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Wildlife observation with camera traps has great potential for ethology and ecology, as it gathers data non-
invasively in an automated way. However, camera traps produce large amounts of uncurated data, which
is time-consuming to annotate. Existing methods to label these data automatically commonly use a fixed
pre-defined set of distinctive classes and require many labeled examples per class to be trained. Moreover,
the attributes of interest are sometimes rare and difficult to find in large data collections. Large pretrained
vision-language models, such as Contrastive Language Image Pretraining (CLIP), offer great promises to
facilitate the annotation process of camera-trap data. Images can be described with greater detail, the set of
classes is not fixed and can be extensible on demand and pretrained models can help to retrieve rare samples.
In this work, we explore the potential of CLIP to retrieve images according to environmental and ecological
attributes. We create WildCLIP by fine-tuning CLIP on wildlife camera-trap images and to further increase
its flexibility, we add an adapter module to better expand to novel attributes in a few-shot manner. We
quantify WildCLIP’s performance and show that it can retrieve novel attributes in the Snapshot Serengeti
dataset. Our findings outline new opportunities to facilitate annotation processes with complex and multi-
attribute captions. The code will be made available at https://github.com/amathislab/wildclip.
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Introduction
Camera traps have become essential to monitor biodiversity (1–3) and are increasingly used for behavior research (4, 5).
Camera traps are minimally invasive, also operate at night, and observe wildlife in their natural habitat. Despite these
advantages, camera traps produce millions of images and remain labor-intensive to use in practice (5, 6). Traditionally,
camera trap datasets are analyzed by inspecting and annotating every image according to a predefined set of attributes
motivated by the scientific question of interest (Figure 1a). Depending on the study, these attributes may be the species,
identities of individual animals, behaviors, or more complex phenotypical attributes. Dedicated annotation platforms are
available to ease the process, but the main bottleneck remains the large quantity of data to annotate. The task gets
increasingly laborious with many false triggers of the camera (due to e.g., vegetation movement), redundant events (e.g.,
a large herd of animals passing by), captures of small or occluded animals, or bad quality images (e.g., wet lens).

To facilitate analysis, machine learning techniques can automatically filter out false positives and classify species and their
behaviors (5, 7, 8). However, these classic machine learning approaches are typically trained with a predefined set of
attributes (closed-set). In this work, we present a language-guided annotation pipeline that can catalyze the annotation
process of an unlabeled camera trap dataset and extend machine learning analysis to potentially open sets of attributes
(Figure 1b). Indeed, language naturally helps to describe events in a fine-grained fashion and facilitates the interaction
between the ecologists and the model. Large Vision Language Models (VLMs) such as Contrastive Language Image
Pretraining (CLIP) are particularly well suited for this task (9). Since these models were pretrained on millions of image-
caption pairs, they perform remarkably well on zero-shot open-vocabulary retrieval and classification tasks (9). Yet,
CLIP does not generalize well to domains substantially different from typical internet images, such as for camera trap
imagery (10) or medical images (11). Consequently, several methods have been proposed to fine-tune CLIP to these
specific domains (10, 12). These methods commonly fine-tune CLIP with captions that follow a fixed template and use
a small vocabulary size, which inevitably degrades performance for unseen open-vocabulary captions, a phenomenon
described as catastrophic forgetting (13). Ideally, the image-caption pairs used during fine-tuning should be large and
diverse enough to compensate for this issue. Unfortunately, due to the temporal burden in annotating datasets, camera-
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Figure 1. Comparison between a manual and a language-guided annotation workflow of an unlabeled camera trap
dataset. a) In the manual workflow, an expert annotates sequentially every image manually. b) In the language-guided
annotation workflow, an expert enters a prompt manually, which is compared to all the images in the dataset through a
similarity score using a pretrained VLM. The results of such comparisons between the prompt and the images are sorted
by similarity and sent to the expert to review. The expert can also iteratively refine the prompt to improve results.

trap images are rarely labeled beyond species-level annotations (14–18) and the set of possible labels to construct image
captions from remains constrained to a small vocabulary. One notable exception is the Snapshot Serengeti dataset that
benefited from a citizen science initiative that provided more detailed information for each image (19).

In this work, we present an adaptive framework for CLIP to the domain of camera trap images (WildCLIP) that we evaluate
on Snapshot Serengeti (19). To mitigate the problem of catastrophic forgetting, we follow a recently proposed vocabulary-
replay method (20). Based on automated literature search, we create a replay vocabulary relevant to the domain of interest
and use it to preserve the structure of the embedding space during training. We also build upon CLIP-Adapter (12) to
dynamically add new vocabulary to the model with few labeled samples. The open-vocabulary performance of the method
is quantitatively evaluated on held-out words and caption templates. We also provide qualitative results for open-set
queries inspired by what an ecologist might use. We also explore how our training strategy allows the model to dissociate
between the species and their context. Specifically, our contributions are the following:

• We create WildCLIP by fine-tuning CLIP to retrieve images corresponding to diverse attributes and environmental
conditions from camera-trap datasets and benchmark it on Snapshot Serengeti.

• Through a series of quantitative and qualitative examples, we analyse the behavior of WildCLIP in details, also
focusing on zero- and few-shot abilities on open vocabulary.

We hope that our work motivates the creation of richly annotated camera trap datasets, to collectively create powerful
VLMs for camera trap data.

