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16 Abstract

17 Reflectance spectroscopy has become a powerful tool for non-destructive and high-

18 throughput phenotyping in crops. Emerging evidence indicates that this technique allows for 

19 estimation of multiple leaf traits across large numbers of samples, while alleviating the 

20 constraints associated with traditional field- or lab-based approaches. While the ability of 

21 reflectance spectroscopy to predict leaf traits across species and ecosystems has received 

22 considerable attention, whether or not this technique can be applied to quantify within species 

23 trait variation have not been extensively explored. Employing reflectance spectroscopy to 

24 quantify intraspecific variation in functional traits is especially appealing in the field of 

25 agroecology, where it may present an approach for better understanding crop performance, 

26 fitness, and trait-based responses to managed and unmanaged environmental conditions. We 

27 tested if reflectance spectroscopy coupled with Partial Least Square Regression (PLSR) predicts 

28 rates of photosynthetic carbon assimilation (Amax), Rubisco carboxylation (Vcmax), electron 

29 transport (Jmax), leaf mass per area (LMA), and leaf nitrogen (N), across six wine grape (Vitis 

30 vinifera) varieties (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Viognier, 

31 Sauvignon Blanc). Our PLSR models showed strong capability in predicting intraspecific trait 
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32 variation, explaining 55%, 58%, 62%, and 64% of the variation in observed Jmax, Vcmax, leaf N, 

33 and LMA values, respectively. However, predictions of Amax were less strong, with reflectance 

34 spectra explaining only 29% of the variation in this trait. Our results indicate that trait variation 

35 within species and crops is less well-predicted by reflectance spectroscopy, than trait variation 

36 that exists among species. However, our results indicate that reflectance spectroscopy still 

37 presents a viable technique for quantifying trait variation and plant responses to environmental 

38 change in agroecosystems.

39

40 Introduction

41 Plant functional traits refer to the morphological, physiological, or phenological 

42 characteristics of plants that are readily measurable at an organismal scale, and influence the 

43 performance and response of individuals to environmental changes [1-4]. A considerable amount 

44 of effort has been directed towards understanding the extent, causes, and consequences of trait 

45 variation among plant species [5-10]. This body of literature has led to a deeper understanding of 

46 the key dimensions of functional trait variation that exist among the world’s plant species [6, 11].

47 Among the most well-studied dimensions of trait variation employed to describe and 

48 predict plant performance across resource availability gradients, is the “Leaf Economics 

49 Spectrum” (LES) [7-9]. The LES is a suite of six core leaf traits that covary among plant species 

50 including maximum photosynthetic assimilation (Amax), leaf dark respiration rate (Rd), leaf 

51 nitrogen (N) and phosphorus (P) concentrations, leaf mass per area (LMA), and leaf lifespan 

52 (LL). Taken together, LES trait expression defines how species vary across a continuum of life-

53 history strategies, from fast-growing species characterized by rapid return on biomass 

54 investment, low structural investment, high leaf nutrient concentrations, and relatively short 

55 lifespans on one end, to resource-conserving species expressing the opposite suite of traits and 

56 by extension can be more resilient to resource limitation. Variation in LES traits largely owes to 

57 evolved trade-offs related to leaf biomechanics [12, 13], as well as evolved or plastic variation in 

58 physiological and leaf structural traits including stomatal and mesophyll conductance (gs and gm, 

59 respectively), which in turn influence rates of maximum Rubisco carboxylation (Vcmax), the 

60 electron transport (Jmax) [14-16].

