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ABSTRACT

Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate
patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease
near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces
challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal
effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high throughput perturbations with single
cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify
root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in
performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic
pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.

Root causal gene expression levels – or root causal genes
for short – correspond to the initial changes to gene expression
that induce a pathogenic cascade ultimately resulting in a
downstream diagnosis1,2. Treating root causal genes can mod-
ify disease pathogenesis in its entirety, whereas targeting other
causes may only provide symptomatic relief. For example,
mutations in Gaucher disease cause decreased expression of
wild type beta-glucocerebrosidase, or the root causal gene.3
We can give a patient blood transfusions to alleviate the fatigue
and anemia associated with the disease, but we seek more
definitive treatments like recombinant glucocerebrosidase that
replaces the deficient enzyme. Enzyme replacement therapy
alleviates the associated liver, bone and neurological abnormal-
ities of Gaucher disease as a downstream effect. Identifying
root causal genes is therefore critical for developing treatments
that eliminate disease near its pathogenic onset.

The problem is further complicated by the existence of
complex disease, where a patient may have multiple root
causal genes that differ from other patients even within the
same diagnostic category4. Complex diseases often have an
overwhelming number of causes, but the root causal genes may
only represent a small subset implicating a more omnigenic
than polygenic model. We thus also seek to identify patient-
specific root causal genes in order to classify patients into
meaningful biological subgroups each hopefully dictated by
only a small group of genes.

No existing method identifies root causal genes from data.
Many algorithms focus on discovering associational5 or even
causal relations6,7, but none pinpoint the first gene expres-
sion levels that ultimately generate disease. We therefore
define the Root Causal Strength (RCS) score to identify root
causal genes unique to each patient. We then design the Root
Causal Strength using Perturbations (RCSP) algorithm that es-
timates RCS from bulk RNA-seq under minimal assumptions
by integrating Perturb-seq, or high throughput perturbation
experiments using CRISPR-based technologies coupled with

single cell RNA-sequencing8–10. Experiments demonstrate
marked improvements in performance. Finally, application of
the algorithm to two complex diseases with disparate patho-
geneses simultaneously recovers root causal genes, omnigenic
disease models, pathogenic pathways and drug candidates
delineating patient subgroups for the first time.

Results
Definitions
Differential expression analysis identifies differences in gene
expression levels between groups 𝑌5. A gene 𝑋𝑖 may be
differentially expressed due to multiple reasons. For example,
𝑋𝑖 may cause 𝑌 , or a confounder 𝐶 may explain the relation
between 𝑋𝑖 and 𝑌 such that 𝑋𝑖 ← 𝐶→ 𝑌 . In this paper, we
take expression analysis a step further by pinpointing causal
relations from expression levels regardless of the variable type
of𝑌 (discrete or continuous). We in particular seek to discover
patient-specific root causal genes from bulk RNA-seq data,
which we carefully define below.

We represent a biological system in bulk RNA-seq as a
causal graph G – such as in Figure 1 (a) – where 𝑝 vertices 𝑿
represent true gene expression levels in a bulk sample and 𝑌

denotes the patient symptoms or diagnosis. The set 𝑿 contains
thousands of genes in practice. Directed edges between the
vertices in G refer to direct causal relations. We assume that
gene expression causes patient symptoms but not vice versa
so that no edge from 𝑌 is directed towards 𝑿. The set Pa(𝑋𝑖)
refers to the parents of 𝑋𝑖 ∈ 𝑿, or those variables with an edge
directed into 𝑋𝑖 . For example, Pa(𝑋2) = {𝑋1, 𝑋3} in Figure 1
(a). A root vertex corresponds to a vertex with no parents.

We can associate G with the structural equation 𝑋𝑖 =

𝑓𝑖 (Pa(𝑋𝑖), 𝐸𝑖) for each 𝑋𝑖 ∈ 𝑿 that links each vertex to its
parents and error term 𝐸𝑖

11. The error term 𝐸𝑖 is not simply a
regression residual but instead represents the conglomeration
of unobserved explanatory variables that only influence 𝑋𝑖 ,
such as unobserved transcriptional regulators, certain genetic
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variants and specific environmental conditions. We thus also
include the error terms 𝑬 in the directed graph of Figure 1
(b). All root vertices are error terms and vice versa. The root
causes of 𝑌 are the error terms that cause 𝑌 , or have a directed
path into 𝑌 . We define the root causal strength (RCS) of 𝑋𝑖

on 𝑌 as the following absolute difference (Figure 1 (c)):

Φ𝑖 =

���E(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) −E(𝑌 |Pa(𝑋𝑖))
���

=

���E(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) −E(𝑌 |Pa(𝑋𝑖))
��� . (1)

We prove the last equality in the Methods. As a result, RCS
Φ𝑖 directly measures the contribution of the gene 𝑋𝑖 on 𝑌

according to its error term 𝐸𝑖 without recovering the error term
values. The algorithm does not impose functional restrictions
such as additive noise to estimate the error term values as an
intermediate step. Moreover Φ𝑖 is patient-specific because
the values of Pa(𝑋𝑖) and 𝑋𝑖 may differ between patients. We
have Φ𝑖 = 0 when 𝐸𝑖 is not a cause of 𝑌 , so we say that the
gene 𝑋𝑖 is a patient-specific root causal gene if Φ𝑖 > 0.

Algorithm
We propose an algorithm called Root Causal Strength using
Perturbations (RCSP) that estimates Φ = {Φ1, . . . ,Φ𝑝} from
genes measured in both bulk RNA-seq and Perturb-seq datasets
derived from possibly independent studies but from the same
tissue type. We refer the reader to the Methods for details.

Estimating Φ requires access to the true gene expression
levels 𝑿 and the removal of batch effects representing unwanted
sources of technical variation such as different sequencing
platforms or protocols. We however can only obtain imperfect
counts 𝑿 from RNA sequencing even within each batch (Figure
1 (d)). We show in the Methods that the Poisson distribution
approximates the measurement error distribution induced by
the sequencing process to high accuracy12,13. We leverage
this fact to eliminate the need for normalization by sequencing
depth using an asymptotic argument where the library size 𝑁

approaches infinity. 𝑁 takes on a value of at least ten million
in bulk RNA-seq, but we also empirically verify that the
theoretical results hold well in the Supplementary Materials.
We thus eliminate the Poisson measurement error and batch
effects by controlling for the batches 𝐵 but not 𝑁 in non-linear
regression models.

We in particular show that Φ𝑖 in Equation (1) is also
equivalent to:

Φ𝑖 =

���E(𝑌 |SP(𝑋𝑖), 𝑋𝑖 , 𝐵) −E(𝑌 |SP(𝑋𝑖), 𝐵)
��� , (2)

where SP(𝑋𝑖) refers to the surrogate parents of 𝑋𝑖 , or the vari-
ables in 𝑿 associated with Pa(𝑋𝑖) ⊆ 𝑿. RCSP can identify (an
appropriate superset of) the surrogate parents of each variable
using perturbation data because perturbing a gene changes the
marginal distributions of its downstream effects – which the
algorithm detects from data under mild assumptions (Figure
1 (e)). The algorithm thus only transfers the binary presence
or absence of causal relations from the single cell to bulk

data – rather than the exact functional relationships – in order
to remain robust against discrepancies between the two data
types. RCSP finally performs the two non-linear regressions
needed to estimate E(𝑌 |SP(𝑋𝑖), 𝑋𝑖 , 𝐵) and E(𝑌 |SP(𝑋𝑖), 𝐵)
for each Φ𝑖 . We will compare Φ𝑖 against Statistical De-
pendence (SD), a measure of correlational strength defined
as Ω𝑖 = |E(𝑌 |𝑋𝑖 , 𝐵) −E(𝑌 |𝐵) | where we have removed the
conditioning on SP(𝑋𝑖).

