophils are downregulated. F) A plot
of the percentage of cells in different lineages (monocytes, neutrophils, and others)
when different transcription factors of monocytes are gradually downregulated while
the transcription factors of neutrophils are upregulated.

Figure 4:

Beeswarm plot showing the most important genes in progenitor cells on Day 2 for
determining final day cell fate for A) monocyte lineages and B) neutrophil lineages
along with gene expression. C) The dot plot of gene expression of these important genes
of progenitor cells for monocyte cells and all other cells. D) The dot plot of gene
expression of these important genes of progenitor cells for neutrophil cells and all other
cells. Ea) A plot of the percentage of cells in different lineages (monocytes, neutrophils,
and others) when some of these important genes for monocyte lineage are perturbed in
silico. Eb) A plot of the percentage of cells in different lineages (monocytes, neutrophils,
and others) when some of these important genes for neutrophil lineage are perturbed in
silico.

Figure 5:

Beeswarm plot showing the most important genes on intermediate time point (Day 4)
for determining final day cell fate for A) monocyte lineages and B) neutrophil lineages
along with gene expression. C) The dot plot of gene expression of these important genes
on intermediate time point (Day 4) for monocyte cells and all other cells. D) The dot plot
of gene expression of these important genes on the intermediate time point (Day 4) for
neutrophil cells and all other cells. Ea) A plot of the percentage of cells in different
lineages (monocytes, neutrophils, and others) when some of these important genes for
monocyte lineage are perturbed in silico. Eb) A plot of the percentage of cells in
different lineages (monocytes, neutrophils, and others) when some of these important
genes for neutrophil lineage are perturbed in silico.

Figure 6:

A) The importance of different pathways according to SHAP for determining the final
day fates of cells. A cell can either send a signal via a specific pathway or receive a signal
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via that pathway, hence, it can be either sender or receiver or both. B) A boxplot
showing the percentage of cells in different lineage when these important pathways, as
well as their corresponding ligand and receptor, are perturbed in silico. C) Barplot of
Mean Absolute SHAP values when CC-Tempo was trained on different numbers of
signaling pathways. a) CC-Tempo was trained on all 29 pathways. b) CC-Tempo was
trained on 24 pathways (Top 5 pathways were removed) c) CC-Tempo was trained on 19
pathways (Top 10 pathways were removed).

Supplementary Figure 1:

A) The distribution plot of clonal fate deviation for PRESCIENT and CC-Tempo. B) The
distribution plot of the gene 1110002J07Rik for neutrophil, monocyte, and other cell
types. C) The gene expression plot for the genes that are important for monocytes on all
time points (Day 2,4,6) D) The gene expression plot for the genes that are important for
neutrophils on all time points (Day 2,4,6)
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