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Abstract 13 

Glyphosate’s primary metabolite, aminomethylphosphonic acid (AMPA), is the most detected 14 

pollutant in surface waters. Recent studies have raised concerns about its toxicity, yet 15 

underlying mechanisms remain poorly understood. A disruption of the gut microbiome, which 16 

plays a crucial role in host health, could mediate most of the adverse effects. We investigated 17 

the impact of AMPA exposure on the gut microbiome of spined toad tadpoles (Bufo spinosus). 18 

We hypothesized that AMPA could alter the gut microbiota composition and that these effects 19 

could depend on the microbiota source. We exposed tadpoles to minute concentrations of 20 

AMPA and analyzed their faecal microbiota using 16S rRNA gene sequencing as a proxy of 21 

the gut microbiota. AMPA exposure decreased the gut bacterial biomass and affected the 22 

bacterial community composition of tadpole’s faeces. Furthermore, we observed interactions 23 

between AMPA exposure and maternal body condition on the Bacteroidota and 24 

Actinobacteriota phyla abundances. This suggests a maternal effect on early-life microbial 25 

colonizers that could influence the response of the gut microbiome to AMPA. These findings 26 

highlight the importance of considering the gut microbiome when studying the effects of  27 

environmental contaminants. Further research is needed to elucidate the long-term implications 28 

of this microbiome alteration for amphibian health. 29 

Keywords: Gut microbiota; Bufo spinosus; Amphibian; AMPA; Aminomethylphosphonic 30 

acid; Microbial vertical transfer 31 
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INTRODUCTION 33 

Over the years, regulatory agencies have banned most highly toxic and persistent pesticides, 34 

such as the notorious DDT, and replaced them with other, fast-degrading and more species-35 

specific compounds. However, several current-used pesticides and their transformation 36 

products still pose ecotoxicological issues (Gonçalves et al., 2021). Aminomethylphosphonic 37 

acid (AMPA, CAS No. 1066-51-9) is one of those transformation products that may pose higher 38 

risks than its parent compounds (Grandcoin et al., 2017). Although AMPA has two primary 39 

sources, phosphonate and glyphosate degradation, through the lysis of the C-P bond and action 40 

of the enzyme glyphosate oxidoreductase, respectively (Jaworska et al., 2002; Zhan et al., 41 

2018), its origin in surface water and groundwater is mainly linked to the latter (Carles et al., 42 

2019; Struger et al., 2015). Importantly, AMPA is detected much more frequently (20-50% 43 

more detected) and is more persistent in the environment (half-life 2-8 times longer) than 44 

glyphosate, with concentrations in surface water generally ranging between 0.2 and 5 µg L -1 45 

(Duke, 2020; Grandcoin et al., 2017; Kolpin et al., 2006; Maggi et al., 2020; Ojelade et al., 46 

2022).  47 

In aquatic organisms, the effects of AMPA exposure are controversial, ranging from low 48 

toxicity to numerous adverse effects, including increased mortality, development delay, 49 

increased morphological abnormalities, genotoxicity, increased oxidative stress, cardiac 50 

defects, hepatic inflammatory response or changes in metabolic activity (Antunes et al., 2017; 51 

Barreto et al., 2023; Cheron et al., 2022; Cheron and Brischoux, 2023, 2020; Guilherme et al., 52 

2014; Ivantsova et al., 2022; Levine et al., 2015; Martins-Gomes et al., 2022; Matozzo et al., 53 

2018; Tartu et al., 2022; Zhang et al., 2021). However, despite the numerous adverse effects 54 

reported on non-target organisms, AMPA is not under particular scrutiny, and the underlying 55 

mechanisms involved in its ecotoxicity are poorly identified.  56 
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The gut microbiome is a crucial endpoint for ecotoxicological studies (Claus et al., 2016; 57 

Evariste et al., 2019). The trillions of microorganisms that have colonized a host compose its 58 

microbiota, with more than 90% of this commensal, mutualistic and symbiotic microbe 59 

community located in the hosts’ gut (Sharpton, 2018). The gut microbiota composition depends 60 

on both horizontal (e.g. habitat, diet, conspecifics) and vertical transmission (e.g. parents) in 61 

vertebrates (Comizzoli et al., 2021; Moeller et al., 2018; Murphy et al., 2023; Robinson et al., 62 

2019; Scalvenzi et al., 2020). A large number of studies have underlined the functional 63 

importance of the gut microbiota composition and structure in food digestion, nutrient 64 

synthesis, host’s physiology, development, behaviour, or immune system performance 65 

(Clemente et al., 2012; Grond et al., 2018; Jiménez and Sommer, 2017). A dysbiosis, consisting 66 

of a modification in the composition and function of the gut microbiota in response to a stressor, 67 

can alter intestinal permeability, affect physiological performances and immune response, 68 

increasing disease susceptibility (Gomaa, 2020; Grond et al., 2018; Warne et al., 2019; Xiong 69 

et al., 2019), which could lead to unforeseen hazardous consequences for wild populations.  70 

Because of its mode of action which is to inhibit the enzyme 5-enolpyruvyl-shikimate-3-71 

phosphate synthase (EPSPS) of the shikimate pathway, a metabolic pathway specific to plants  72 

but also microorganisms (Herrmann and Weaver, 1999), several studies have tested the effects 73 

of glyphosate exposure on vertebrates and invertebrates gut microbiota composition (Blot et 74 

al., 2019; Cuzziol Boccioni et al., 2023; Ding et al., 2021; Fréville et al., 2022; Iori et al., 2020; 75 

Lehman et al., 2023; Lozano et al., 2018; Mesnage et al., 2021; Motta et al., 2018; Owagboriaye 76 

et al., 2021; Puigbò et al., 2022; Ruuskanen et al., 2020; Walsh et al., 2023). Yet, only two have 77 

focused on the effects of AMPA on invertebrate models and reported slight effects on gut 78 

microbiota (Blot et al., 2019; Iori et al., 2020). Considering the widespread presence of AMPA 79 

in the environment and its ability to affect microorganism growth by inhibiting bacterial cell 80 

wall biosynthesis (Atherton et al., 1982; Azam and Jayaram, 2016; Carles et al., 2019; Coupe 81 
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et al., 2012; Poiger et al., 2017), there is still a lack of research linking the harmful effects of 82 