61 Although much of the seminal work on trait variation is been based on interspecific 

62 comparisons, more recent research has focused on quantifying the extent and ecological 
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63 implications of intraspecific trait variation [17-21]. Given the role that phenotypic plasticity and 

64 inheritable genetic variation play in governing plant ecophysiology and morphology, plant 

65 species can exhibit a high degree of intraspecific variation across a range of traits [21] and trait 

66 dimensions [17, 22]. Quantifying intraspecific trait variation is especially critical in 

67 agroecosystems where a relatively small number of plant species drive rates of ecosystem 

68 functioning on account of high abundances [23, 24]. Indeed, considerable interest and efforts 

69 have been dedicated to quantifying the causes and consequences of intraspecific variation in the 

70 traits that are directly responsible for crop growth, survival, and reproduction.

71 Though efforts to comprehensively assess intraspecific trait variation in a given plant 

72 species, especially crops, are often limited at the data collection phase of scientific enquiry. 

73 Traditionally, functional trait data are collected or derived from a combination of field and 

74 laboratory measurements, most of which can be laborious and time-consuming. This is especially 

75 true for “hard” traits [sensu 5] that are part of the LES such as Amax and Rd which are generated 

76 through point sampling of photosynthesis using portable infrared gas analyzers. Furthermore, 

77 traits that contribute to the physiological basis of LES trait variation, namely Vcmax and Jmax, rely 

78 on the execution and analysis of time-consuming photosynthetic CO2 response curves (A-Ci) 

79 [reviewed by 25]. These methodological limitations to trait collection have at least in part 

80 motivated extensive research that evaluates how more easily-measured “soft” traits such as LMA 

81 can be used to predict “hard” physiological traits [5], especially in the context of Earth System 

82 Model parameterization [26, 27].

83 Reflectance spectroscopy has emerged as a central component of high-throughput 

84 phenotype assessments and related collection of physiological, chemical, and morphological trait 

85 data [28]. While multi- and hyperspectral sensors form a key component of remotely-sensed 

86 spectral diversity assessments at ecosystem scales [29-32], field-based reflectance spectroscopy 

87 offers an opportunity to rapidly amass species- or genotype-scale data on leaf physiological, 

88 chemical, and morphological traits including those forming the LES [33-35]. Specifically, using 

89 Partial Least Square Regression (PLSR) models [36], studies have reported strong predictive 

90 relationships between reflectance spectra and LES traits including Amax, leaf N, LMA, and 

91 related physiological parameters including Vcmax and Jmax [33, 37-39].

92 Spectroscopy coupled with PLSR models has been successful in estimating plant traits, 

93 particularly when using multi-species datasets that present a wide range of trait values and 
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94 spectral profiles [33, 38, 40]. More recently, studies have begun employing these techniques to 

95 quantify and predict finer-scale intraspecific trait variation [41], including trait variation across 

96 individuals or genotypes of the same crop species [42-47]. Analyses on intraspecific trait 

97 variation—where trait values and spectra are more constrained—are less common vs. studies 

98 analyzing trait values and spectral signatures from a number of species differing in life-history 

99 strategies [33, 38] or agronomic profiles [40]. Furthermore, studies using reflectance 

100 spectroscopy to detect intraspecific trait variation in crops, commonly screen plants from a range 

101 of managed environmental conditions which further contributes a wider range of trait values 

102 [43]. While these results are promising, there remains uncertainty regarding whether or not these 

103 techniques are able to differentiate LES traits across individuals or genotypes of the same 

104 species, in agroecosystems where environmental conditions are more homogeneous.

105 Our study aims to contribute to the literature on high-throughput assessments of 

106 intraspecific trait variation, by evaluating the potential of reflectance spectroscopy to predict 

107 LES trait variations across multiple wine grape (Vitis vinifera) varieties: one of the most 

108 common crops that holds substantial agricultural and economic values. In this study, we hope to 

109 determine whether PLSR models can reliably estimate photosynthetically important functional 

110 traits in wine grapes from reflectance spectroscopy data across six cultivated varieties.