Background and related works
Machine learning applications for camera trap imagery
Applications of machine learning to camera trap data mainly focused on animal tracking (21, 22) and species recogni-
tion (23, 24). During the last decade, the development of convolutional neural networks (CNNs) largely improved the
performance of vision models for animal detection (7, 22, 25, 26), species classification (17, 27–30), behavior recogni-
tion (8, 31) or animal counting (8, 32). In 2018, Norouzzadeh et al. (8) showed an innovative pipeline to classify species,
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count animals and assess age, behavior, and interactions with other individuals from the Snapshot Serengeti consensus
data, still making it one of the most diverse multilabel classification method for camera traps to date.

However, other tasks such as assessing animal body conditions, have received less methodological focus from the deep
learning community, despite the interest from ecologists (33–35). This absence of research is partly attributable to the
lack of publicly available annotations beyond taxonomies. This is related to the difficulty in crowd-sourcing such attributes,
as they can be subjective, undergo subtle variations and may require substantial expertise. In these cases, active learning
is a way to compensate for the lack of labels (36–39). However, this approach requires a few annotated samples to initiate
the process, which may be difficult to find for rare events. Few-shot learning and self-supervised learning also promise to
improve the data efficiency (40). A more recent way to learn in low-label regimes is to use VLMs pretrained on millions of
image-text pairs.

Large scale multi-modal language models
With the advent of transformers (41), large language models (LLMs) emerged that demonstrated remarkable capabilities
for natural language processing tasks incl. ChatGPT (42–45). LLMs can also be used to exploit pre-trained AI models to
carry out various tasks (46, 47) including behavioral analysis (48). Concurrently, multi-modal variants were also created,
in particular large scale visual-language models, which have tremendously improved the performance and robustness for
zero-shot object recognition, image search and many other tasks (9, 11, 49–51). One of the earliest models in this domain
was CLIP (9), which can be tuned to related domains of interest with CLIP-Adapter (12). Here, a Multi Layer Perceptron
(MLP) modulates the vision feature vectors and is added at the end of the vision backbone and weighted by a parameter
α. The method is then trained with a cross-entropy loss. Similarly, Pantazis et al. (10) proposed the Self-supervised
Vision-Language Adapter (SVL-Adapter) and demonstrated that fine-tuning is needed to adapt CLIP to the domain of
camera traps and presented a method with improved performance over CLIP-Adapter for few-shot species classification
on challenging camera trap datasets. Their method blends the class probabilities of CLIP with the output of an additional
vision backbone trained with self-supervised learning. This has the disadvantage of limiting the method to a fixed set of
queries during training and at inference, here corresponding to the set of species.

As mentioned in the Introduction, fine-tuning CLIP with a small vocabulary size will inevitably limit its use for open vocab-
ulary queries. To mitigate this issue, Ding et al. proposed a vocabulary replay method abbreviated as VR-LwF to prevent
the model from forgetting concepts related to a task of interest (20). The method stems from the “Learning without For-
getting" (LwF) approach to catastrophic forgetting (52), and exploits the alignment between text and image modalities of
CLIP to circumvent the need for annotated image-caption pairs. Specifically, a loss term is added during training that
minimizes the distribution shift of the cosine similarities between training image embeddings and the text embeddings of
an arbitrary set of words referred to as “Vocabulary Replay" (VR).

Background on CLIP
Contrastive Language-Image Pretraining (CLIP) is a VLM for open-vocabulary classification tasks (9). It consists of a
visual encoder (VE) and text encoder (TE). The similarity metric for image xi and caption yj is computed as:

sim(VE(xi),TE(yj)) = VE(xi)T · TE(yj)
∥VE(xi)∥∥TE(yj)∥ (1)

CLIP was trained to learn a joint embedding space for image and text representations using a contrastive loss on millions
of image-caption pairs (9). During training, each batch of size N2 is composed of N positive image-caption pairs, and the
remaining N × (N −1) are considered negative pairs. The loss aims at maximizing the similarity of the positive pairs and
minimizing it for negative pairs:

LCLIP (X,Y) = − 1
2N

N∑
i=1

[logp(xi | Y)+ logp(yi | X)] (2)

Here, the likelihoods following Equations (3 and 4), where τ is the temperature parameter:

p(xi | Y) = exp(sim(VE(xi),TE(yi))/τ)∑N
j=1 exp(sim(VE(xi),TE(yj))/τ)

(3)

p(yi | X) = exp(sim(VE(xi),TE(yi))/τ)∑N
j=1 exp(sim(VE(xj),TE(yi))/τ)

(4)

At inference time, CLIP is used to compute the cosine similarity between queries and images. If queries correspond to
mutually exclusive classes (e.g., “A camera trap picture of a <class_name>”), a softmax operation is commonly applied
to return respective class probabilities.
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Figure 2. WildCLIP and WildCLIP-Adapter. We fine-tune CLIP to the domain of camera-trap datasets by fine-tuning its
visual encoder with augmented image-caption pairs (a). We further adapt the model with an MLP adapter on a novel set
of words to demonstrate the advantage of using VLMs (b). Finally, we evaluate how these two models can be used for
image retrieval on a set of novel images (c).