AMPA to a gut microbiome dysbiosis. 83 

Amphibians face a higher overall extinction rate than other vertebrates (Harfoot et al., 2021; 84 

Hoffmann et al., 2010). Intensive agriculture is a significant threat to which they are exposed, 85 

contributing to habitat loss and pollution (Harfoot et al., 2021; Rollins-Smith, 2020; Stuart et 86 

al., 2004; Wake and Vredenburg, 2008). Their reproductive migrations, water-dependent 87 

breeding, aquatic larval stages, highly permeable skin and limited movements make amphibians 88 

particularly vulnerable to environmental changes and highly relevant models to study the effects 89 

of environmental contamination (Langlois, 2021; Stebbins and Cohen, 1995).  90 

Previous studies conducted on the spined toad, Bufo spinosus, have associated AMPA exposure 91 

with numerous adverse effects, such as higher embryonic and larval mortality, increased 92 

oxidative stress in tadpoles (Cheron et al., 2022; Cheron and Brischoux, 2023, 2020) and altered 93 

colouration in adult males (Tartu et al., 2023). In addition, in a companion study using the same 94 

individuals as the present one, we reported that environmentally relevant concentrations of 95 

AMPA (0.4 µg L-1) led to increased deformity rate upon hatching and increased development 96 

length, with effects depending on the habitat of origin of the parents (agricultural versus forest, 97 

Tartu et al., 2022). The composition of gut microbiota is tightly associated with growth rate and 98 

metamorphosis in anuran species (Emerson and Woodley, 2024; Lv et al., 2023; Park et al., 99 

2023). Therefore, we tested whether the previously observed adverse effects of AMPA on 100 

spined toad tadpoles could originate from gut microbiota dysbiosis. Moreover, we further 101 

hypothesized that AMPA-mediated effects on the gut microbiota of tadpoles would be 102 

dependent on parent’s body-condition (as a proxy of parental diet and quality) and habitat of 103 

origin (agricultural or forest).  104 

MATERIAL AND METHODS 105 
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Fieldwork 106 

The 120 spined toad tadpoles used presently are a subset of the 240 individuals employed in a 107 

previous companion study (Tartu et al., 2022). Study sites, parent captures, and housing 108 

conditions have been described previously (Tartu et al., 2022). Briefly, between 28/01/2021 109 

and 22/02/2021, we searched for spined toad amplectant pairs at night in two agricultural sites 110 

and in two sites surrounded by woodlands (see supporting information in (Tartu et al., 2022)). 111 

We collected the ten first spotted couples to guarantee comparable inter-site individual quality.  112 

We then returned breeding pairs to the laboratory until females lay their eggs (Figure S1). After 113 

oviposition, we measured the snout-vent length of both parents with a calliper and weighed 114 

them on a precision scale. We calculated the scaled mass index (SMI) developed by Peig and 115 

Green (2009) to assess parental body condition as SMI accurately reflects amphibian energy 116 

stores in anuran species (Băncilă et al., 2010; Landler et al., 2023; MacCracken and Stebbings, 117 

2012; Zhelev and Minchev, 2023). We described how we categorized males and females into 118 

the thin and fat groups in the “statistical analyses” section below. Finally, we released the pairs 119 

in their breeding site after body measurements.  120 

Housing conditions and AMPA treatment 121 

We obtained six segments of 34 eggs for each clutch and placed each segment in individual 122 

aquariums with 2L of dechlorinated tap water. Among the six segments, we exposed three to 123 

0.4 µg L-1 (± 0.01 µg L-1) of AMPA (AMPA group), and we kept the remaining three in 124 

dechlorinated tap water as a control group. We obtained the AMPA solution by dissolving 125 

commercial crystalline powder (Aminomethylphosphonic acid, 99% purity, ACROS 126 

ORGANICS™) with dechlorinated tap water. An independent accredited analytical laboratory 127 

confirmed AMPA concentration in water (QUALYSE, Champdeniers-Saint-Denis, France). As 128 

evidenced by data available from French national surveys conducted between 2020 and 2023 129 
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on 380 samples obtained from 67 rivers of the Deux-Sèvres Region, AMPA concentrations 130 

ranged from 0.02 to 3.4 µg L-1 (Naïades, 2023), the selected AMPA concentration (0.4 µg L-1) 131 

in the present study represents actual concentrations found in surface water in our study area.  132 

Upon hatching, we randomly isolated one tadpole and released the remaining tadpoles in their 133 

parents' breeding pond. We housed each selected tadpole individually (n=240 in total; see 134 

Figure 1, S1) in a 2L aquarium with either dechlorinated tap water or AMPA according to the 135 

treatment experienced during embryonic development. Consequently, tadpoles were exposed 136 

to the same treatment during embryonic and larval development. We checked tadpoles daily 137 

and monitored their development through six key Gosner stages (25, 30, 37, 41, 42 and 46 138 

(Gosner, 1960)). The effects of AMPA exposure on tadpole development according to the 139 

parent’s origin (forest vs agricultural) have been published previously (Tartu et al., 2022). 140 

From the egg stage until metamorphosis, the tadpoles were kept under simulated 12:12 h day 141 

and night in a room at 17°C to avoid any basal metabolism and development variation. Water 142 

was changed weekly and 0.4 µg L-1 AMPA was added to the AMPA group tanks after each 143 

water change. Upon hatching, we fed tadpoles with organic ground spinach ad libitum. Ethics 144 

committees approved this study (permits APAFIS#13477–2018032614077834 and 145 

DREAL/2020D/8041). 146 

Faecal sampling for microbiome analyses 147 

Although there are some controversies about using faecal microbiome to reflect gut microbiome 148 

comprehensively (Tang et al., 2020), we still privileged this non-invasive sampling method to 149 

release the toadlets upon metamorphosis. During pre-metamorphic larval development, spined 150 

toad tadpoles are the most active swimming and feeding at Gosner stage 37 (Cheron et al., 151 