111

112 Materials and Methods

113 Study site

114 We collected LES and related trait and spectral reflectance data for six of the most 

115 common wine grape varieties—Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, 

116 Sauvignon Blanc, Viognier—at the Niagara College Teaching Vineyard, Niagara-on-the-Lake, 

117 Ontario. The site is an operational vineyard characterized as non-irrigated, with imperfectly 

118 drained silty clays overlaying clay loam till mixed with poorly drained lacustrine heavy clay, and 

119 uniformly tilled and sprayed [48, 49]. All trait and reflectance data were collected during the 

120 fruit setting stage (at our site, from June 6-17, 2022) between 6:00-12:00. For each variety, we 

121 sampled 30 vines evenly distributed across three planting rows, which were roughly 10 meters 

122 apart from each other within one row, totalling n=180 individual vines. One leaf on each vine 

123 was selected from the uppermost segment of the individual for data collection, with all leaves 

124 being fully exposed, newly developed, fully expanded, and free of any damage [50].
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125

126 Functional trait data collection

127 Trait data in our study included Amax, Vcmax, and Jmax, leaf N concentrations, and LMA. 

128 First, Vcmax, Jmax, and Amax data were collected in the field using a LI-6800 Portable 

129 Photosynthesis System (Licor Bioscience, Lincoln, Nebraska, USA). We first performed an A-Ci 

130 curve on each leaf using the Dynamic Assimilation Technique (DAT) [25, 51, 52] in order to 

131 estimate rates of Vcmax and Jmax. For each curve, CO2 assimilation rates on a per leaf area basis 

132 (Aarea; μmol CO2 m-2 s-1) were logged every 4 seconds across continuously ramping CO2 

133 concentrations, with a ramp rate of 100 μmol mol-1 min-1 [consistent with recommendations by 

134 52, 53] beginning at 5 μmol mol-1 CO2 and concluding at 1700 μmol mol-1 CO2. Otherwise, 

135 conditions in the leaf chamber were set to a photosynthetic photon flux density (PPDF) of 1500 

136 μmol m-2 s-1 of photosynthetically active radiation (PAR; 400-700 nm), 50% relative humidity, 

137 leaf vapour pressure deficits of 1.7 KPa, and leaf temperatures of 25 ºC. Furthermore, CO2 and 

138 H2O sensors were readjusted using the range match function after every five leaf measurements, 

139 and each DAT A-Ci curve required approximately 10 minutes, including a 60-120 second 

140 acclimation period [25]. Following the completion of each A-Ci curve, we then allowed leaves to 

141 acclimate to ambient conditions for ~10 minutes. Then, we collected steady-state Amax values for 

142 each leaf at the same environmental conditions as mentioned above with a constant CO2 

143 concentration at 420 ppm. We logged steady-state gas Amax values after leaves were allowed to 

144 stabilize for 5-10 minutes.

145 Immediately following gas exchange measurements, we used an HR1024i full spectrum 

146 portal field spectroradiometer (Spectra Vista Corporation, Poughkeepsie NY, USA) to collect 

147 reflectance spectra for each leaf. This instrument is a full-range spectroradiometer (350-2500 

148 nm) with a spectral resolution of ≤3.5 nm (350-1000 nm), ≤9.5 nm (1000-1800 nm), and ≤ 6.5 

149 nm (1800-2500 nm), outfitted with an LC-RP Pro leaf clip that includes a calibrated internal light 

150 source. Reflectance spectra were collected at the same location on the adaxial side of each leaf 

151 from which A-Ci and steady state gas exchange were performed, with integration times set to 2 

152 seconds, and reference spectra taken on a white Spectralon standard prior to each measurement.

153 Once physiological and reflectance data were acquired, we collected and transported 

154 individual leaves to the University of Toronto Scarborough for quantification of LMA and leaf N 

155 concentrations. First, we removed all petioles, and the fresh area of all leaves was quantified 
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156 using an LI-3100C leaf area meter (Licor Bioscience, Lincoln, Nebraska, USA), and then dried 

157 for 48 hours to constant mass. Dried leaves were then weighed and LMA was calculated as mass/ 

158 area. Finally, dried leaves were ground to a fine and homogeneous powder using a MM400 

159 Retsch ball mill (Retsch Ltd., Hann, Germany), and a LECO CN 628 elemental analyzer (LECO 

160 Instruments, Ontario, Canada) was used to determine leaf N concentrations on ~0.1 grams of 

161 powdered tissue.