Methods: WildCLIP and WildCLIP-Adapter
Our method consists of two steps: first, we fine-tune the vision encoder of CLIP on a large dataset of camera trap images
and their associated captions (Figure 2a). Second, we freeze the vision encoder and train a Multi-Layer Perceptron (the
“Adapter (12)) with a few samples of sequence-caption pairs to learn words from a novel vocabulary (Figure 2b). In other
words, the first step fine-tunes CLIP to a WildCLIP model with a more fine-grained representation of camera-trap imagery
using a closed-set domain of common queries from a base vocabulary (Figure 2a). The second step adapts WildCLIP
towards an open set of queries that a trained domain expert can provide interactively. To further preserve open-vocabulary
capabilities of CLIP, we add an extra loss term (20) that replays vocabulary related to the domain of interest (Figure 2b).
Eventually, our method allows its users to dynamically query and explore camera trap imagery (Figure 2c).

Fine-tuning (WildCLIP)

We use CLIP’s original contrastive loss (Equation 2) to fine-tune the CLIP-pretrained visual backbone (9). The text
encoder is kept frozen to avoid forgetting the open-vocabulary knowledge of CLIP. We create multiple captions for every
image using multiple caption templates and the available image labels. Specifically, we generate all possible combinations
of labels describing an image, and apply them to ten different caption templates (see Figure 4 for examples). This process
significantly depends on the available labels and is further discussed in the “Experimental set-up” below. We use up to
seven caption templates for training, and leave the remaining ones for evaluation. We hypothesize that training on multiple
templates will make the model robust to different formulations of queries. On the other hand, a model trained with only
one template may overfit (on this one).

The set of augmented image-caption pairs becomes inevitably unbalanced if some labels describe multiple images, which
adds to the natural imbalance of camera trap datasets. We balance the dataset of image-caption pairs with a mix of
upsampling and downsampling so that rare captions appear as often as common ones. We use data augmentation on
the colors and the geometry of the image to increase visual diversity, which has been shown to improve generalization.
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Few-shot adaptation (WildCLIP-Adapter)
In this step, we expand the WildCLIP vocabulary to new words, following a similar approach as Gao et al. (12). We add
a two-layer perceptron with a residual connection, weighted by a fixed parameter α, at the end of the pretrained visual
encoder of WildCLIP. This perceptron adapts the image representation vectors to the new vocabulary so that they better
align to the frozen text vectors of WildCLIP, while still keeping information from the base vocabulary. Differently from (12),
we input image-text pairs to the model, and we use a custom loss that maximizes the cosine similarity between the positive
pairs only (i.e., the diagonal elements of the text-image features alignment matrix). This is motivated by the observations
that captions can have multiple matching images and vice versa, yielding several false negative pairs in every batch, which
is a problem for few-shot learning. As we expect performance to be sensitive to the choice of the few-shot samples used
for adaptation, we repeat the experiment 5 times with different image samples from the novel vocabulary set and report
the mean in the results. We refer to our modified version of CLIP-Adapter as CLIP-Adapter∗.

Addressing catastrophic forgetting (VR-LwF)

Anchor embeddings Image-Caption pair embeddings

CLIP

CLIP ecology

WildCLIP 

CLIP

CLIP ecology

WildCLIP 

TE(a1)

TE(a2)

TE(a3)

Lclip

VEnew(x)

y

VEold(x)

a) Vocabularies in latent space b) Anchoring embeddings during training

Figure 3. Embedding space when applying VR-LwF to WildCLIP for a given image-caption pair. a) CLIP embedding
space contains many different concepts unrelated to our task. We aim at using vocabulary replay to learn embeddings
in the domain of interest (CLIPecology) while only having captions embeddings in the WildCLIP embedding space. b)
For a given image-caption pair x − y, we compute the cosine similarities of the previous VEold(x) and new VEnew(x)
image embeddings with respect to all replayed vocabulary embeddings TE(aj). We also compute the usual cosine
similarity LCLIP (x,y) (Equation 2) between the new image embedding and the matching caption text embedding. By
minimizing the cross-entropy between cosine similarity distributions, we expect the VR-LwF method to preserve some
open-vocabulary capabilities of CLIP. This loss term is counter-balanced by LCLIP , which aims to minimize the cosine
similarity between positive image-caption embeddings.

As discussed in Related Works, fine-tuning CLIP on a fixed vocabulary may reduce its open-vocabulary abilities. When
fine-tuning CLIP with the vocabulary of WildCLIP, we can view the embedding space as shrinking towards the volume
containing training caption embeddings only (Figure 3a). Even though we do not fine-tune the CLIP text encoder (TE),
the vision encoder (VE) will only learn to match images with a small set of captions. This shrinking is responsible for
the catastrophic forgetting. On the contrary, we aim at expanding the latent space learned by WildCLIP also to contain
vocabulary relevant to the task of interest, here ecology, denoted as CLIPecology, while still forgetting totally irrelevant
concepts. To achieve this, we follow the VR-LwF method of (20). Specifically, we replay relevant vocabulary through the
TE, that we refer to as text “anchors", since the text encoder is kept frozen. Since the pool of anchors A is noisy, some fall
outside of CLIPecology, while others are already contained within WildCLIP’s vocabulary. We then ensure that the distance
between the images and the anchors does not drift too much in the latent space during training (Figure 3b).