2021), resulting in a more significant production of faeces. Therefore, we started sampling 152 

tadpoles’ faeces for gut microbiota analyses once they reached Gosner stage 37. To do so, we 153 
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collected faeces accumulated in the bottom of the aquarium since the last water change (4-6 154 

days) using sterile pipettes for half of the individuals (n = 120). We placed faeces in a sterile 155 

petri dish, then transferred them by pipetting with filter tips to a sterile microtube and added 156 

twice their volume of DNA/RNA Shield™ (Zymo Research). To increase the quantity of faeces 157 

per sample and the genetic diversity of microbial communities, we pooled the faeces from three 158 

sibling tadpoles receiving the same treatment (control or AMPA) in one tube. We thus obtained 159 

40 pools (Figure 1). DNA/RNA Shield™ preserves the nucleic acids integrity of samples at 160 

ambient temperatures. We therefore kept the pooled faecal samples at room temperature until 161 

analyses.  162 

 163 

Figure 1: Common-garden experiment conducted on spined toad Bufo spinosus tadpoles.  The upper 164 

panel shows our experimental design and the metrics monitored for each Gosner stage (GS). From each 165 
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clutch, we exposed three segments to control conditions (dechlorinated tap water) and three segments 166 
to AMPA (0.4 µg L-1). From each segment that produced at least one viable tadpole, one was kept and 167 
monitored until metamorphosis (Gosner stage 46). Lower panel: on a sub-sample of tadpoles (n=120), 168 
we collected the faeces of individuals when they reached GS 37. We then pooled the faeces of three 169 
siblings who had received the same treatment in a single tube (n=20 control, n=20 AMPA) to conduct 170 
microbiota analyses. 171 

DNA extraction, libraries and sequencing 172 

We extracted DNA using the ZymoBIOMICS DNA/RNA Miniprep kits according to the 173 

manufacturer's instructions. We added 1 µL of the Zymobiomics Spike-in control I (High 174 

microbial Load D6320) to each sample as in situ positive control (Galla et al., 2023) before 175 

lysis using a Precellys Evolution Touch equipped with a cryolys module to perform six steps 176 

of bead beating at 10,000 rpm during 10 s at 0°C, with 30 s pause between each step. We 177 

included a set of samples from artificial communities as positive controls (Zymobiomics 178 

Microbial community standard (D6300) and log distribution (D6310)) and negative controls 179 

(tap water used to rear tadpoles and nuclease-free water). We controlled the quality and quantity 180 

of extracted DNA (3180  2479 ng DNA per faeces sample) using spectrophotometry 181 

(Nanodrop) and fluorometry (Qubit). We amplified the V1-V8 portion of the 16S rDNA gene 182 

by PCR using tailed primers tBACT27F (5’- 183 

TTTCTGTTGGTGCTGATATTGCAGAGTTTGATCCTGGCTCAG-3’) and tBACT1391R 184 

(5’- ACTTGCCTGTCGCTCTATCTTCGACGGGCGGTGWGTRCA-3’). We ran PCR in 185 

triplicate reactions of 25 µL assembled under a PCR laminar flow cabinet using the following 186 

conditions: 40 ng DNA, 0.3µM each primer, 0.5 mM dNTPs, 1 Unit of tiAmplus DNA 187 

Polymerase HotStart (Roboklon), 1X tiAmplus Buffer containing 25 mM MgSO4. The PCR 188 

program was 93°C for 2 min, followed by ten cycles of 10s at 93°C, 30s at 57°C, 120s at 68°C 189 

and 25 cycles of 10 s at 93°C, 30s at 65°C, 120s at 68°C and 7 min at 68°C. We monitored  190 

amplification products using regular gel electrophoresis before pooling the triplicate PCR and 191 

purification using magnetic beads (Macherey-Nagel NucleoMag cleanup). After the first round 192 

of PCR (16S), we obtained a mean quantity of 1.82  0.59 µg of pooled PCR products after 193 
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purification. We used 100 ng of each PCR product for a second round of PCR (multiplexing) 194 

and finally obtained 3.4  1.3 µg of purified product. We then used the PCR barcoding 195 

expansion pack (EXP-PBC096, Oxford Nanopore Technology) and the ligation sequencing kit 196 

(SQK-LSK109) to prepare a sequencing library of which 150 ng were loaded on the flow cell 197 

(R9.1) and sequenced using a MinIon device (Oxford Nanopore Technology).  Two libraries 198 

were sequenced on two different flow cells, yielding 5,043,247 and 5,184,836 usable reads after 199 

demultiplexing. The sequenced datasets generated and analyzed during the current study are 200 

available in the EMBL Nucleotide Sequence Database (ENA) at 201 

https://www.ebi.ac.uk/ena/data/view/PRJEB71117. 202 

16s rDNA sequence analysis 203 

We mapped individual reads using minimap2 on the SILVA SSU database version 138 . We 204 

retained only reads mapping with a coverage of 75% and an alignment length between 1000 205 

and 2000 nt to a SILVA entry identified by at least two reads in a given sample. We ran 206 

abundance analyses using OTUs identified by a prevalence of at least four with a minimum 207 

read depth of three. 208 

Analysis of spike control 209 

We analyzed four samples as negative controls to monitor the inputs from the dechlorinated tap 210 

water used to raise tadpoles (two samples) or any contaminants arising from sample 211 

manipulation, DNA extraction, PCR amplification and sequencing library construction (two 212 

samples). As in all samples, we included spiked bacteria (D6320, ZymoBIOMICS) in the 213 

controls we analyzed in two independent sequencing runs. We obtained 19,270 and 28,848 214 

reads in the water samples and 26,579 and 38,633 reads in the kit samples, from which 215 

respectively 98.25; 98.73; 99.77; and 99.71% were identified as the spiked bacteria Imtechella 216 

and Allobacillus. Therefore, the bacterial inputs from the dechlorinated tap water to faecal 217 
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samples are negligible; spiked bacteria only represented between 0.002-0.06% in faecal 218 

samples. The maximum number of reads from another OTU was between 11 and 140, and we 219 

found at least one read attributed to 25-78 phylogenetically unrelated OTUs. The ratios of 220 