In silico identification of root causal genes
We simulated 30 bulk RNA-seq and Perturb-seq datasets
from random directed graphs summarizing causal relations
between gene expression levels. We performed single gene
knock-down perturbations over 2500 genes and 100 batches.
We obtained 200 cell samples from each perturbation, and
another 200 controls without perturbations. We therefore
generated a total of 2501×200 = 500,200 single cell samples
for each Perturb-seq dataset. We simulated 200 bulk RNA-seq
samples. We compared RCSP against the Additive Noise
Model (ANM)14,15, the Linear Non-Gaussian Acyclic Model
(LiNGAM)1,14, CausalCell7, univariate regression residuals
(Uni Reg), and multivariate regression residuals (Multi Reg).
The first two algorithms are state-of-the-art approaches used
for error term extraction and, in theory, root causal discovery.
See Methods for comprehensive descriptions of the simulation
setup and comparator algorithms.

We summarize accuracy results in Figure 1 (f) using the
Root Mean Squared Error (RMSE) to the ground truth Φ

values. All statements about pairwise differences hold true at
a Bonferonni corrected threshold of 0.05/5 according to paired
two-sided t-tests, since we compared a total of five algorithms.
RCSP estimated Φ most accurately by a large margin. ANM
and LiNGAM are theoretically correct under their respective
assumptions, but they struggle to outperform standard multi-
variate regression due to the presence of measurement error in
RNA-seq (Supplementary Materials). Feature selection and
causal discovery with CausalCell did not improve performance.
Univariate regression performed the worst, since it does not
consider the interactions between variables. RCSP achieved
the lowest RMSE while completing in about the same amount
of time as multivariate regression on average (Figure 1 (g)).
We conclude that RCSP both scalably and accurately estimates
Φ from a combination of bulk RNA-seq and Perturb-seq data.

We will cluster the RCS values in real data to find patient
subgroups. We therefore also performed hierarchical cluster-
ing using Ward’s method16 on the values of Φ estimated by
RCSP with the synthetic data. We then computed the RMSE
within each cluster and averaged the RMSEs between clusters.
We found that RCSP maintained low average RMSE values
regardless of the number of clusters considered (Figure 1 (h)).
We conclude that RCSP maintains accurate estimation of Φ
across different numbers of clusters.

Oxidative stress in age-related macular degeneration
We ran RCSP on a bulk RNA-seq dataset of 513 individuals
with age-related macular degeneration (AMD; GSE115828)
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Figure 1. Method overview and synthetic data results. (a) We consider a latent causal graph over the true counts 𝑿. (b) We
augment the graph with error terms 𝑬 such that each 𝐸𝑖 ∈ 𝑬 in red has an edge directed towards 𝑋𝑖 ∈ 𝑿. (c) The RCS of 𝑋2,
denoted by Φ2, quantifies the strength of the root causal effect from 𝐸2 to 𝑌 conditional on Pa(𝑋2). (d) We cannot observe 𝑿 in
practice but instead observe the noisy surrogates 𝑿 in blue corrupted by Poisson measurement error. (e) Perturbing a variable
such as 𝑋3 changes the marginal distributions of downstream variables shown in green under mild conditions. (f) Violin plots
show that RCSP achieved the smallest RMSE to the ground truth RCS values in the synthetic data. (g) RCSP also took about
the same amount of time to complete as multivariate regression. Univariate regression only took 11 seconds on average, so its
bar is not visible. Error bars denote 95% confidence intervals of the mean. (h) Finally, RCSP maintained low RMSE values
regardless of the number of clusters considered.

and a Perturb-seq dataset of 247,914 cells generated from an
immortalized retinal pigment epithelial (RPE) cell line17,18.
The Perturb-seq dataset contains knockdown experiments of
2077 genes overlapping with the genes of the bulk dataset.
We set the target 𝑌 to the Minnesota Grading System score, a
measure of the severity of AMD based on stereoscopic color
fundus photographs. We always included age and sex as a
biological variable as covariates. We do not have access to the
ground truth values of Φ in real data, so we evaluated RCSP
using seven alternative techniques. See Methods for a detailed
rationale of the evaluation of real data. RCSP outperformed
all other algorithms in this dataset (Supplementary Materials).
We therefore only analyze the output of RCSP in detail here.

AMD is a neurodegenerative disease of the aging retina19,
so age is a known root cause of the disease. We therefore
determined if RCSP identified age as a root cause. The
algorithm estimated a heavy tailed distribution of the RCS
values indicating that most of the RCS values deviated away
from zero (Figure 2 (a)). The Deviation of the RCS (D-
RCS), or the standard deviation from an RCS value of zero,
corresponded to 0.46 – more than double that of the nearest

gene (Figure 2 (d)). We conclude that RCSP correctly detected
age as a root cause of AMD.

Root causal genes typically affect many downstream genes
before affecting 𝑌 . We therefore expect to identify few root
causal genes but many genes that correlate with𝑌 . To evaluate
this hypothesis, we examined the distribution of D-RCS relative
to the distribution of the Deviation of Statistical Dependence
(D-SD), or the standard deviation from an SD value of zero,
in Figure 2 (b). Few D-RCS scores had large values implying
the existence of only a few significant root causal genes. In
contrast, most of the D-SD scores had relatively larger values
concentrated around 0.10 implying the existence of many
genes correlated with 𝑌 . We conclude that RCSP identified
few root causal genes rather than many correlated genes for
AMD.

The pathogenesis of AMD involves the loss of RPE cells.
The RPE absorbs light in the back of the retina, but the combi-
nation of light and oxygen induces oxidative stress, and then
a cascade of events such as immune cell activation, cellular
senescence, drusen accumulation, neovascularization and ulti-
mately fibrosis20. We therefore expect the root causal genes of
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Figure 2. Analysis of AMD. (a) The distribution of the RCS scores of age deviated away from zero and had a composite
D-RCS of 0.46. (b) However, the majority of gene D-RCS scores concentrated around zero, whereas the majority of gene D-SD
scores concentrated around the relatively larger value of 0.10. Furthermore, the D-RCS scores of the genes in (d) mapped onto
the “amino acid transport across the plasma membrane” pathway known to be involved in the pathogenesis of AMD in (c). Blue
bars survived 5% FDR correction. (e) Drug enrichment analysis revealed four significant drugs, the later three of which have
therapeutic potential. (f) Hierarchical clustering revealed four clear clusters according to the elbow method, which we plot by
UMAP dimensionality reduction in (g). The RCS scores of the top genes in (d) increased only from the left to right on the first
UMAP dimension (x-axis); we provide an example of SLC7A5 in (h) and one of three detected exceptions in (i). We therefore
performed pathway enrichment analysis on the black cluster in (g) containing the largest RCS scores. (j) The amino acid
transport pathway had a larger degree of enrichment in the black cluster as compared to the global analysis in (c).