In practice, for each image xi of a given batch of N positive image-caption pairs, we compute the distribution of cosine

Gabeff et al. | WildCLIP 5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.572990doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.572990
http://creativecommons.org/licenses/by/4.0/


similarities of xi embeddings with respect to the pool of anchors A of size NA when xi is passed through the previous
vision encoder (VEold) and the one being trained (VEnew), denoted as pold

i and pnew
i , respectively (Figure 3b, dotted

lines). We then compute the LV R
LwF loss as the cross-entropy between both distributions and minimize its sum over all

images:

LV R
LwF = −

N∑
i=1

(pnew
i )T · log(pold

i ) (5)

with probabilities:

pold
i =

exp
(

sim
(

VEold(xi),TE(A)
)

/τ
)

∑NA
j=1 exp(sim

(
VEold(xi),TE(aj)

)
/τ)

(6)

pnew
i = exp(sim(VEnew(xi),TE(A))/τ)∑NA

j=1 exp(sim(VEnew(xi),TE(aj))/τ)
(7)

The final training loss is the sum of LCLIP (Equation 2) and LV R
LwF (Eq. 5).

Experimental set-up

"[...] of an adult animal."
"[...] of a hartebeest."
"[...] of an animal moving."
"[...] in the grassland."
"[...] at daytime."

Combinations (N=26)

"[...] of a hartebeest moving."
...
"[...] of an adult hartebeest 
moving in the grassland at daytime."

Single label captions (N=5)

Template 1

All captions: N = 297 

...

Remove duplicates: N = 13

"A camera-trap picture of a [age] [spe] 
[beh] [env] [tod]."

"The adult animal."
"The hartebeest."
"The animal is moving."
"The animal is in the grassland."
"The animal is at daytime."

Combinations (N=26)

"The hartebeest is moving."
...
"The adult hartebeest is moving 
in the grassland at daytime."

Single label captions (N=5)

Template 10
"The [age] [spe] is [beh] [env] [tod]."

Figure 4. Building image captions. 297 structured captions following 10 different templates describe each image.

Data
The Snapshot Serengeti camera-trap dataset (19) was collected over eleven seasons since 2010 and contains more than
seven million images from the Serengeti national park, Tanzania. The dataset benefited from large-scale annotations from
a citizen science initiative.

Species labels. We use MegaDetector (7) outputs from seasons 1-6 provided on LILA BC. We restrict our study to
sequences containing single individuals only since consensus multilabels are provided at the sequence level without
distinctions between individuals.

Behavior labels. Behavior labels are reported as the proportion of users who voted for a given behavior. We set the
behavior visible in an image as the behavior with the most votes. Since we consider single individuals only, the “Interacting”
behavior is removed. We set the age label to “Young” if more than 50% of the users voted for the category “Baby ”.

Scene labels. Because the Serengeti Park is relatively close to the equator, we label images taken between 6 a.m. and
7 p.m. as “daytime” and as “nighttime” otherwise, independently of the month. For the camera environment, we manually
annotated whether a camera field of view is pointing towards “grassland“ or “woodland”.

In the end, each sample image is described by five attributes: 1) the depicted species, 2) its age, 3) its behavior, 4) a
binary day/nighttime label, and 5) the environment surrounding the camera (“grassland” or “woodland”). Further details
on image pre-processing are detailed in the Appendix.
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Single animals 
Snapshot Serengeti Train set: 178 cameras Test set: 45 cameras

10 captions x 8 sequences

~190 image-caption pairs

Base 
vocabulary
(45 words)

Novel 
vocabulary
(10 words)

230k images

2.5M image-caption pairs

86k images

45 base test queries
               +
10 novel test queries

WildCLIP

WildCLIP-Adapter

Evaluate

Figure 5. Data split for quantitative evaluation. WildCLIP is trained on base vocabulary (top left) and adapted further
to WildCLIP-Adapter with novel vocabulary captions (bottom left). Test data is split on a camera level, and both models
are evaluated on base and novel vocabulary separately on images of 45 new camera traps (right). The number of training
image-caption pairs and of test queries is computed according to template 1 only.

Building image captions and test queries
From the five attributes describing each image, we automatically build structured captions following ten different templates
(Figure 4, see Appendix). Given a set of attributes, corresponding captions built from different templates all express the
same information but with a different formulation (e.g., ordering of the attributes in the sentence or contextual words.)
We create every possible and unique combination of captions with respect to the attributes and the different templates,
yielding 297 captions per image.

Replay Vocabulary
We build an external set of words relevant to the Serengeti wildlife to preserve the representation of concepts not asso-
ciated to an image during fine-tuning. To do so, we automatically parse the title of ecology papers related to Serengeti
wildlife and extract keywords. Following (20), we build 100 5-grams composed of these keywords by randomly sampling
them without replacement. These 5-grams constitute the pool of anchors A introduced in Methods. More information on
the creation of the replayed vocabulary and examples of 5-grams can be found in the Appendix.

We note that the retrieved vocabulary extends beyond the domain of interest, with vocabulary including politics and
virology (Appendix). Although unrelated words and random sentences may seem inefficient, we assume that VR-LwF is
robust to the chosen anchors (see Results). Since this method prevents the model from overfitting to the vocabulary, it is
fine-tuned on by constraining the drift of the vector embeddings in the latent space, we hypothesize that the choice of the
words matters less than their embeddings evenly spanning a volume of the latent space that relates to the task of interest
(See Figure 3a, CLIPecology).