Allobacillus to Imtechella reads were 0.84-1.05, compared with the theoretical expectation of 221 

2.3. 222 

In conclusion, as expected, we found that a vast majority of the reads from these spike controls 223 

identified the two bacteria from the spike. Yet, we observed a trace level of reads derived from 224 

phylogenetically unrelated OTUs that artificially increased the number of observed OTUs. We 225 

observed that two samples out of seven expected to be devoid of spike-in contained one and 226 

three reads from Allobacillus but none from Imtechella. The sample containing one read may 227 

represent a case of spillover since it is located next to a D6320 sample. We computed a spike 228 

in OTU abundance from the mean of 100 rarefactions to account for sample read depth 229 

variations. We also analyzed the spike-in fraction (D6320) out of the total bacterial abundance 230 

to estimate bacterial biomass in situ (Jones et al., 2015; Stämmler et al., 2016; Tkacz et al., 231 

2018). 232 

Statistical analyses 233 

First, we obtained an estimation of the ratios of absolute endogenous bacteria by analyzing the 234 

abundance of spike-in controls according to the treatment (AMPA vs control) and their 235 

interaction with the parental capture site (agricultural vs forest) and parental (maternal and 236 

paternal) body condition (Hornung et al., 2019; Stämmler et al., 2016). We used linear mixed 237 

effect models (LME) with clutch identity as a random factor. Then, we evaluated the similarity 238 

of bacterial communities between the different treatments and their interaction with the parental 239 

capture site and parental body condition with unweighted (based on the presence or absence of 240 

observed bacterial taxa) and weighted (based on the abundance of observed bacterial taxa) 241 

UniFrac distances (Lozupone et al., 2006). We constructed discrete body condition classes to 242 
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compare spike-in control abundances and bacterial communities according to treatment while 243 

considering parent body condition. To do so, we used an objective categorization method by 244 

grouping all the individuals with an SMI ≤ median SMI value as “thin” and all individuals with 245 

an SMI > median SMI value as “fat”. We used the non-parametric Kruskal-Wallis (KW) test 246 

when comparing UniFrac distances according to more than two variables. Post-hoc analyses 247 

were performed using Dunn's test with the Bonferroni adjustment method. We then performed 248 

principal coordinate analysis (PCoA) based on unweighted and weighted UniFrac distances 249 

using the ‘Phyloseq’ and ‘ade4’ packages (Dray and Dufour, 2007; McMurdie and Holmes, 250 

2012). Second, we extracted the abundances of the nine most represented phyla and inserted 251 

them into linear mixed effect models (LME) with clutch identity as a random factor. We used 252 

LME to specifically analyze which phyla were influenced by the treatment and potential 253 

interaction with other variables (e.g. parental habitat and body condition). At last, we conducted 254 

Linear discriminant analysis Effect Size (LEfSe) analyses within the phyla and variables 255 

previously identified as sensitive to AMPA exposure to determine which microbiome 256 

biomarkers characterized the observed differences (Segata et al., 2011) by using the 257 

‘microbiomeMarker’ package (Cao et al., 2022). We performed all analyses with R v.4.3.2 (R 258 

Core Team, 2019). 259 

RESULTS 260 

Faecal microbiota composition of spined toad tadpoles 261 

We identified 664 Operational Taxonomic Units (OTUs) within the 40 faecal samples analyzed. 262 

Proteobacteria (537 OTUs) was the most abundant phylum, followed by Bacteroidota (73 263 

OTUs), Actinobacteriota (18 OTUs), Firmicutes (13 OTUs), Verrumicrobiota (7 OTUs), 264 

Acidobacteriota (7 OTUs), Campilobacterota (4 OTUs), Desulfobacterota (3 OTUs), 265 

Planctomycetota (2 OTUs).  266 
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Treatment effects and their interactions with habitat and parental body condition 267 

We observed a higher abundance of spiked-in bacteria in faecal samples from AMPA-exposed 268 

tadpoles as compared to controls (LME, estimate: 20.93 ± 6.39, p=0.004, Figure 2), which 269 

indicates an endogenous lower biomass in faecal samples of AMPA treated tadpoles. The 270 

interaction of treatment with parental habitat and body condition was unrelated to spike-in 271 

control abundances (LME, p>0.560 for all tests). Although AMPA treatment did not overall 272 

affect faecal microbiota community structure (unweighted UniFrac distances, Kruskal-Wallis 273 

χ2= 1.99, df = 2, p = 0.370), it affected its composition (weighted UniFrac distances (χ2= 11.0, 274 

df = 2, p=0.004, post-hoc test AMPA vs Control: p=0.003, Figure S2).  275 

 276 

Figure 2: Exogenous spike-in bacterial relative abundance in tadpoles’ faecal samples. 277 
The greater abundance of exogenous spiked-in bacteria in samples from AMPA-treated 278 
tadpoles reveals an overall lower endogenous bacterial biomass than in the control group. 279 

Bacterial abundances were computed as the mean value from 100 rarefactions. Significant 280 
differences are represented by *** (p=0.004). 281 

   282 

The effect of the treatment on the faecal microbiota community was not exacerbated when 283 

considering the habitat of the parents (unweighted UniFrac, χ2= 11.2, df = 9, p = 0.262; weighted 284 
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UniFrac, χ2= 15.4, df = 9, p = 0.080). Although close to statistical significance for weighted 285 

UniFrac distances, pairwise post-hoc comparisons did not reveal any trend (p>0.21 for all tests).    286 