162

163 Data analysis

164 R Statistical Software v. 4.2.0 (R Foundations for Statistical Computing, Vienna, Austria) 

165 was used for all data analysis. First, we fit the Farquhar, von Caemmerer and Berry (FvCB) 

166 model to each individual A-Ci curve, using the ‘fitaci’ function in the ‘plantecophys’ R package 

167 [54], in order to estimate rates of Vcmax and Jmax, along with their standard errors. In this 

168 procedure, these models were fit using non-linear least square regression [54], such that Vcmax 

169 and Jmax were corrected to 25 C, and Vcmax and Jmax are considered apparent as mesophyll 

170 conductance was assumed to be infinite. These data were merged with other traits, and the 

171 distribution of each individual trait was assessed using the ‘fitdist’ function in the ‘fitdistrplus’ R 

172 package [55]. Traits were determined to be either normally or log-normally distributed (as per 

173 the highest log-likelihood value) and transformed data was employed in further analyses in 

174 accordance with these results. We then performed an analysis of variance (ANOVA) to test for 

175 significant trait differences across varieties.

176 We then followed the methods described by Burnett et al. [36] to evaluate how 

177 reflectance spectra predicted trait values across our dataset, using a PLSR modelling approach. 

178 All PLSR models included reflectance spectral data from the 500-2400 nm wavelength range, 

179 and aimed to predict either non-transformed or log-transformed trait data, as informed by our 

180 distribution fitting procedure. For each PLSR model, the spectra-trait dataset was split into a 

181 calibration dataset (which included 80% of all data points) and a validation dataset (comprised of 

182 the remaining 20% of data). Since we were explicitly interested in testing the ability of 

183 reflectance spectra to quantity variation in leaf traits across grapes broadly, and the ability to 

184 differentiate varieties, we performed and analyzed two data splits. First, datasets were split into 

185 calibration vs. validation according to variety identity, such that both the validation and 

186 calibration datasets had approximately equal proportions of trait and spectra data from all 
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187 varieties. Second, we used a completely randomized data split, whereby the proportion of data 

188 across varieties was allowed to vary randomly.

189 Using the calibration datasets, we then used the ‘find_optimal_components’ function in 

190 the ‘spectratrait’ R package [56] to determine the optimal number of components used in the 

191 final PLSR model, based on the minimization of the prediction residual sum of squares (PRESS) 

192 statistic. For each trait, a PLSR model was fitted from the calibration dataset using the leave-one-

193 out cross-validation (LOO) procedure, specified with the ‘plsr’ function in the ‘pls’ R package 

194 [57]. Model performance was then assessed with the validation datasets as an external validation, 

195 in which the predicted values and the observed values in the validation dataset were compared. 

196 For the final models, we used the validation coefficient of determination (r2), root mean squared 

197 error of prediction (RMSE), and percent root mean squared error of prediction (%RMSE) as 

198 metrics to illustrate model fits.

199 To further evaluate the model performance, we used the model coefficients and variable 

200 influences on projection (VIP) values to explore the effect of different areas of the spectra on 

201 predicting the trait variable. Following this, we performed a jackknife permutation analysis to 

202 assess model uncertainty, using the jackknife argument of the ‘plsr’ function in the ‘pls’ R 

203 package [57]. The resulting jackknife coefficients were then compared to that of the full model. 

204 And finally, using the full model and jackknife permutation outputs, the mean, and 95% 

205 confidence and prediction intervals were calculated for each predicted trait value from the 

206 validation dataset.