Data split
We divided images into training and testing partitions, as well as the split of the captions into two sets of vocabularies
(Figure 5). Training and testing images are split at the camera level following recommendations from LILA (53). WildCLIP
is trained with samples from the base vocabulary. This set contains images of species like “Thomson’s gazelle”, “topi”, or
“ostrich” in different scene and behavior settings like “daytime”/“nighttime“, “eating”/“moving“. WildCLIP-Adapter is then
further trained with up to 8 sequences of 1 to 3 images for each caption from the novel vocabulary. Crucially, the novel
vocabulary contains different species like “Grant’s gazelle”, “leopard”, behaviors like “standing” and “resting“, and the two
different habitats “woodland“ and “grassland”. To preserve independence, we ensure image-caption pairs containing the
novel words are never seen during the training of WildCLIP.

We also split the test queries into “in-domain" templates and “out-of-domain" ones. WildCLIP is trained on either only on
template 1 (t1), or on templates 1 to 7 (t1−7), and its performance is evaluated on either “in-domain" template 1, or on
“out-of-domain" templates 8 to 10 (t8−10).

Evaluation metrics
We evaluate WildCLIP as a retrieval task, meaning that for a given test query, the true corresponding images should rank
higher in cosine similarity with the test query than non-matching images. The set of test queries for the retrieval task
is defined as the set of structured captions containing single attributes, yielding a direct equivalence between individual
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multilabels and test queries, for which performance can be measured. Note that WildCLIP is not limited to these single
attribute captions, as it can retrieve images at every level of complexity (which is the method’s main advantage); never-
theless, here, we limit our test captions to single attributes to allow direct comparisons to finetuned models. We compute
the mean average precision (mAP) from the alignment scores per test query and then average over all test queries.

Ablation study
We control the performance of the different additions to our method with an ablation study, considering CLIP ViT/B-16
performance as our baseline.

To evaluate the effect of adding language when learning the representation of camera trap images, we first compare
WildCLIP with the pretrained visual backbone of CLIP, to which an MLP head has been added with binary output neurons
corresponding to each possible test query from the base set (ViT-B-16-base). We also report the performance of this
model on the novel vocabulary (ViT-B-16-novel) by replacing the output layer of the pre-trained model with an output layer
with 10 output units (fixed size of the novel vocabulary in this setup) and adapting it with the same few-shot scenario as
for WildCLIP-Adapter∗ and CLIP-Adapter∗, but using a binary cross-entropy loss.

To further motivate our approach over existing ones, we train CLIP-Adapter∗ (see Methods), where only the additional
MLP head is trained, and the backbone of CLIP is kept frozen. Since training a vision transformer is computationally
expensive, we evaluate the choice of the visual backbone by comparing performance between a ResNet50 backbone with
the default ViT/B-16 one.

To assess the generalization to out-of-domain template structures (templates 8 to 10, see Methods) for the test queries,
we compare the performance of WildCLIP when trained on a single (template 1) or on seven templates (templates 1 to 7).
Finally, we assess the effect of the VR-LwF loss during fine-tuning and during adaptation.

Results
We start by showing qualitative results of WildCLIP, contrasting it with CLIP. Then we will evaluate the performance and
carry out an ablation analysis.

Qualitative results for complex queries
We illustrate how WildCLIP improves on CLIP when retrieving images using complex queries which have been seen during
training (Figure 6). Looking at the retrieval results one can note that CLIP already performs well for queries containing
only the species name (e.g., “a giraffe"), but sometimes fails when additionally prompted with behavioral information (e.g.,
“a giraffe eating"). On the contrary, WildCLIP generally performs well for these complex queries. For the novel query
“A camera-trap picture of a male lion resting at daytime.", WildCLIP-LwF-adapter-LwF best retrieves the corresponding
events, where “resting" is a word from the novel vocabulary. Despite the VR-LwF loss, this still comes with a decreased
retrieval performance on queries from the base vocabulary such as “A camera-trap picture of a giraffe." More qualitative
examples can be found in Appendix Figure 10.
Having different captions describing a single image may seem misleading for the model. However, we hypothesize that
it helps the model disentangle the multiple attributes of this image. Indeed, for WildCLIP, the top-3 captions most similar
to the waterbuck images are a combination of species, behavioral, and environmental information (Figure 7). In contrast,
CLIP only retrieves species information. This suggests that CLIP mainly learned to associate captions describing an
object from an image, disregarding contextual information. We explored this disentanglement further. We progressively
modify the input query by modulating contextual or behavioral information. We observe coherent changes while the
species retrieved remains unchanged (Figure 8). This qualitatively suggests that our method successfully retrieves events
with a detailed level of contextualization. We see that the model reaches its limit for the grassland environment, which is
part of the novel vocabulary on which WildCLIP-LwF was not fine-tuned. Even though the animals are in the grassland,
they are not all topis, and two are not eating.

Open-vocabulary qualitative results
Qualitative results illustrate the potential of WildCLIP to retrieve events of interest from open-vocabulary queries (Figure 9).
Here we compare the original CLIP retrieval performance with WildCLIP pretrained on seven templates and the same
model further trained on 2 to 8 shots of the proposed captions (only two samples of hyena with a carcass were observed
in the subset of the train set, see Methods). We observe a clear qualitative improvement from CLIP to WildCLIP for
the prompt: “A hyena carrying a carcass.", with 4 retrieved events within the top-5, and 4 for WildCLIP-Adapter-LwF as
opposed to one visible carcass for CLIP. WildCLIP also performs better on the attribute “dry grass". However, the original
CLIP qualitatively outperforms the trained model for the running behavior and the animal’s position on the camera. These
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Figure 6. Qualitative results on complex queries. Top-5 test images most aligned with the given complex queries.
“Resting" is a word from the novel vocabulary.