Yet, the AMPA effect depended on maternal body condition (Figure 3). More specifically, the 287 

structure and composition of faecal microbial communities were affected by AMPA in tadpoles 288 

produced by females in better condition. In comparison, this effect was not found in tadpoles 289 

produced by females characterized by lower condition (unweighted UniFrac distances, χ2= 46.2, 290 

df = 9, p = 5.46×10-07, post-hoc test: AMPA vs Control in fatter females: p = 0.006, thinner 291 

females: p = 0.198; weighted UniFrac, χ2=34.1, df = 9, p = 8.53×10-05, post-hoc test: AMPA vs 292 

Control in fatter females: p = 0.0004, thinner females: p = 0.999, Figure 3A-D). Paternal body 293 

condition alone or in interaction with the treatment did not significantly influence the tadpole 294 

microbiome (p>0.05 for all tests, Figure 4). 295 

  296 
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 297 

Figure 3: Interaction of treatment and maternal body condition on GS 37 Bufo spinosus 298 
tadpoles' faecal microbiota community. The upper panels represent calculated unweighted 299 
(A) and weighted (B) UniFrac distances according to the treatment (control in blue vs AMPA 300 
in red) and maternal body condition. Lower panels represent principal coordinate analysis 301 

(PCoA) for each pool of siblings (AMPA, n = 20, control group, n=20) according to treatment 302 
and maternal body condition. Closer dots in the PCoA figure indicate a more similar microbial 303 
community. The percentage of variation explained by principal coordinates (PC) is shown on 304 
the axes. We calculated body condition from the scaled mass index. Condition categories were 305 

separated by median value ('thinner' ≤ median value; 'fatter'> median value).  Significant 306 
differences are represented by *** (p<0.007 in A and B; we performed pairwise comparisons 307 
using Dunn's all-pairs test). 308 

 309 

  310 
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 311 

Figure 4: Interaction of treatment and paternal body condition on GS 37 Bufo spinosus 312 

tadpoles' faecal microbiota community. The upper panels represent calculated unweighted 313 
(A) and weighted (B) UniFrac distances according to the treatment (control in blue vs AMPA 314 
in red) and paternal body condition. Lower panels represent p rincipal coordinate analysis 315 
(PCoA) for each pool of siblings (AMPA, n = 20, control group, n=20) according to treatment 316 

and paternal body condition. Closer dots in the PCoA figure indicate a more similar microbial 317 
community. The percentage of variation explained by principal coordinates (PC) is shown on 318 
the axes. Body condition was calculated from the scaled mass index. Condition categories were 319 
separated by median value ('thinner' ≤ median value; 'fatter'> median value).  320 

Interaction between treatment and maternal body condition on tadpole's microbiome 321 

In AMPA-exposed tadpoles, the abundance of Bacteroidota decreased with increasing maternal 322 

body condition (Figure 5A, Table 1). In contrast, we observed a positive relationship between 323 

Bacteroidota abundance and maternal body condition in control tadpoles (Figure 5A, Table 1).  324 

  325 
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Table 1: Relationships between the abundance of the nine major phyla sequenced in 326 
tadpole's faecal microbiome, according to AMPA exposure and maternal body condition. 327 
Values were obtained using linear mixed effects models with clutch identity as a random factor. 328 
Values in bold are significant at the 0.05 level.  329 

 330 

 331 

In contrast, Actinobacteriota abundance increased with increasing maternal body condition in 332 

AMPA-exposed tadpoles, while the Actinobacteriota/maternal body condition relationship was 333 

negative in control tadpoles (Figure 5B, Table 1). The abundance of the seven other phyla was 334 

unrelated to treatment, SMI and their interaction (Table 1).  335 

 336 

Figure 5: Relationships between tadpoles' faecal phylum abundance and maternal body 337 
condition according to AMPA exposure. Bacteroidota (A) and Actinobacteriota (B) 338 
abundances (number of reads) were differently associated with maternal body condition as 339 
inferred by their scaled mass index (SMI) according to AMPA exposure (A, conditional r² = 340 

0.23 and B, conditional r² = 0.46). Each red triangle (AMPA exposed) and blue dot (control) 341 
represent a pool of faeces obtained from three siblings exposed to a similar treatment.  342 

The effects of AMPA on microbiota composition were more potent in offspring produced by 343 

fatter females (Figures 3, 5) within the phyla Bacteroidota and Actinobacteriota (Table 1). We, 344 

Phylum abundance Estimate ± SE df t p Estimate ± SE df t p Estimate ± SE df t p

Proteobacteria 1727  ± 63057 18 0.03 0.978 432  ± 791 18 0.5464299 0.592  -148  ± 796 18 -0.19 0.855

Bacteroidota 65703  ± 26942 18 2.44 0.025 205  ± 251 18 0.8167347 0.425  -846  ± 340 18 -2.48 0.023

Actinobacteriota -742.2  ± 238.6 18 -3.11 0.006  -3.52  ± 2.64 18 -1.334115 0.199 9.70  ± 3.01 18 3.22 0.005

Firmicutes  -91  ± 224 18 -0.41 0.690 1.01  ± 2.07 18 0.4872227 0.632 1.37  ± 2.83 18 0.48 0.635

Verrucomicrobiota  -1048  ± 624 18 -1.68 0.111 -6.7  ± 5.6 18 -1.201961 0.245 12.9  ± 7.9 18 1.63 0.120

Acidobacteriota 18.7  ± 21.5 18 0.87 0.397 0.11  ± 0.21 18 0.52 0.610  -0.25  ± 0.27 18 -0.92 0.369

Campylobacterota -18.4  ± 19.3 18 -0.95 0.353  -0.29  ± 0.18 18 -1.6236091 0.122 0.26  ± 0.24 18 1.05 0.309

Desulfobacterota  -9.45  ± 18.6 18 -0.51 0.618  -0.24  ± 0.24 18 -1.0182636 0.322 0.07  ± 0.24 18 0.31 0.758

Planctomycetota  -133  ± 116 18 -1.15 0.267  -1.38  ± 1.04 18 -1.326659 0.201 1.55  ± 1.47 18 1.05 0.306