AMD to include genes involved in oxidative stress. The gene
MIPEP with the highest D-RCS score in Figure 2 (d) indeed
promotes the maturation of oxidative phosphorylation-related
proteins21. The second gene SLC7A5 is a solute carrier that
activates mTORC1 whose hyperactivation increases oxida-
tive stress via lipid peroxidation22,23. The gene HEATR1
is involved in ribosome biogenesis that is downregulated by
oxidative stress24. The top genes discovered by RCSP thus
identify pathways known to be involved in oxidative stress.

We subsequently jointly analyzed the D-RCS values of all

2077 genes. We performed pathway enrichment analysis that
yielded one pathway “amino acid transport across the plasma
membrane” that passed an FDR threshold of 5% (Figure 2 (c)).
The leading edge genes of the pathway included the solute
carriers SLC7A5 and SLC1A5. These two genes function
in conjunction to increase the efflux of essential amino acids
out of the lysosome25,26. Some of these essential amino acids
like L-leucine and L-arginine activate mTORC1 that in turn
increases lipid peroxidation induced oxidative stress and the
subsequent degeneration of the RPE22,23. We conclude that
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pathway enrichment analysis correctly identified solute carrier
genes involved in a known pathway promoting oxidative stress
in AMD.

We next ran drug enrichment analysis with the D-RCS
scores. The top compound arsenous acid inhibits RPE prolifer-
ation27, but the other three significant drugs have therapeutic
potential (Figure 2 (e)). Busulfan decreases the requirement
for intravitreal anti-VEGF injections28. Genistein is a protein
kinase inhibitor that similarly attenuates neovascularization29

and blunts the effect of ischemia on the retina30. Finally, a
metabolite of the antiviral agent 3’-azido-3’-deoxythymidine
inhibits neovascularization and mitigates RPE degeneration31.
We conclude that the D-RCS scores identified promising drugs
for the treatment of AMD.

Hierarchical clustering and UMAP dimensionality reduction
on the patient-specific RCS values revealed four clear clusters
of patients (Figures 2 (f) and (g), respectively). Most of the
top genes exhibited a clear gradation increasing only from the
left to the right hand side of the UMAP embedding; we plot
an example in Figure 2 (h). We found three exceptions to this
rule among the top 30 genes (example in Figure 2 (i) and see
Supplementary Materials). RCSP thus detected genes with
large RCS scores primarily in the black cluster of Figure 2 (g).
Pathway enrichment analysis within this cluster alone yielded
supra-significant results on the same pathway detected in the
global analysis (Figure 2 (j) versus Figure 2 (c)). Furthermore,
cluster-wise drug enrichment analysis results confirmed that
patients in the black cluster with many root causal genes are
likely the hardest to treat (Supplementary Materials). We
conclude that RCSP detected a subgroup of patients whose
root causal genes have large RCS scores and involve known
pathogenic pathways related to oxidative stress.

T cell infiltration in multiple sclerosis
We next ran RCSP on 137 samples collected from CD4+
T cells of multiple sclerosis (MS; GSE137143) as well as
Perturb-seq data of 1,989,578 lymphoblasts, or the precursors
of T cells and other lymphocytes18,32. We set the target 𝑌
to the Expanded Disability Status Scale score, a measure of
MS severity. RCSP outperformed all other algorithms in this
dataset as well (Supplementary Materials).

MS progresses over time, and RCSP correctly detected age
as a root cause of MS severity with RCS values deviating away
from zero (Figure 3 (a)). The distribution of gene D-RCS
scores concentrated around zero, whereas the distribution of
gene D-SD scores concentrated around a relatively larger value
of 0.3 (Figure 3 (b)). RCSP thus detected an omnigenic root
causal model rather than a polygenic correlational model.

MS is an inflammatory neurodegenerative disease that
damages the myelin sheaths of nerve cells in the brain and
spinal cord. T cells may mediate the inflammatory process
by crossing a disrupted blood brain barrier and repeatedly
attacking the myelin sheaths33. Damage induced by the
T cells also perturbs cellular homeostasis and leads to the
accumulation of misfolded proteins34. The root causal genes

of MS thus likely include genes involved in T cell infiltration
across the blood brain barrier.

Genes with the highest D-RCS scores included MNT, CER-
CAM and HERPUD2 (Figure 3 (d)). MNT is a MYC antagonist
that modulates the proliferative and pro-survival signals of
T cells after engagement of the T cell receptor35. Similarly,
CERCAM is an adhesion molecule expressed at high levels in
microvessels of the brain that increases leukocyte transmigra-
tion across the blood brain barrier36. HERPUD2 is involved in
the endoplasmic-reticulum associated degradation of unfolded
proteins37. Genes with the highest D-RCS scores thus serve
key roles in known pathogenic pathways of MS.

We found multiple genes with high D-RCS scores in MS,
in contrast to AMD where age dominated (Figure 3 (d) versus
Figure 2 (d)). We performed pathway enrichment analysis
using the D-RCS scores of all genes and discovered two
significant pathways at an FDR corrected threshold of 5%:
“adenomatous polyposis coli (APC) truncation mutants have
impaired AXIN binding” and “EPH-ephrin signaling” (Figure
3 (c)). APC and AXIN are both members of the Wnt signaling
pathway and regulate levels of beta-catenin38. Furthermore,
inhibition of Wnt/beta-catenin causes CD4+ T cell infiltration
into the central nervous system via the blood brain barrier
in MS39. Ephrins similarly regulate T cell migration into
the central nervous system40 and are overexpressed in MS
lesions41. The APC-AXIN and EPH-ephrin pathways are thus
consistent with the known pathophysiology of central nervous
system T cell infiltration in MS.

We subsequently performed hierarchical clustering of the
RCS scores. The within cluster sum of squares plot in Figure 3
(e) revealed the presence of three clusters by the elbow method.
We plot the three clusters in a UMAP embedding in Figure 3
(f). The clusters did not show a clear relationship with MS
symptom severity (Supplementary Materials) or the levels of
the top most genes of Figure 3 (d); we plot the MNT gene as
an example in Figure 3 (g). However, further analyses with
additional genes revealed that the distribution of many lower
ranked genes governed the structure of the UMAP embedding
(Supplementary Materials). The D-RCS scores of each cluster
also implicated different mechanisms of T cell pathology
including APC-AXIN in the green cluster, disturbed T cell
homeostasis in the pink cluster and platelet enhanced T cell
autoreactivity in the blue cluster (Supplementary Materials).

Global drug enrichment analysis did not yield any signif-
icant drugs even at a liberal FDR threshold of 10%. We
thus ran drug enrichment analysis in each cluster of Figure 3
(f). The blue and pink clusters again did not yield significant
drugs. However, the third green cluster identified the cysteine
cathepsin inhibitors dipeptide-derived nitriles, phenylalinine
derivatives, e-64, L-006235 and L-873724 (Figure 3 (h));
statistical significance of the first three held even after correct-
ing for multiple comparisons with the Bonferroni adjustment
of 0.05/4 on the q-values. The leading edge genes of the
significant drugs included the cathepsins CTSL, CTSS and
CTSB exclusively. These drug enrichment results corroborate
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Figure 3. Analysis of MS. (a) The distribution of the RCS scores of age deviated away from zero with a composite D-RCS of
0.55. (b) The distribution of D-RCS concentrated around zero, whereas the distribution of D-SD concentrated around 0.3. (d)
RCSP identified many genes with large D-RCS scores that in turn mapped onto known pathogenic pathways in MS in (c).
Hierarchical clustering revealed three clusters in (e), which we plot in two dimensions with UMAP in (f). Top genes did not
correlate with either dimension of the UMAP embedding; we provide an example of the MNT gene in (g). (h) Drug enrichment
analysis in the green cluster implicated multiple cathepsin inhibitors. Finally, EPH-ephrin signaling survived FDR correction in
(c) and was enriched in the pink cluster in (i) which contained more MS patients with the relapsing-remitting subtype in (j);
subtypes include relapse-remitting (RR), primary progressive (PP), secondary progressive (SP), clinically isolated syndrome
(CIS), and radiologically isolated syndrome (RIS).

multiple experimental findings highlighting the therapeutic
efficacy of cathepsin inhibitors in a subgroup of MS patients
responsive to interferon therapy42,43.