207

208 Results

209 Reflectance spectroscopy for predicting within-variety leaf traits

210 Leaf traits measured here all varied significantly as a function of variety identity 

211 (p<0.001 in all cases). Specifically, across the entire dataset, physiological traits were most 

212 variable, with Amax ranging from 3.8-29.0 μmol CO2 m-2 s-1 (CV=34.8), Vcmax from 28.9-131.7 

213 μmol m-2 s-1 (CV=27.5), and Jmax from 60.3-253.1 μmol m-2 s-1 (CV=25.8). In comparison, LMA 

214 and leaf N also varied significantly across varieties, though these traits were less variable with 

215 LMA ranging from 52.8-101.8 g m-2 (CV=12.8) and leaf N from 2.04-4.39% (CV=13.7). All 

216 reflectance spectra presented generally the same shape, with a few Cab. Franc individuals 
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217 situated closer to the lower range, Merlot and Pinot Noir closer to the upper range, and others in 

218 and around the 95% confidence interval (Figure 1).

219 When calibration vs. validation data were evenly split across varieties (i.e., 80% of each 

220 variety allocated to each dataset), reflectance spectra and PLSR models explained between 18-

221 64% of the variation in wine grape traits (Table 1, Figure 2). Specifically, physiological traits 

222 including Amax, Jmax, and Vcmax were predicted by 4-5 spectral components which cumulatively 

223 explained 18%, 44%, and 30% of the variation in these traits, respectively. In these cases, model 

224 %RMSE values ranged from 21.6% in Amax models, 24.1% in Vcmax models, and 18.9% in Jmax 

225 models. Comparatively, reflectance spectra and PLSR models expressed stronger predictive 

226 ability towards log-LMA and leaf N, with models (r2) explaining 64% (%RMSE=14.3) and 62% 

227 (%RMSE=15.2%) of the variation, respectively (Table 1, Figure 2).

228 The predictive power of PLSR models was sensitive to the configuration of calibration 

229 and validation datasets, though general trends were nuanced. When calibration and validation 

230 datasets were comprised of varieties in random proportions, physiological traits were better 

231 predicted than in datasets where variety proportions were equal. Specifically, in randomized data 

232 splits, Amax model r2=0.29, Vcmax r2=0.58, and Jmax r2=0.55, all of which were higher vs. the same 

233 models in variety-weighted data splits. Alternatively, PLSR models for log-LMA and leaf N had 

234 lower predictive power when calibration and validation datasets were randomly created, with r2 

235 values of 0.53 and 0.5, respectively (Table 1, Figure 2). In all cases, the number of spectral 

236 components retained in the final PLSR models also differed depending on the nature of 

237 calibration and validation dataset construction.

238 The impact of the data splitting method is also observed in the model regression 

239 coefficient trends, which reflect the contribution of certain wavelengths to trait prediction. For 

240 physiological traits, the shapes of regression coefficient trends are similar within the same 

241 splitting method, but distinctly different between splitting methods (Figure 3). Here we ignore 

242 the random split model of Amax from this comparison, due to its limited number of model 

243 components. On the other hand, splitting data randomly or proportionally across varieties did not 

244 influence the regression coefficient distributions of log-LMA or leaf N (Figure 3). VIP scores of 

245 the models suggest similar wavelength regions of importance for model prediction across 

246 different traits, regardless of data splitting methods (Figure 4).