Treatment SMI Treatment × SMI
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therefore, conducted LEfSe analyses within this subset (i.e. Bacteroidota and Actinobacteriota 345 

in the ‘fatter’ female group, Table 2). We identified ten markers within the Bacteroidota 346 

phylum for the AMPA-exposed group (Table 2). The features that explain most the AMPA 347 

group were: class Bacteroidia, order Flavobacteriales, family Weeksellaceae, genus 348 

Cloacibacterium, species cloacibacterium uncultured, and class Bacteroidia, order 349 

Sphingobacteriales, family KD3-93, genus KD3-93 uncultured. Whereas within the 350 

Actinobacteriota phylum, four markers were identified in the AMPA group (Table 2), all 351 

explained by class Actinobacteria, order Streptomycetales, family Streptomycetaceae, genus 352 

Streptomyces and species streptomyces. 353 
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Table 2:  LEfSe analysis on taxonomic biomarkers of gut microbiota influenced by AMPA exposure in offspring from fatter females. 354 

LEfSe analysis identified the most differentially abundant taxa within a) Bacteroidota and b) Actinobacteriota according to AMPA exposure. We 355 

show LDA scores > 2; k=kingdom, p=phylum, c=class, o=order, f=family, g=genus, s=species, ef. LDA= effect size linear discriminant analysis. 356 

 357 

358 

Marker Feature Enriched group ef. LDA p-value

Marker1 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Weeksellaceae AMPA 3.383 0.008

Marker2 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Sphingobacteriales|f__KD3-93 AMPA 3.336 0.041

Marker3 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Sphingobacteriales|f__KD3-93|g__KD3-93_uncultured AMPA 3.336 0.041

Marker4 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Sphingobacteriales|f__KD3-93|g__KD3-93_uncultured|s__KD3-93_uncultured_uncultured AMPA 3.336 0.041

Marker5 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Weeksellaceae|g__Cloacibacterium AMPA 3.245 0.049

Marker6 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Weeksellaceae|g__Cloacibacterium|s__Cloacibacterium_uncultured AMPA 3.245 0.049

Marker7 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Weeksellaceae|g__Weeksellaceae_uncultured AMPA 2.820 0.013

Marker8 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Weeksellaceae|g__Weeksellaceae_uncultured|s__Weeksellaceae_uncultured_unculturedAMPA 2.820 0.013

Marker9 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Flavobacteriaceae|g__Leptobacterium AMPA 2.711 0.028

Marker10 k__Bacteria|p__Bacteroidota|c__Bacteroidia|o__Flavobacteriales|f__Flavobacteriaceae|g__Leptobacterium|s__Leptobacterium AMPA 2.711 0.028

Marker1 k__Bacteria|p__Actinobacteriota|c__Actinobacteria|o__Streptomycetales|f__Streptomycetaceae AMPA 4.015 0.014

Marker2 k__Bacteria|p__Actinobacteriota|c__Actinobacteria|o__Streptomycetales|f__Streptomycetaceae|g__Streptomyces|s__Streptomyces AMPA 4.012 0.014

Marker3 k__Bacteria|p__Actinobacteriota|c__Actinobacteria|o__Streptomycetales AMPA 4.012 0.014

Marker4 k__Bacteria|p__Actinobacteriota|c__Actinobacteria|o__Streptomycetales|f__Streptomycetaceae|g__Streptomyces AMPA 4.009 0.014

a) Bacteroidota (Fatter mothers)

b) Actinobacteriota (Fatter mothers)
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DISCUSSION 359 

We here show that a minute concentration of AMPA (aminomethylphosphonic acid) - the 360 

primary metabolite of glyphosate and the main contaminant detected in surface waters 361 

worldwide - can affect gut microbiota biomass and community composition in larvae of a 362 

widespread amphibian species. Interestingly, this effect was, at least partly, mediated by 363 

maternal condition, as the effects of AMPA on tadpoles' microbiome were exacerbated in 364 

individuals produced by females with better body condition. AMPA did not affect the gut 365 

microbiome of tadpoles from leaner females, and paternal body condition was unrelated to the 366 

effects of AMPA. The interaction between AMPA and maternal body condition on tadpoles' 367 

gut microbiome was driven by contrasting alterations of the abundance of Bacteroidota and 368 

Actinobacteriota, which are respectively the second and the third most abundant phylum in 369 

spined toad larval faecal microbiome. 370 

Possible vertical transmission of the gut microbiota 371 

In amphibian species with aquatic larvae, gut microbiota majorly originates from the 372 

environment (i.e. water and diet), and the contribution of parental microbiomes was thought to 373 

be minor (Hernández-Gómez and Hua, 2023; Prest et al., 2018; Scalvenzi et al., 2020). In this 374 

study, we captured amplectant pairs in four different sites and placed them in a tank filled with 375 

dechlorinated tap water until all females laid their eggs. We controlled the tap water, and our 376 

analyses indicated that tap water did not contribute to significant amounts of  bacterial DNA. 377 

We exposed egg strings to the same water and fed tadpoles with the same diet of organic ground 378 

spinach. Therefore, the only source of variation in early microbial egg colonizers were those 379 

present on the parents (skin and cloacal microbiomes), and we were able to show evidence of a 380 

maternal signature on the tadpole faecal microbiome.  381 
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Vertical transmission has been extensively studied in mammals, with maternal faecal microbes 382 

transferred to newborns during birth (Ferretti et al., 2018; Wampach et al., 2018; Wang et al., 383 