Prior research has also shown that EPH-ephrin signaling is
more prevalent in relapsing-remitting multiple sclerosis than in
other subtypes of the disease44. EPH-ephrin signaling survived
FDR correction in our analysis (Figure 3 (c)). Furthermore,
the pathway was more enriched in the pink cluster than in the
other two (Figure 3 (i)). The pink cluster indeed contained
a higher proportion of patients with the relapsing-remitting
subtype (Figure 3 (j)). RCSP thus precisely identified the

enrichment of EPH-ephrin signaling in the correct subtype of
MS.

Discussion
We presented a framework for identifying root causal genes
using the error terms of structural equation models. Each error
term represents the conglomeration of unobserved root causes,
such as genetic variants or environmental conditions, that only
modulate a specific gene. We however do not have access to
many of the error terms in practice, so we introduced the root
causal strength (RCS) score that detects root causal genes from
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bulk RNA-seq without recovering the error term values as an
intermediate step. The RCSP algorithm computes RCS given
knowledge of the causal ancestors of each variable, which
we obtained by Perturb-seq. RCSP only transfers the causal
structure (binary cause-effect relations) from the single cell to
bulk data rather than the exact functional relationships in order
to remain robust against discrepancies between the two data
types. Results with the synthetic data demonstrated marked
improvements over existing alternatives. The algorithm also
recovered root causal genes that play key roles in known
pathogenic pathways and implicate therapeutic drugs in both
AMD and MS.

We detected a modest number of root causal genes in both
AMD and MS relative to the number of genes correlated
with 𝑌 . This omnigenic model differs from the omnigenic
model involving core genes45. Boyle et al. define core genes
as genes that directly affect disease risk and play specific
roles in disease etiology. In contrast, root causal genes may
not directly affect 𝑌 but lie substantially upstream of 𝑌 in
the causal graph. Boyle et al. further elaborate that many
peripheral genes affect the functions of a modest number
of core genes, so the peripheral genes often explain most of
disease heritability. Causation from root causal genes moves in
the opposite direction – the error terms of upstream root causal
genes causally affect many downstream genes that include
both ancestors and non-ancestors of 𝑌 . These downstream
genes contain traces of the root causal gene error terms that
induce the many correlations with 𝑌 . The error terms of root
causal genes associated with large RCS scores also mix with
the error terms of the other ancestors of 𝑌 with small RCS
scores leading to Fisher’s classic infinitesimal model46. The
indirect effects of root causal genes on 𝑌 and the impact of
root causal genes on many downstream genes correlated with
𝑌 motivate us to use the phrase omnigenic root causal model
in order to distinguish it from the omnigenic core gene model.

We identified root causal genes without imposing paramet-
ric assumptions using the RCS metric. Prior measures of
root causal effect require restrictive functional relations, such
as linear relations or additive noise, and continuous random
variables1,2, 15. These restrictions ensure exact identifiability
of the underlying causal graph and error terms. However,
real RNA-seq is obtained from a noisy sequencing process
and contains count data arguably corrupted by Poisson mea-
surement error13. The Poisson measurement error introduces
confounding that precludes exact recovery of the underlying
error terms. The one existing root causal discovery method
that can handle Poisson measurement error uses single cell
RNA-seq, estimates negative binomial distribution parameters
and cannot scale to the thousands of genes required for mean-
ingful root causal detection47. RCSP rectifies the deficiencies
of these past approaches by ensuring accurate root causal
detection even in the presence of the counts, measurement
error and high dimensionality of RNA-seq.

The RCS score importantly quantifies root causal strength
rather than root causal effect. As a result, the method cannot be

used to identify the direction of root causal effect unconditional
on the parents. The root causal effect and RCS do not differ
by much in practice (Supplementary Materials), but future
work should focus on exactly identifying both the strength and
direction of the causal effects of the error terms.

In conclusion, RCSP integrates bulk RNA-seq and Perturb-
seq to identify patient-specific root causal genes under a
principled causal inference framework using the RCS score.
RCS quantifies root causal strength implicitly without requiring
normalization by sequencing depth or direct access to the error
terms of a structural equation model. The algorithm identifies
the necessary causal relations to compute RCS using reliable
high throughput perturbation data rather than observational
data alone. The RCS scores often suggest an omnigenic rather
than a polygenic root causal model of disease. Enrichment
analyses with the RCS scores frequently reveal pathogenic
pathways and drug candidates. We conclude that RCSP is a
novel, accurate, scalable and disease-agnostic procedure for
performing patient-specific root causal discovery.
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Online Methods
Background on Causal Discovery
We denote a singleton variable like 𝑋𝑖 with italics and sets of
variables like 𝑿 with bold italics. We can represent a causal
process using a structural equation model (SEM) linking the
𝑝 + 1 variables in 𝒁 = 𝑿 ∪𝑌 using a series of deterministic
functions:

𝑍𝑖 = 𝑓𝑖 (Pa(𝑍𝑖), 𝐸𝑖), ∀𝑍𝑖 ∈ 𝒁 (3)

where 𝑓𝑖 is a function of the parents, or direct causes, of 𝑍𝑖
and an error term 𝐸𝑖 ∈ 𝑬. The error terms 𝑬 are mutually
independent. We will use the terms vertex and variable
interchangeably. A root vertex corresponds to a vertex without
any parents. On the other hand, a terminal vertex is not a
parent of any other vertex.

We can associate a directed graph to 𝒁 by drawing a directed
edge from each member of Pa(𝑍𝑖) to 𝑍𝑖 for all 𝑍𝑖 ∈ 𝒁. A
directed path from 𝑍𝑖 to 𝑍 𝑗 corresponds to a sequence of
adjacent directed edges from 𝑍𝑖 to 𝑍 𝑗 . If such a path exists (or
𝑍𝑖 = 𝑍 𝑗 ), then 𝑍𝑖 is an ancestor of 𝑍 𝑗 and 𝑍 𝑗 is a descendant
of 𝑍𝑖 . We collate all ancestors of 𝑍𝑖 into the set Anc(𝑍𝑖).
A cycle occurs when there exists a directed path from 𝑍𝑖 to
𝑍 𝑗 and the directed edge 𝑍 𝑗 → 𝑍𝑖 . A directed acyclic graph
(DAG) contains no cycles. We augment a directed graph by
including additional vertices 𝑬 and drawing a directed edge
from each 𝐸𝑖 ∈ 𝑬 to 𝑋𝑖 except when 𝑋𝑖 = 𝐸𝑖 is already a root
vertex. We consider an augmented DAG G throughout the
remainder of this manuscript.