247
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248 Discussion

249 Our findings contribute to the growing literature that reflectance spectroscopy is well-

250 equipped to detect trait variation within and among plant species [27, 33, 35, 38, 40, 41, 45]. A 

251 considerable proportion of earlier work in this area focused on quantifying the interspecific trait 

252 variation that exists among plants of different functional types, that differ widely their 

253 evolutionary histories and trait diversity [e.g., 33, 35]. To this end, previous studies have 

254 indicated that reflectance spectroscopy is better equipped to explain trait variation, in situations 

255 where trait values within calibration and validation datasets vary more widely [38]. This 

256 tendency positions these techniques for rapid trait estimation in natural ecosystems [32], with 

257 many such studies reporting a high predictive ability of PLSR models in quantifying interspecific 

258 trait variation. Though a recent renewed focus on the importance of intraspecific trait variation in 

259 driving ecosystem functioning [20, 21], along with applications of these techniques in certain 

260 fields including agroecology, necessitates quantifying and disentangling the drivers of finer-scale 

261 trait variation that generally exists within species [24].

262 In this regard, our results show the strong predictive power of PLSR models to capture 

263 between 50-64% of the within-species trait variation in wine grapes, for key LES and related 

264 traits including Vcmax, Jmax, log-LMA, and leaf N (Table 1, Figure 2). Previous studies that 

265 examined within-species trait variation using PLSR approaches have yielded broadly similar 

266 results. For example, Meacham-Hensold et al. [46] reported PLSR models that explained 60%, 

267 59%, and 83% of the variation in Vcmax, Jmax, and leaf N, respectively, across six tobacco 

268 (Nicotiana tabacum) genotypes, though when three additional genotypes and larger sample sizes 

269 were included in analyses, these PLSR model r2 values increased to 0.61 for Vcmax, and 0.62 for 

270 Jmax in the validation dataset. Similarly, Fu et al. [47] modelled photosynthetic traits of six 

271 tobacco genotypes using PLSR methods, and reported similar r2 values (0.60 and 0.56) for Vcmax 

272 and Jmax, respectively.

273 Other single-species studies that applied reflectance spectroscopy and PLSR models to 

274 predict leaf traits across experimental treatments or environmental gradients have also presented 

275 similar results. For example, Yendrek et al. [43] found reflectance spectra were strong predictors 

276 of leaf N (r2= 0.92-0.96) and Vcmax (r2=0.56-0.65) of maize (Zea mays) genotypes grown across 

277 gradients of ozone and soil N availability. Finally, in an analysis that screened over 200 

278 genotypes of wheat (Triticum aestivum, T. turgidum, and triticale germplasm) from six sets of 
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279 experiments, Silva-Perez et al. [42] included detected high predictive power of PLSR models, 

280 with r2 values ranging from 0.70-0.89 for leaf N, LMA, Vcmax, and Jmax. Though in this same 

281 experiment, consistent with our results CO2 assimilation rates were relatively poorly captured by 

282 PLSR models: in our analysis, the r2 for models for Amax were 0.18-0.29, vs. r2 values of 0.49 in 

283 Silva-Perez et al. [42].

284 In addition to model diagnostics alone, in our analysis, PLSR models generally support 

285 the same inferences surrounding the comparative trait biology of wine grape varieties (relative to 

286 observed trait data). Specifically, our previous analysis of LES trait variation—with trait data 

287 observed in the field using traditional gas exchange and analytical chemistry techniques—found 

288 that white grape varieties Sauvignon Blanc and Viognier occupy the “resource-acquiring” end of 

289 an intraspecific LES in wine grapes (characterized by high rates of Amax, Vcmax, Jmax, leaf N, and 

290 low LMA), while red varieties (Cabernet Franc, Cabernet Sauvignon, Merlot) define the 

291 “resource-conserving” end of the wine grape LES (characterized by low Amax, Vcmax, Jmax, leaf N, 

292 and high LMA). Our PLSR models support this same general trend (Figure 1), with white 

293 varieties expressing predictions that indicate resource-acquiring trait values.

294 Our analysis contributes evidence that reflectance spectroscopy and PLSR modelling 

295 approaches, can be used to 1) directly predict intraspecific trait variation with a relatively high 

296 degree of accuracy, and 2) differentiate intraspecific variation in life-history strategies in plants. 