Figure 7. Top-3 test queries most aligned with the image for WildCLIP along with alignment similarities

results suggest that when CLIP already retrieves corresponding events for unseen open-vocabulary queries, WildCLIP
do not improve much or may even reduce performance. On the other hand, we see improvements in cases where CLIP
fails. This further motivates us to improve the proposed methods to preserve the original embedding space (VR-LwF (20))
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Figure 8. Top-5 most similar images for WildCLIP-LwF to complex queries by progressively adding or modifying some
attributes from the base and the novel vocabularies (bold).

and to retain some of the original CLIP embeddings (CLIP-Adapter (12)). We also provide more zero-shot qualitative
examples for CLIP, WildCLIP and WildCLIP-LwF in Appendix Figure 11.

After illustrating promising capabilities of WildCLIP as well as failure cases, we sought to rigorously evaluate its perfor-
mance.

Quantitative Comparison
Our full method, WildCLIP-LwF, significantly outperforms CLIP on the image retrieval tasks (Table 1), showing that the
model is better adapted to the domain of camera traps. Indeed, we see an improvement of +0.31 for WildCLIP-LwF over
CLIP for the base vocabulary. Importantly, fine-tuning also improves the performance on the novel vocabulary (+0.12),
although WildCLIP-LwF was not trained on these words. WildCLIP-LwF-Adapter∗-LwF does not improve on WildCLIP-
LwF for the novel vocabulary, but still improves on CLIP by +0.08.
We also compare WildCLIP to CLIP-Adapter. We see a significant advantage of fine-tuning the entire visual backbone
of CLIP (WildCLIP-LwF, Table 1) over learning a new MLP head only (CLIP-Adapter∗), when training them both on the
base vocabulary. WildCLIP-LwF-Adapter∗-LwF also performs better than CLIP-Adapter∗ on both the base and the novel
vocabularies after 8 shots (+0.29 vs. +0.02). This corroborates the results from Pantazis et al. (10) that CLIP should be
adapted for camera trap data. Furthermore, our method significantly outperforms CLIP-Adapter∗.

Finally, we also compare to vision-only models in the classic transfer learning setting. The performance of a vision-
only model pretrained from the CLIP visual backbone is slightly above the performance of WildCLIP-LwF on the base
vocabulary (0.68 vs. 0.60). This is most likely due to the different loss functions (contrastive loss and binary cross
entropy, respectively), where a vision-only model is not constrained to match the learnt image embeddings to frozen text
ones. However, the performance of WildCLIP-LwF-Adapter∗-LwF surpasses the one of the vision model (0.45 vs. 0.22).
Overall, this suggests that using a VLM for the retrieval task instead of a closed-set, vision-only model slightly decreases
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Figure 9. Qualitative results on open vocabulary queries. Top 5 most similar images to each given query. For each
query; first row : Original CLIP model; second row WildCLIP pretrained on templates 1 to 7; third row WildCLIP is further
trained following the WildCLIP-Adapter∗ methodology (see Methods) on 2 shots (top-left) and 8 shots (others) of these
queries.
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the performance, while providing all the advantages of dynamically interacting with the dataset through text, including
easy and accurate adaptation to new vocabularies, while the vision-only model cannot.

Ablation study
We carried out a number of ablations to justify our design decisions. Firstly, we will ablate different components of
WildCLIP-LwF.

Backbone: Firstly, for the original CLIP model, a vision-transformer backbone improves the ResNet50 backbone perfor-
mance by around +0.05 on both base and novel vocabularies (Table 2). This is consistent with results reported in Radford
et al. (9). A consistent result is also observed when training WildCLIP, although the performance boost is mainly visible
on the out-of-domain test query templates for both base and novel vocabularies.

Learning without forgetting: In the previous section, we saw that training WildCLIP-LwF on the base vocabulary also
improves its performance on the novel vocabulary (+0.12). We find that this effect is mainly due to the VR-LwF loss since
WildCLIP alone does not have such an increase on the novel vocabulary (+0.03, Table 2). In that sense, the VR-LwF
loss appears to be efficient at preserving the open-vocabulary capacities of CLIP, while limiting catastrophic forgetting.
However, this increase in performance on the novel vocabulary set is compensated by a small drop in performance on the
base vocabulary set. This is consistent with the idea that this loss term constrains the drift of the image embeddings by
anchoring the latent space. Adapter: We found that the boost by the MLP adapter during the adaptation step is relatively

Model Trained on Baset1 Novelt1

CLIP - 0.29 0.37
ViT-B-16-base Base 0.68(+0.39) -
ViT-B-16-novel Base → Novelt1 - 0.22(-0.15)

CLIP-Adapter∗ Novelt1 0.32(+0.03) 0.39(+0.02)
CLIP-Adapter∗ Baset1 0.31(+0.02) 0.37(+0.00)
CLIP-Adapter∗ Baset1 → Novelt1 0.33(+0.04) 0.40(+0.03)

WildCLIP-LwF Baset1-7 0.60(+0.31) 0.49(+0.12)
WildCLIP-LwF-Adapter∗-LwF Baset1-7 → Novelt1 0.58(+0.29) 0.45(+0.08)

Table 1. Mean average precision (mAP) and difference from CLIP on base and novel vocabularies of the test set.
The performances of models trained on the novel vocabulary are reported as the average of the five repetitions of the
8-shots training, but standard deviation is not repeated for readibility and was consistently below 0.01. Clip-Adapter∗ is
adapted from (12) as explained in the Methods. Arrows (→) denote adaptation. Dataset subscripts denote used captions
and queries templates as described in the Methods. Models are all pretrained with CLIP ViT-B/16.