2020). Although prenatal transfer is still debated in oviparous vertebrates, evidence of vertical 384 

transmission has been reported. For instance, bacterial colonization during egg formation has 385 

been suggested in Eastern Fence Lizard (Sceloporus undulatus) (Trevelline et al., 2018), and 386 

female Sceloporus virgatus lizards transfer beneficial microbes from their cloaca onto their 387 

eggs during oviposition with beneficial effects on the offspring (Bunker et al., 2021). Moreover, 388 

hatchling loggerhead sea turtles Caretta caretta harboured distinct microbial communities with 389 

respect to sand and eggshells, suggesting here also a maternal origin of their pioneer gut 390 

microbiome (Vecchioni et al., 2022). In addition, the faecal microbiome of neonate Rock 391 

pigeons (Columba livia) hatched in an incubator resembled the cloacal microbiome of females 392 

sampled from the same population (Dietz et al., 2020). Evidence is accumulating from pathogen 393 

transmission studies that Salmonella enterica contamination of chicken eggs does not occur 394 

from penetration through the shell but by the passage from the hen's intestinal tract to the 395 

reproductive tract, then from pathogen colonization into the forming egg on the vitelline 396 

membrane, in the egg white or the shell membranes (Gantois et al., 2009). Therefore, maternal 397 

intestinal microbiota could colonize the egg yolk before shell deposition.  398 

In contrast to amniotic vertebrates, amphibians produce jelly-coated eggs. Egg-jelly has various 399 

functions such as fertilization, insulation, gas exchange, and protection (Altig and McDiarmid, 400 

2007; Beattie, 1980; Burggren, 1985; Olson and Chandler, 1999), yet some pathogenic bacteria 401 

can penetrate the thick jelly layer of the egg (Khalifa et al., 2021). Since vertical transmission 402 

is possible in shelled eggs, maternal transmission in non-shelled eggs is even more likely, as 403 

observed in crustaceans (Giraud et al., 2022). But surprisingly, few researchers have 404 

investigated vertical transmission in amphibians without parental care (Hughey et al., 2017). In 405 

African clawed frogs (Xenopus tropicalis), the environment was identified as the primary driver 406 
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of egg bacterial communities by contributing around 70% of the bacteria in controlled 407 

conditions. In the same study, the skin and faeces of parents were identified as minor 408 

contributors (Scalvenzi et al., 2020). In wild boreal toad populations (Anaxyrus boreas), a 409 

quarter of the bacterial communities observed on eggs and a third of communities observed on 410 

early-stage tadpoles were comprised of bacteria acquired from an unknown source (neither 411 

water, upland soil nor sediments), and these strains were likely parentally transmitted (Prest et 412 

al., 2018).  413 

Although further studies are needed to understand better the vertical transmission of the gut 414 

microbiota in spined toads, substantial evidence points towards this direction. As observed in 415 

other taxa, such as mammals and reptiles, vertically transmitted strains are likely to be more 416 

ecologically relevant for the offspring compared with non-maternal strains (Ferretti et al., 417 

2018), and transmitted strains could confer fitness advantages to the progeny (Bunker et al., 418 

2021; Trevelline et al., 2018). Mechanisms of transgenerational immune priming could provide 419 

complementary explanations (Roth et al., 2018). There is complementary evidence for the 420 

transmission of innate immunity compounds (i.e. antimicrobial skin peptides and mutualistic 421 

microbiota) from females to eggs in amphibians (Walke et al., 2011). Yet, more studies are 422 

needed to investigate and quantify immune responses transmitted to offspring in amphibians. 423 

Tadpole gut microbiome depends on the maternal body condition 424 

Body condition can be a good indicator of fitness in numerous species (Bowers et al., 2014; 425 

Bright Ross et al., 2021; Liu et al., 2020; Milner et al., 2003), including spined toads (Renoirt 426 

et al., 2022). Associations between body condition and gut microbiota composition have been 427 

well described in human and rodent models, and this is not surprising given the function of the 428 

gut microbiome to produce metabolites involved in energy homeostasis and metabolic health 429 

(Aron-Wisnewsky et al., 2021.; Fan and Pedersen, 2021; Moreno-Navarrete and Fernandez-430 
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Real, 2019; Turnbaugh et al., 2006; Zwartjes et al., 2021); however, in the wild, these 431 

relationships are more difficult to characterize.  432 

For instance, no associations between the gut microbiome and body condition were reported in 433 

fire salamanders Salamandra Salamandra, Seychelles warbler Acrocephalus sechellensis, 434 

three-spined stickleback Gasterosteus aculeatus (Friberg et al., 2019; Wang et al., 2021; 435 

Worsley et al., 2021). In contrast, in Eurasian perch Perca fluviatilis, lower microbial diversity 436 

was related to improved condition; in great tit nestlings Parus major, a time-lagged association 437 

was observed between gut microbiota composition, nestling weight and survival; in coyotes 438 

Canis latrans, the consumption of anthropogenic food in urban individuals was associated with 439 

increased microbiome diversity, higher abundances of Streptococcus and Enterococcus and 440 

poorer average body condition (Bolnick et al., 2014; Davidson et al., 2021; Sugden et al., 2020), 441 

and in wood frogs, Rana sylvatica egg microbiome manipulation accelerated larvae growth and 442 

development rates (Warne et al., 2019). These contrasted relationships between gut microbiota 443 

composition and body condition in wild species could result from environment-dependent 444 

variations in feeding activity, diet composition, and body condition, and all these features can 445 

also vary according to sex, age, and breeding cycle. Measuring microbiome-fitness 446 

relationships at just one point could be misleading in free-ranging species.  447 

In the present study, we observed an association between tadpole faecal microbiome 448 

composition and maternal body condition, which was affected by AMPA exposure. This 449 

association suggests that components of the maternal microbiome or determinants of microbiota 450 

composition were transmitted to the eggs during oviposition, and this specific microbiome 451 

signature was more sensitive to AMPA exposure. We can assume that a gut microbiota 452 

composition that is more efficient in harvesting energy, as suggested by the higher maternal 453 

body condition in that group, would consist of a gut bacterial assemblage with species more 454 

sensitive to AMPA. One may hypothesize that those females in better body condition originate 455 
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from habitats preserved from AMPA exposition (i.e. forest sites, see Tartu et al. (2022)) and 456 

that their gut bacterial composition would be more sensitive to AMPA exposure. However, 457 

maternal body condition was not related to habitat (agricultural vs forested, LME estimate: -458 

2.31 ± 3.69, p = 0.538). The observed relationships underline the dependence of the gut 459 

microbiome on interactions among other deterministic factors that were not accounted for in 460 

this study, such as host genetic and epigenetic background, age, diet or other environmental 461 

stressors (Chen et al., 2022; Shu et al., 2019; Song et al., 2021; Zhou et al., 2021). Nevertheless, 462 

we identified a modification of the abundance of two major phyla in tadpole's gut microbiota, 463 