297 Though our analysis here is based on a small subset of the 1,000s of wine grape varieties that 

298 exist globally [58]. Therefore, expanding this work to include a greater number of wine grape 

299 genotypes and trait values [cf. 41, 42], presents a viable opportunity to more rapidly screen trait 

300 expression in one of the world’s most economically important crops.

301
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462 Tables and Figures

463

464 Table 1. Partial least squares regression model fits evaluating the ability of reflectance spectra to 

465 explain variation in leaf traits measured on six wine grape varieties. Presented here are results 

466 from two different modelling approaches which divide our total sample into calibration (80% of 

467 our data) vs. validation (20% of our data) datasets. In the results associated with the “Variety” 

468 approach, calibration and validation data both included approximately the same proportions of 

469 observations from all varieties, while the “Random” approach made this division randomly. 

470 Here, nobs refers to the total observations in our dataset for a given trait, which entails a 

471 correspond sample size in the validation dataset (nval). For each model we present the number of 

472 components derived from reflectance spectra that were included in the final predictive model 

473 (ncomp), along with the root mean square error (RSME), r2 value, and %RMSE for the final 

474 predictive model. All models were based on Trait acronyms are as follows: light saturated 

475 photosynthetic rate (Amax), maximum velocity of Ribulose 1,5-bisphosphate (RuBP) 

476 carboxylation (Vcmax), maximum rate of electron transport (Jmax), leaf mass per area (LMA), leaf 

477 nitrogen (N) concentration.

478
Data split Trait nobs nval ncomp RMSE r2 %RMSE

Variety Amax 178 36 4 3.9 0.18 21.63

Vcmax 177 36 5 14.62 0.3 24.1

Jmax 177 36 4 24.22 0.44 18.88

log-LMA 178 36 10 0.08 0.64 14.27

Leaf N 176 36 9 0.25 0.62 15.16

Random Amax 178 36 1 4.42 0.29 19.25

Vcmax 177 36 9 14.47 0.58 15.6

Jmax 177 36 8 28.35 0.55 15.6

log-LMA 178 36 13 0.08 0.53 16.44

Leaf N 176 36 11 0.33 0.5 15.92

479
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480
481 Figure 1. Reflectance spectra of 179 wine grape leaves plotted A) individually with six wine 

482 grape varieties specified, and B) all together with mean, range, and 95% confidence interval 

483 estimates. All spectral data were trimmed to the 500-2400 nm range where the PLSR models 

484 were built from. The grey shaded areas indicate different spectral regions: Visible Spectrum 

485 (VIS), Near Infrared (NIR), Short Wave Infrared 1 (SWIR1), and Short Wave Infrared 2 

486 (SWIR2).
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488 Figure 2. Results of partial least squares regression (PLSR) models predicting leaf physiological, 

489 chemical, and morphological traits in six wine grape varieties. Shown here are the data points 

490 used to validate the models (n=36 in all cases) fitted to a set of calibration data points (n=176-

491 178; see Table 1). Calibration and validation datasets were selected on the basis of a fully 

492 randomized data split (left panels), and a data split where all six varieties were equally 

493 represented in the calibration datasets (right panels). Dashed black lines represent linear model 

494 fits between observed vs. expected trait values, while the dotted gray lines represent a 1:1 

495 relationship.
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497 Figure 3. Jackknife regression coefficients of the PLSR models of Amax, Vcmax, Jmax, log-LMA, 

498 and leaf N, based on the calibration data. The dashed horizontal line in each panel indicates 

499 where the coefficient is zero. The black curve represents the mean, the grey area represents the 

500 range, and the green area represents the 95% confidence interval.
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504 Figure 4. Variable influences on projection (VIP) scores of the final PLSR models of Amax, 

505 Vcmax, Jmax, log-LMA, and leaf N. The dashed horizontal line in each panel indicates where the 

506 VIP score is 0.8. The Amax model using random data split method had one component and 

507 therefore did not generate valid VIP scores.
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