Model Trained on Baset1 Novelt1 Baset8-10 Novelt8-10

CLIP (ViT-B/16) - 0.29 0.37 0.32 0.40
CLIP (RN50) - 0.24(−0.05) 0.30(−0.07) 0.27(−0.05) 0.33(−0.07)

WildCLIP (RN50) Bt1 0.59(+0.30) 0.42(+0.05) 0.55(+0.23) 0.38(−0.02)
WildCLIP Bt1 0.60(+0.31) 0.43(+0.06) 0.66(+0.34) 0.46(+0.06)
WildCLIP-LwF Bt1 0.54(+0.25) 0.48(+0.11) 0.56(+0.24) 0.46(+0.06)

WildCLIP Bt1-7 0.64(+0.35) 0.40(+0.03) 0.64(+0.32) 0.37(−0.03)
WildCLIP-LwF Bt1-7 0.60(+0.31) 0.49(+0.12) 0.60(+0.28) 0.44(+0.04)

WildCLIP-Adapter∗ Bt1-7 → Nt1 0.67(+0.38) 0.38(+0.01) 0.64(+0.32) 0.38(−0.02)
WildCLIP-Adapter∗-LwF Bt1-7 → Nt1 0.67(+0.38) 0.40(+0.03) 0.65(+0.33) 0.41(+0.01)
WildCLIP-LwF-Adapter∗ Bt1-7 → Nt1 0.54(+0.25) 0.43(+0.06) 0.55(+0.23) 0.39(−0.01)
WildCLIP-LwF-Adapter∗-LwF Bt1-7 → Nt1 0.58(+0.29) 0.45(+0.08) 0.57(+0.25) 0.42(+0.02)

Table 2. Ablation Study. We test the effect of different visual encoding backbones, the impact of the trained templates
and the mutual effects of the VR-LwF loss (20) and the adapter module (12). Unless stated otherwise, CLIP visual
backbone is the pretrained ViT-B/16 one.
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limited (CLIP-Adapter∗ Table 1, WildCLIP-Adapter∗ Table 2). It even reduces the performance of WildCLIP-LwF-Adapter∗
(+0.12 vs. +0.06, Table 2). We speculate that this may be explained by the difficulty of the few-shot task on a dataset with
noisy labels (e.g., woodland characteristics may not always be visible on image crops) and a sub-optimal training strategy.

Templates: We had created 10 different templates and wanted to check the impact of template augmentation. Sur-
prisingly, training on a diverse set of caption templates does not improve the model performance on unseen templates
compared to a model trained only on one template. Indeed, training with only template 1 achieves the best performance on
test queries (constructed with out-of-domain templates) for both the base and the novel vocabulary (WildCLIP, Table 2).
We speculate that either the expanded size of the image-caption pairs dataset complicates training, or the additional
in-domain templates are themselves not suited to help the model to generalize to unseen ones.

Image sequences: In Tables 1 and 2, performance is computed considering every image as independent. However,
camera trap images are generally taken from a sequence of multiple shots that share temporal information. Since all
images do not carry the same level of information, aggregating the performance at the sequence level can further improve
the performance. Appendix Table 3 shows the performance at the sequence level for CLIP, WildCLIP and WildCLIP-
Adapter∗ when taking the maximum cosine similarity over the images of a sequence for each test query. As expected, we
observe a consistent improvement of around +0.03 for all methods.

Discussion and Conclusion
We propose an approach based on vision-language models to retrieve scenic, behavioral, and species attributes from
camera trap images with user-defined open vocabulary queries expressed as language prompts. We show that WildCLIP
effectively adapts CLIP to camera traps of the Serengeti initiative and can function well to retrieve rare events of interest.
We envision our method to find application in assisting the annotation process of camera trap datasets, to find rare events
of interest quickly, and to facilitate species retrieval under diverse environmental conditions. This also has the potential to
reduce bias when training species classifiers.

To counteract catastrophic forgetting, we adapted memory replay (20, 54) and found that it works relatively well based on
a replay vocabulary mined from the scientific literature on the Serengeti. Importantly, one does not need access to the
original training set or any images, which might require a lot of storage. Our results suggest that WildCLIP can retrieve
events sometimes missed by CLIP for open-vocabulary queries. But the size of the Snapshot Serengeti dataset remains
too limited to give any trend regarding the relative open-vocabulary performances of both models. We think this is a
promising direction, and we will explore the impact of different replay vocabularies in the future. To be more reliable for the
ecology community, WildCLIP would greatly benefit from a larger vocabulary and from being trained on multiple camera
trap datasets. This improvement requires collaborative efforts in sharing and annotating camera trap datasets with labels
that go beyond taxonomy information. We hope that our demonstration of feasibility will contribute to the emergence of
more camera trap datasets that are annotated with attributes beyond species.
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Appendix
Caption templates
Here we detail the full caption templates used for training WildCLIP. Templates 1 to 7 are used for training, and 1 and 8,
9, 10 for evaluation. Since we consider combinations of attributes, each template yields 31 captions.