The vertices 𝑍𝑖 and 𝑍 𝑗 are d-connected given 𝑾 ⊆ 𝒁 \
{𝑍𝑖 , 𝑍 𝑗 } in G if there exists a path between 𝑍𝑖 and 𝑍 𝑗 such
that every collider on the path is an ancestor of 𝑾 and no
non-collider is in 𝑾. The vertices are d-separated if they

are not d-connected. Any DAG associated with the SEM in
Equation (3) also obeys the global Markov property where
𝑍𝑖 and 𝑍 𝑗 are conditionally independent given 𝑾 if they are
d-separated given 𝑾. The term d-separation faithfulness
refers to the converse of the global Markov property where
conditional independence implies d-separation. A distribution
obeys unconditional d-separation faithfulness when we can
only guarantee d-separation faithfulness when 𝑾 = ∅.

Causal Modeling of RNA Sequencing
Performing causal discovery requires careful consideration
of the underlying generative process. We therefore propose
a causal model for RNA-seq. We differentiate between the
biology and the RNA sequencing technology.

We represent a biological causal process using an SEM over
𝑿 ∪𝑌 obeying Equation (3). We assume that the phenotypic
target 𝑌 is a terminal vertex so that gene expression causes
phenotype but not vice versa. Each 𝑋𝑖 ∈ 𝑿 corresponds to the
total number of RNA molecules of a unique gene in a single
cell or bulk tissue sample. We unfortunately cannot observe
𝑿 in practice but instead measure a corrupted count 𝑿 using
single cell or bulk RNA-seq technology.

We derive the measurement error distribution from first
principles. We map an exceedingly small fraction of each
𝑋𝑖 ∈ 𝑿 within a sample at unequal coverage. Let 𝜋𝑖 𝑗 denote
the probability of mapping one molecule of 𝑋𝑖 in batch 𝑗 so
that

∑𝑝

𝑖=1 𝜋𝑖 𝑗 is near zero. The law of rare events1 implies that
the Poisson distribution well-approximates the library size 𝑁

so that 𝑁 ∼ Pois(∑𝑝

𝑖=1 𝑋𝑖𝜋𝑖 𝑗 ).
We write the probability of mapping 𝑋𝑖 in a given sample

as:

𝑃𝑖 𝑗 =
𝑋𝑖𝜋𝑖 𝑗∑𝑝

𝑖=1 𝑋𝑖𝜋𝑖 𝑗
.

This proportion remains virtually unchanged when sampling
without replacement because 𝑁 ≪∑𝑝

𝑖=1 𝑋𝑖 with small
∑𝑝

𝑖=1 𝜋𝑖 𝑗 .
We can therefore approximate sampling without replace-
ment by sampling with replacement using a multinomial:
𝑿 ∼MN(𝑁;𝑃1 𝑗 , . . . , 𝑃𝑝 𝑗 ). This multinomial and the Poisson
distribution over 𝑁 together imply that the marginal distribu-
tion of each 𝑋𝑖 ∈ 𝑿 follows an independent Poisson distribution
centered at (∑𝑝

𝑖=1 𝑋𝑖𝜋𝑖 𝑗 )𝑃𝑖 𝑗 = 𝑋𝑖𝜋𝑖 𝑗 , or:

𝑋𝑖 ∼ Pois(𝑋𝑖𝜋𝑖 𝑗 ). (4)

We conclude that the measurement error distribution follows a
Poisson distribution to high accuracy. Multiple experimental
results already corroborate this theoretical conclusion2,12, 13.

We can represent the biology and the RNA sequencing in a
single DAG over 𝑿 ∪ 𝑿 ∪𝐵∪𝑌 , where 𝐵 denotes the batch,
and 𝑌 the target variable representing patient symptoms or
diagnosis. We provide a toy example in Figure 4. We draw
G over 𝒁 in black and make each 𝑋𝑖 ∈ 𝑿 a parent of 𝑋𝑖 ∈ 𝑿
in blue. We then include the root vertex 𝐵 as a parent of all
members of 𝑿 in green. We augment this graph with the error
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terms of 𝑿 in red and henceforth refer to the augmented DAG
as G. Repeated draws from the represented causal process
generates a dataset.

𝐸1
𝐸2

𝐸3

𝑋1
𝑋2

𝑋3 𝑌

𝑋1 𝑋2
𝑋3

𝐵

Figure 4. An example of a DAG over 𝑿 ∪ 𝑿 ∪𝐵∪𝑌
augmented with the error terms 𝑬. The observed vertices 𝑿
denote counts corrupted by batch 𝐵 effects and Poisson
measurement error.

No Need for Normalization by Sequencing Depth
We provide an asymptotic argument that eliminates the need
for normalization by sequencing depth when estimating con-
ditional expectations using bulk RNA-seq. The argument
applies to the conditional expectations as a whole rather than
their individual parameters.

We want to recover the causal relations between 𝑿 by
removing batch 𝐵 and depth 𝑁 effects from the dataset because
they correspond to the sequencing process rather than the
underlying biology. We first consider removing sequencing
depth by finding stably expressed housekeeping genes. Let 𝑨
denote the set of housekeeping genes where 𝑋𝑖 = �̃�𝑖 is a constant
for each 𝑋𝑖 ∈ 𝑨; similarly 𝑨 refers to the corresponding set
with Poisson measurement error. Let 𝑁 = 𝑛 be large enough
such that

∑
𝑋𝑖∈𝑨 𝑥𝑖 > 0 for each sample. Then dividing by

𝐿 ≜
∑

𝑋𝑖∈𝑨 𝑋𝑖 controls for sequencing depth in the following
sense:

lim
𝑁→∞

𝑋𝑖∑
𝑋𝑖∈𝑨 𝑋𝑖

= lim
𝑁→∞

𝑋𝑖/𝑁∑
𝑋𝑖∈𝑨 𝑋𝑖/𝑁

=
𝑃𝑖 𝑗∑

𝑋𝑖∈𝑨𝑃𝑖 𝑗

=
𝑋𝑖𝜋𝑖 𝑗/

∑𝑝

𝑖=1 𝑋𝑖𝜋𝑖 𝑗∑
𝑋𝑖∈𝑨 �̃�𝑖𝜋𝑖 𝑗/

∑𝑝

𝑖=1 𝑋𝑖𝜋𝑖 𝑗
=

𝑋𝑖𝜋𝑖 𝑗∑
𝑋𝑖∈𝑨 �̃�𝑖𝜋𝑖 𝑗

,

where we have divided 𝑋𝑖𝜋𝑖 𝑗 by a constant in the last term.
Thus, dividing by 𝐿 removes measurement error within each
batch as 𝑁→∞. We assume that 𝑁 is so large that the approx-
imation error is negligible. We only invoke the assumption in
bulk RNA-seq, where the library size 𝑁 is on the order of at
least tens of millions.

We do not divide by 𝐿 in practice because we may have 𝐿 = 0
with finite 𝑁 . We instead always include 𝐿∪𝐵 in the predictor
set of downstream regressions. Conditioning on 𝐿∪𝐵 ensures
that all downstream regressions mitigate depth and batch
effects with adequate sequencing depth, or that E(𝑌 |𝑼, 𝐵) =
E(𝑌 |𝑼, 𝐿, 𝐵) for any 𝑼 ⊆ 𝑿 as 𝑁 →∞. The equality holds
almost surely under a mild smoothness condition:

Lemma 1. Assume Lipschitz continuity of the conditional
expectation for all 𝑁 ≥ 𝑛0:

E
���E(𝑌 |𝑼) −E(𝑌 |𝑼, 𝐿, 𝐵)

��� ≤ E𝐶𝑁

����𝑼− 𝑼

𝑑𝐿

���� ,
where 𝑑 =

𝜋𝑼𝐵∑
𝑋𝑖 ∈𝑨

�̃�𝑖 𝜋𝑖𝐵
, 𝐶𝑁 ∈ 𝑂 (1) is a positive constant, and

we have taken an outer expectation on both sides. Then
E(𝑌 |𝑼) = lim𝑁→∞E(𝑌 |𝑼, 𝐿, 𝐵) almost surely.