Bacteroidota and Actinobacteriota, which varied according to maternal body condition and 464 

AMPA exposure.  465 

Effects of agrochemicals transformation products according to gut microbiota composition 466 

In line with our hypothesis, AMPA exposure affected tadpoles’ gut microbiome by reducing 467 

bacterial biomass and changing community composition. In several taxa, including amphibians, 468 

a dysbiosis induced by decreased bacterial biomass is associated with deficient nutrient 469 

absorption and impaired immunity (Adamovsky et al., 2018; Gomaa, 2020; Jiménez and 470 

Sommer, 2017). In addition, the AMPA – microbiome relationship was exacerbated when 471 

transgenerational traits, such as maternal body condition, were considered, highlighting 472 

microbial colonizers' importance in susceptibility to pollutants. Specifically, in tadpoles from 473 

better-condition females, we observed a weaker Bacteroidota abundance and a more substantial 474 

Actinobacteriota abundance in the AMPA-exposed group.  475 

As previously mentioned, only a few studies conducted on invertebrates have investigated 476 

whether AMPA exposure would lead to gut microbiota dysbiosis (Blot et al., 2019; Iori et al., 477 

2020), yet effects of glyphosate exposure similar to those observed in the present study have 478 

been reported in Sprague-Dawley rats (Mesnage et al., 2021). For instance, glyphosate exposure 479 

decreased Bacteroidota abundance and concomitantly increased Firmicutes and Actinobacteria 480 
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abundances in rats' caecum microbiome (Mesnage et al., 2021). The reported effects of 481 

glyphosate could also be the consequence of AMPA, as glyphosate is degraded to AMPA in 482 

vertebrates and highly accumulates in the intestine, as observed in bird and fish models (Fréville 483 

et al., 2022; Yan et al., 2023). 484 

The ability to cleave the C - P bond of AMPA and to use it as a phosphorus source is widespread 485 

in bacteria (Dick and Quinn, 1995; Fox and Mendz, 2006; Harkness, 1966; Studnik et al., 2015), 486 

including various species of the Actinobacteriota phylum as Streptomyces (Obojska et al., 1999; 487 

Obojska and Lejczak, 2003). The observed increase of Actinobacteriota is likely to result from 488 

the ability of Streptomyces and other akin species to utilize AMPA as a phosphorus source, 489 

promoting their growth. In contrast, the decreased abundance of Bacteroidota in tadpole gut 490 

microbiota, and more specifically the orders Sphingobacteriales (family KD3-93) and 491 

Flavobacteriales (family Weeksellaceae, genus Cloacibacterium) could either result from a 492 

higher sensitivity of these orders to AMPA, a modification of the gut environment which 493 

became less favourable to their growth (e.g. pH) or resource competition with Actinobacteriota 494 

(Firrman et al., 2022). This gut microbiota alteration associated with AMPA exposure can have 495 

important implications for the host's health. 496 

For instance,  Sphingobacteriales can produce sphingolipids that regulate the immune system 497 

and lipid metabolism (An et al., 2011; Bai et al., 2023; Olsen and Jantzen, 2001). 498 

Flavobacteriales, on the other hand, play several roles in various metabolic pathways, including 499 

vitamins, amino-acid and fatty acid biosynthesis (Rosas-Pérez et al., 2014; Yang et al., 2017; 500 

Zhou et al., 2022). Flavobacteriales can thus bear positive effects on the host growth and 501 

development (Pan et al., 2023). At the genus level, Cloacibacterium sp. can degrade cellulose 502 

and may have a critical role in transforming plant-derived complex dietary carbohydrates into 503 

essential short-chained fatty acids (SCFA) for herbivore organisms such as spined toad tadpoles 504 
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(Flint et al., 2012; Fujimori, 2021; Hu et al., 2021; Martens et al., 2011; Zhang et al., 2018). 505 

Therefore, a decrease in Bacteroidota could disrupt nutrient intakes, leading to a delayed 506 

development length, as observed in agricultural AMPA-exposed tadpoles from the present 507 

study (Tartu et al., 2022). In the crucian carp (Carassius auratus), for instance, glyphosate 508 

exposure resulted in a dysbiosis of Bacteroidota at the phylum level, and Bacteroidota 509 

abundance was negatively correlated with different metrics of growth performance (condition 510 

factor, fat ratio and specific growth rate) (Yan et al., 2022).  511 

We have previously reported that AMPA exposure was associated with a higher deformity rate 512 

upon hatching, especially in individuals from AMPA-free forest habitats, and increased 513 

development length in AMPA-exposed individuals from agricultural sites (Tartu et al., 2022). 514 

While embryonic stages may be more sensitive to AMPA exposure in forest individuals 515 

(AMPA-preserved population), they might be more resilient to a gut microbiome dysbiosis as 516 

no further effects on fitness were observed at metamorphosis (Tartu et al., 2022). In contrast, 517 

agricultural individuals (AMPA-exposed population) could be more resistant during embryonic 518 

stages. However, gut microbiome dysbiosis could still result in a longer development duration 519 

(Tartu et al., 2022). These findings again underline the part that may play the host genotype in 520 

shaping the consequences of gut microbiota dysbiosis. Yet, we have to remain cautious as we 521 

only followed the exposed individuals until metamorphosis and deleterious effects could appear 522 

later in life, as early-life microbiota composition shapes fitness trajectories in amphibians 523 

(Knutie et al., 2017; Warne et al., 2019). In addition, there is alarming evidence of the 524 

disappearance of breeding spined toads in agricultural habitats (Renoirt et al., 2024), which 525 

could be a long-term effect of early-life exposure to toxicants. 526 

 527 

 528 
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We posted the dataset and R scripts used for data analysis on Zenodo at 552 

https://doi.org/10.5281/zenodo.10401610. Supplementary information describing the 553 

fieldwork sampling design is available with the manuscript. 554 
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