The 10 templates:

1. A camera-trap picture of a <age> <spe> <beh> <env> <tod>.

2. A <age> <spe> <beh> <env> <tod>.

3. There is a <age> <spe>, it is <beh> <env> <tod>.

4. A picture of a <age> <spe> <env> <tod>, it is <beh>.

5. <tod>, a <age> animal is <beh> <env>, it is a <spe>.

6. An image of a <age> <spe> <beh> <env> <tod>.

7. <env>, a <age> <spe> is <beh> <tod>.

8. A wild <spe> <beh> <env> <tod>. It is a <age>.

9. In this picture, a <age> <spe> is <beh> <env> <tod>.

10. The <age> <spe> is <beh> <env> <tod>.

with:

• <age>: the animal age, either “young" or “adult"

• <spe>: the animal species name

• <beh>: the animal behavior

• <env>: the environment, either“grassland" or “woodland"

• <tod>: the time of the day, either “nighttime" or “daytime"

Qualitative results for complex queries of the WildCLIP vocabulary
We tested the retrieval performance of CLIP, WildCLIP, WildCLIP-LwF and WildCLIP-LwF-adapter-LwF on multiple queries
containing words from the base and novel vocabularies (Appendix Figure 10). A green box indicates that the caption
describes properly the image according to the dataset labels. A red box indicates a mismatch. However, note that the
labels used are noisy in nature (cf. the first image retrieved for the last two lines, where images depicting lions at nighttime
are considered a mismatch despite being well retrieved).

Qualitative results for open-vocabulary queries
We tested the retrieval performance of CLIP, WildCLIP and WildCLIP-LwF on multiple queries containing words never
seen during the training of WildCLIP (Appendix Figure 11). Although this ability is beyond the scope of this study, we still
wish to illustrate the potential of VLM to retrieve any kind of events and to position WildCLIP with respect to this goal. We
observe a decrease in performance for WildCLIP in comparison to CLIP for prompts such as “a cloudy weather", but this
catastrophic forgetting is compensated as expected by the VR-LwF loss. Other queries such as “an animal eating from a
tree." are never well retrieved, but WildCLIP seems the best model in this case since the animals are eating the closest
to a tree. Finally, “an animal with an open wound." is never well retrieved by any of the models, although we are aware of
the presence of such images in the test set.

Sequence level performance
We compute the mAP considering either each image as independent, or by first taking the maximum cosine similarity with
a given query over the sequence of camera trap shots, and then computing the mAP over the sequences. Performance is
reported for the test queries of the base and the novel vocabulary set, following template 1 (Appendix Table 3).
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Figure 10. Top-3 test images most aligned with the given complex queries.

Model
Image Sequence

Baset1 Novelt1 Baset1 Novelt1

CLIP 0.29 0.37 0.32 0.39
WildCLIP 0.64 0.40 0.66 0.43
WildCLIP-Adapter∗ 0.67 0.38 0.70 0.42

Table 3. Performance at the image or sequence level.

Implementation details

Data processing

We started from the output of MegaDetector (7) provided on LILA, and included bounding boxes predicted with confidence
above 0.7 in our analysis. Images containing animals are then cropped to undistorted square patches by padding with
background.
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Figure 11. Top-3 test images most aligned with the given open-vocabulary queries.

Replay vocabulary
To generate the replay-captions, we first parse titles of ecology papers corresponding to the query “Serengeti+Wildlife"
with the Semantic Scholar API (55). We then use the Rapid Automatic Keyword Extraction (Rake (56)) on all titles to
keep only keywords from them. Since this process is not specific to ecology, we further filter words by computing the
cosine distances between words embeddings of the retrieved words and “Serengeti" and “Wildlife" using a Word2Vec
model pretrained with GloVe (57). We keep only the 830 most similar words in total, and build the 5-grams text anchors
by randomly sampling these words.

Examples of 5-grams used as replay vocabulary (VR):

• seasonal tasmania snakes unengaged ruminant

• coyote narok raccoons disease sustainable

• cull bird rhinoceroses act pesticide

• jaguars mammal culling territoriality canine

• feed maasai diversity poaching improve

• grass today tree browsers myxomatosis

Model training
During training of the different versions of WildCLIP, we use the weighted Adam optimizer (58), with a learning rate of
10−7 following a cosine annealing scheduler (59), a batch size of 100 and a weight decay of 0.2. The training code and
parameters are adapted from (60). The learning rate is increased to 10−6, and the weight decay decreased to 10−3 for
ResNet models. We randomly draw 10′000 image-caption pairs for a given epoch, with a sampling probability inversely
proportional to the caption frequency. Image crops are then randomly transformed with a probability of 0.25 for horizontal
flipping, resizing, Gaussian blur, conversion to grayscale and color jitter. Around 10% of the training data is used as a
validation set by holding out a subset of cameras. The models are trained for 500 epochs. The training of WildCLIP-

Adapter and its variants is different because of the few-shot scenario. Following parameters used in (12), we use the
stochastic gradient descent (SGD) optimizer with a learning rate of 10−3, and train the model for 200 epochs with a batch
size of 32. The α blending parameter in Figure 2 is set to 0.7, following cross-validated results of (12). The temperature

parameter τ in Eq. (4, 3, 7, 7) is set to 0.01, following (60).
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