We delegate proofs to the Supplementary Materials unless
proven here in the Methods. Note that lim𝑁→∞

𝑼
𝑑𝐿

=𝑼, so the
Lipschitz assumption intuitively means that accurate estima-
tion of𝑼 implies accurate estimation of E(𝑌 |𝑼). Furthermore,
conditioning on the library size 𝑁 instead of 𝐿 can introduce
spurious dependencies because 𝑁 depends on all of the genes
rather than just the stably expressed ones.

We now eliminate the need to condition on 𝐿. Note that
𝐿 is a sum of independent Poisson distributions given 𝐵 per
Expression (4). This implies 𝑌 ⊥⊥ 𝐿 | (𝑼, 𝐵) for any 𝑁 , so that
E(𝑌 |𝑼) = lim𝑁→∞E(𝑌 |𝑼, 𝐿, 𝐵) = lim𝑁→∞E(𝑌 |𝑼, 𝐵) almost
surely. We have proved:

Theorem 1. Consider the same assumption as Lemma 1. Then
E(𝑌 |𝑼) = lim𝑁→∞E(𝑌 |𝑼, 𝐵) almost surely, where we have
eliminated the conditioning on 𝐿.

We emphasize again that these equalities hold for the con-
ditional expectation but not for the regression parameters;
the regression parameters do not converge in general unless
we divide by 𝐿. We will only need to estimate conditional
expectations in order to identify root causal genes.

Identifying Root Causal Genes
We showed how to overcome Poisson measurement error
without sequencing depth normalization in the previous section.
We leverage this technique to define a measure for identifying
the root causal genes of 𝑌 .

Definitions
A root cause of 𝑌 corresponds to a root vertex that is an
ancestor of 𝑌 in G. All root vertices are error terms in an
augmented graph. We define the root causal effect of any
𝐸𝑖 ∈ 𝑬 on 𝑌 as Υ𝑖 ≜ P(𝑌 |𝐸𝑖) −P(𝑌 )5,6.

We can identify root causes using the following result:

Proposition 1. If 𝐸𝑖 ̸⊥⊥ 𝑌 or 𝐸𝑖 ̸⊥⊥ 𝑌 |Pa(𝑋𝑖) (or both), then
𝐸𝑖 is a root cause of 𝑌 .

We can also claim the backward direction under d-separation
faithfulness. We however avoid making this additional as-
sumption because real biological data may not arise from
distributions obeying d-separation faithfulness in practice7.

Proposition 1 implies that 𝐸𝑖 is a root cause of 𝑌 when:

Δ𝑖 ≜ P(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) −P(𝑌 |Pa(𝑋𝑖)) ≠ 0.

However, Δ𝑖 does not correspond to the root causal effect Υ𝑖

due to the extra conditioning on Pa(𝑋𝑖). The two terms may
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also differ in direction; if Δ𝑖 > 0, then this does not imply that
Υ𝑖 > 0, and similarly for negative values. The two variables
thus represent different quantities but – in terms of priority –
we would estimateΥ𝑖 when we have nonzeroΔ𝑖 . Experimental
results indicate that Υ𝑖 and Δ𝑖 take on similar values and agree
in direction about 95% of the time in practice (Supplementary
Materials).

We now encounter two challenges. First, the quantities Υ𝑖

and Δ𝑖 depend on the unknown error term 𝐸𝑖 . We can however
substitute 𝐸𝑖 with 𝑋𝑖 in Δ𝑖 due to the following result:

Proposition 2. We have P(𝑌 |𝐸𝑖 ,Pa(𝑋𝑖)) = P(𝑌 |𝑋𝑖 ,Pa(𝑋𝑖))
under Equation (3).

We can thus compute Δ𝑖 without access to the error terms:

Δ𝑖 = P(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) −P(𝑌 |Pa(𝑋𝑖))
= P(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) −P(𝑌 |Pa(𝑋𝑖)).

The ability to determine the root causal status of 𝐸𝑖 on𝑌 when
Δ𝑖 ≠ 0 per Proposition 1, and the above ability to directly
substitute 𝐸𝑖 with its gene 𝑋𝑖 both motivate the following
definition: we say that 𝑋𝑖 is a root causal gene of 𝑌 if Δ𝑖 ≠ 0.

The second challenge involves computing the non-
parametric probability distributions of Δ𝑖 which come at
a high cost. We thus define the analogous expected version
by:

Γ𝑖 ≜

∫
𝑦

[
𝑝(𝑦 |Pa(𝑋𝑖), 𝑋𝑖) − 𝑝(𝑦 |Pa(𝑋𝑖))

]
𝑑𝑦

= E(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) −E(𝑌 |Pa(𝑋𝑖))
= E(𝑌 |SP(𝑋𝑖), 𝑋𝑖 , 𝐵) −E(𝑌 |SP(𝑋𝑖), 𝐵),

where 𝑝(𝑌 ) denotes the density of 𝑌 . Observe that if Δ𝑖 = 0,
then Γ𝑖 = 0. The converse is not true but likely to hold in real
data when a change in the probability distribution also changes
its expectation. The set SP(𝑋𝑖) ⊆ 𝑿 denotes the surrogate
parents of 𝑋𝑖 corresponding to the variables in 𝑿 associated
with Pa(𝑋𝑖) ⊆ 𝑿. The last equality holds almost surely as
𝑁→∞ by Theorem 1.

We call Φ𝑖 ≜ |Γ𝑖 | the Root Causal Strength (RCS) of 𝑋𝑖 on
𝑌 . The RCS obtains a unique value Φ𝑖 = 𝜙𝑖 𝑗 for each patient
𝑗 . We say that 𝑋𝑖 is a root causal gene of 𝑌 for patient 𝑗 if its
RCS score is non-zero. We combine the RCS scores across
a set of 𝑛 samples using the Deviation of the RCS (D-RCS)√︃

1
𝑛

∑𝑛
𝑗=1 𝜙

2
𝑖 𝑗

, or the standard deviation of RCS from zero. We
may compute D-RCS for each cluster or globally across all
patients depending on the context. We thus likewise say that
𝑋𝑖 is a root causal gene for a cluster of patients or all patients
in a sample if its corresponding D-RCS score for the cluster
or the sample is non-zero, respectively.

Algorithm
We now design an algorithm called Root Causal Strength
using Perturbations (RCSP) that recovers the RCS scores
using Perturb-seq and bulk RNA-seq data.

Finding Surrogate Ancestors
Computing Φ𝑖 for each 𝑋𝑖 ∈ 𝑿 requires access to the surrogate
parents of each variable or, equivalently, the causal graph
G. However, inferring G using causal discovery algorithms
may lead to large statistical errors in the high dimensional set-
ting8 and require restrictive assumptions such as d-separation
faithfulness9 or specific functional relations14.

We instead directly utilize the interventional Perturb-seq
data to recover a superset of the surrogate parents. We first
leverage the global Markov property and equivalently write:

Φ𝑖 =

���E(𝑌 |SA(𝑋𝑖), 𝑋𝑖 , 𝐵) −E(𝑌 |SA(𝑋𝑖), 𝐵)
��� , (5)

where SA(𝑋𝑖) denotes the surrogate ancestors of 𝑋𝑖 , or the
variables in 𝑿 associated with the ancestors of 𝑋𝑖 .

We discover the surrogate ancestors using unconditional
independence tests. For any 𝑋𝑘 ∈ 𝑿, we test 𝑋𝑘 ⊥⊥ 𝑃𝑖 by
unpaired two-sided t-test, where 𝑃𝑖 is an indicator function
equal to one when we perturb 𝑋𝑖 and zero in the control
samples of Perturb-seq. 𝑃𝑖 is thus a parent of 𝑋𝑖 alone but not
a child of 𝐵, so we do not need to condition on 𝐵. We use
the two-sided t-test to assess for independence because the
t-statistic averages over cells to mimic bulk RNA-seq. If we
conclude that 𝑋𝑘 ̸⊥⊥ 𝑃𝑖 , then 𝑋𝑘 must be a descendant of 𝑃𝑖 by
the global Markov property, so we include 𝑋𝑘 into the set of
surrogate descendants SD(𝑋𝑖). Curating every 𝑋 𝑗 ∈ 𝑿 such
that 𝑋𝑖 ∈ SD(𝑋 𝑗 ) into SA(𝑋𝑖) yields the surrogate ancestors
of 𝑋𝑖 as desired.

Procedure
We now introduce an algorithm called Root Causal Strength
using Perturbations (RCSP) that discovers the surrogate ances-
tors of each variable 𝑿 using Perturb-seq and then computes
the RCS of each variable using bulk RNA-seq. We summarize
RCSP in Algorithm 1.

RCSP takes Perturb-seq and bulk RNA-seq datasets as input.
The algorithm first finds the surrogate descendants of each
variable in 𝑿 in Line 2 in order to identify the surrogate
ancestors of each variable in Line 5. Access to the surrogate
ancestors and the batches 𝐵 allows RCSP to compute Φ𝑖 for
each 𝑋𝑖 ∈ 𝑿 from the bulk RNA-seq in Line 6. The algorithm
thus outputs the RCS scores Φ as desired.

Algorithm 1 Root Causal Strength using Perturbations (RCSP)
Input: bulk RNA-seq data with batches 𝐵, Perturb-seq data
Output: RCS scores Φ

1: for each 𝑋𝑖 ∈ 𝑿 do
2: SD(𝑋𝑖) ← all 𝑋𝑘 ∈ 𝑿 s.t. 𝑋𝑘 ̸⊥⊥ 𝑃𝑖 in Perturb-seq
3: end for
4: for each 𝑋𝑖 ∈ 𝑿 do
5: SA(𝑋𝑖) ← all 𝑋𝑘 ∈ 𝑿 s.t. 𝑋𝑖 ∈ SD(𝑋𝑘)
6: Compute Φ𝑖 using Eq. (5) in bulk RNA-seq
7: end for

We certify RCSP as follows:
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Theorem 2. (Fisher consistency) Consider the same assump-
tion as Lemma 1. If unconditional d-separation faithfulness
holds, then RCSP recovers Φ almost surely as 𝑁→∞.

We engineered RCSP to only require unconditional d-
separation faithfulness because real distributions may not
obey full d-separation faithfulness7.

Synthetic Data
Simulations
We generated a linear SEM obeying Equation (3) specif-
ically as 𝑋𝑖 = 𝑿𝛽𝑖 + 𝐸𝑖 for every 𝑋𝑖 ∈ 𝑿 and similarly
𝑌 = 𝑿𝛽𝑌 +𝐸𝑌 . We included 𝑝 +1 = 2500 variables in 𝑿 ∪𝑌 .
We instantiated the coefficient matrix 𝛽 by sampling from
a Bernoulli(2/(𝑝 − 1)) distribution in the upper triangular
portion of the matrix. The resultant causal graph thus has an
expected neighborhood size of 2. We then randomly permuted
the ordering of the variables. We introduced weights into the
coefficient matrix by multiplying each entry in 𝛽 by a weight
sampled uniformly from [−1,−0.25] ∪ [0.25,1]. The error
terms each follow a standard Gaussian distribution multiplied
by 0.5. We introduced batch effects by drawing each entry
of the mapping efficiencies 𝜋 from the uniform distribution
between 10 and 1000 for the bulk RNA-seq, and between 0.1
and 1 for the Perturb-seq. We set 𝑋𝑖← softplus(𝑋𝑖) and then
obtained the corrupted surrogate 𝑋𝑖 distributed Pois(𝑋𝑖𝜋𝑖 𝑗 )
for each 𝑋𝑖 ∈ 𝑿 and batch 𝑗 . We chose 𝑌 uniformly at random
from the set of vertices with at least one parent and no children.
We repeated the above procedure 30 times.

Comparators
We compared RCSP against the following four algorithms:

(1) Additive noise model (ANM)14,15: performs non-linear
regression of 𝑋𝑖 on Pa(𝑋𝑖) ∪ 𝐵 and then regresses 𝑌 on
the residuals 𝑬 \𝐸𝑖 to estimate |E(𝑌 |𝑬 \𝐸𝑖) −E(𝑌 |𝑿, 𝐵) |
for each 𝑋𝑖 ∈ 𝑿. The non-linear regression residuals are
equivalent to the error terms assuming an additive noise
model.

(2) Linear Non-Gaussian Acyclic Model (LiNGAM)1,14:
same as above but performs linear instead of non-linear
regression.

(3) CausalCell7: selects the top 50 genes with maximal
statistical dependence to𝑌 , and then runs the PC algorithm
using a non-parametric conditional independence test to
identify a causal graph among the top 50 genes. The
algorithm finally performs root causal inference with
ANM as above but uses the estimated parent sets for the
top 50 genes and the Perturb-seq data otherwise.

(4) Univariate regression residuals (Uni Reg): regresses
𝑌 on 𝑋𝑖 ∪ 𝐵 and estimates the absolute residuals
|𝑌 −E(𝑌 |𝑋𝑖 , 𝐵) | for each 𝑋𝑖 ∈ 𝑿.

(5) Multivariate regression residuals (Multi Reg): similar to
above but instead computes the absolute residuals after
regressing 𝑌 on (𝑿 \ 𝑋𝑖) ∪𝐵.

The first two methods are state-of-the-art approaches used for
root causal discovery. Univariate and multivariate regressions
do not distinguish between predictivity and causality, but we
included them as sanity checks. We performed all non-linear
regressions using multivariate adaptive regression splines to
control for the underlying regressor14. We compared the
algorithms on their accuracy in estimating Φ.

Real Data
Quality Control
We downloaded Perturb-seq datasets of retinal pigment epithe-
lial cells from the RPE-1 cell line, and lymphoblast cells from
the K562 cell line18. We used the genome-wide dataset version
for the latter. We downloaded the datasets from the scPerturb
database on Zenodo16 with the same quality controls as the
original paper. Replogle et al. computed adjusted library sizes
by equalizing the mean library size of control cells within
each batch. Cells with greater than a 2000 or 3000 library
size, and less than 25% or 11% mitochondrial RNA were
kept, respectively. The parameters were chosen by plotting the
adjusted library sizes against the mitochondrial RNA counts
and then manually setting thresholds that removed low quality
cells likely consisting of ambient mRNA transcripts arising
from premature cell lysis or cell death.

We next downloaded bulk RNA-seq datasets derived
from patients with age-related macular degeneration (AMD;
GSE115828) and multiple sclerosis (MS; GSE137143)17,32.
We excluded 10 individuals from the AMD dataset including
one with an RNA integrity number of 21.92, five missing an
integrity number (all others had an integrity number of less
than 10), and four without a Minnesota Grading System score.
We kept all samples from the MS dataset derived from CD4+
T cells but filtered out genes with a mean of less than 5 counts
as done in the original paper.

We finally kept genes that were present in both the AMD
bulk dataset and the RPE-1 Perturb-seq dataset, yielding a final
count of 513 bulk RNA-seq samples and 247,914 Perturb-seq
samples across 2077 genes. We also kept genes that were
present in both the MS bulk dataset and the K562 Perturb-seq
dataset, yielding a final count of 137 bulk RNA-seq samples
and 1,989,578 Perturb-seq samples across 6882 genes. We
included age and sex as a biological variable as covariates for
every patient in both datasets in subsequent analyses.

Evaluation Rationale
We do not have access to the ground truth values of Φ in real
data. We instead evaluate the RCSP estimates of Φ using
alternative sources of ground truth knowledge. We first assess
the accuracy of RCS using the control variable age as follows:

(1) Determine if the RCS values of age identify age as a root
cause in diseases that progress over time.

Second, root causal genes should imply a more omnigenic than
polygenic model because the effects of a few error terms dis-
tribute over many downstream genes. We verify omnigenecity
as follows:
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(2) Determine if the distribution of D-RCS concentrates
around zero more than the distribution of the Deviation of
Statistical Dependence (D-SD) defined as

√︃
1
𝑛

∑𝑛
𝑗=1𝜔

2
𝑖 𝑗

for each gene 𝑋𝑖 ∈ 𝑿 where Ω𝑖 = |E(𝑌 |𝑋𝑖 , 𝐵) −E(𝑌 |𝐵) |
and 𝜔𝑖 𝑗 its value for patient 𝑗 .

Despite the sparsity/omnigenecity of root causal genes, we
still expect the root causal genes to correspond to at least some
known causes of disease:
(3) Determine if genes with the top D-RCS scores correspond

to genes known to cause the disease.
Next, the root causal genes initiate pathogenesis, and we often
have knowledge of pathogenic pathways even though we may
not know the exact gene expression cascade leading to disease.
Intervening on root causal genes should also modulate patient
symptoms. We thus further evaluate the accuracy of RCSP
using pathway and drug enrichment analyses as follows:
(4) Determine if the D-RCS scores identify known pathogenic

pathways of disease in pathway enrichment analysis.

(5) Determine if the D-RCS scores identify drugs that treat
the disease.

Finally, complex diseases frequently involve multiple
pathogenic pathways that differ between patients. Patients
with the same complex disease also respond differently to
treatment. We hence evaluate the precision of RCS as follows:
(6) Determine if the patient-specific RCS scores identify

subgroups of patients involving different but still known
pathogenic pathways.

(7) Determine if the patient-specific RCS scores identify
subgroups of patients that respond differently to drug
treatment.

In summary, we evaluate RCSP in real data based on its ability
to (1) identify age as a known root cause, (2) suggest an
omnigenic root causal model, (3) recover known causal genes,
(4) find known pathogenic pathways, (5) find drugs that treat
the disease, and (6,7) delineate patient subgroups.

Enrichment Analyses
Multivariate adaptive regression splines introduce sparsity,
but enrichment analysis performs better with a dense input.
We can estimate the conditional expectations of Φ using any
general non-linear regression method, so we instead estimated
the expectations using kernel ridge regression equipped with
a radial basis function kernel19. We then computed the
D-RCS across all patients for each variable in 𝑿. We ran
pathway enrichment analysis using the fast gene set enrichment
analysis (FGSEA) algorithm20 with one hundred thousand
simple permutations using the D-RCS scores and pathway
information from the Reactome database (version 1.86.0)21.
We likewise performed drug set enrichment analysis with the
Drug Signature database (version 1.0)22. We repeated the
above procedures for the D-RCS of any cluster identified by
hierarchical clustering via Ward’s method16.

Data Availability
All datasets analyzed in this study have been previously pub-
lished and are publicly accessible as follows:

1. Bulk RNA-seq for AMD: GSE115828

2. Bulk RNA-seq for MS: GSE137143

3. Perturb-seq for the RPE-1 and K562 cell lines: DOI
10044268

Code Availability
R code needed to replicate all experimental results is available
on GitHub.
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Supplementary Materials

Normalization by Sequencing Depth

We theoretically showed that RCS does not require normalization by sequencing depth in the Methods using an asymptotic
argument. We tested this claim empirically by drawing 200 bulk RNA-seq samples from random DAGs as in the Methods but
over 𝑝 +1 = 250 variables. We varied the mean sequencing depth 𝑁/𝑝 of each gene from 15, 20, 30, 50, 90, 170, 330 to 650
counts; multiplying 𝑁/𝑝 by 𝑝 recovers the library size 𝑁 . We only included one batch in the bulk RNA-seq in order to isolate
the effect of sequencing depth. We compared no normalization, normalization by 10 housekeeping genes, normalization by 20
housekeeping genes, and normalization by library size. We repeated each experiment 100 times and thus generated a total of
100×4×8 = 3200 datasets.

We plot the results in Supplementary Figure 1. All methods improved with increasing mean sequencing depth as expected.
The no normalization strategy performed the best at low mean sequencing depths, followed by the housekeeping genes and then
total library size. The result even held with a small library size of 𝑁 = 15×249 = 3735 at the smallest mean sequencing depth
of 15, suggesting that the asymptotic argument holds well in bulk RNA-seq where 𝑁/𝑝 is often greater than 500 and 𝑁 greater
than the tens of millions. However, the average RMSEs of all normalization methods became more similar as sequencing
depth increased. We conclude that normalization by sequencing depth exceeds or matches the accuracy of other strategies. We
therefore do not normalize by sequencing depth in subsequent analyses.

Supplementary Figure 1. Mean RMSE to the ground truth RCS values across different mean sequencing depths and
normalization strategies. The no normalization strategy achieved low RMSEs at lower mean sequencing depths, but the
performances of all methods converged as the mean sequencing depths increased. Error bars denote 95% confidence intervals
of the mean RMSE.

Root Causal Effect versus Signed Root Causal Strength

We compared the root causal effects Γ and the signed RCS, or Δ. The two quantities are not equivalent, but they are similar. We
empirically investigated the differences between the estimated values of Δ and the true values of Γ using the RMSE and also the
percent of samples with incongruent signs; Δ and Γ have incongruent signs if one is positive and the other is negative. We again
drew 200 bulk RNA-seq samples from random DAGs as in the Methods over 𝑝 +1 = 250 variables with one batch. We varied
the bulk RNA-seq sample size from 100, 200, 400 to 800. We also compared true Δ against true Γ by estimating the two to
negligible error using 20,000 samples of 𝑿. We repeated each experiment 100 times and thus generated a total of 100×5 = 500
datasets.

We summarize the results in Supplementary Figure 2. The estimated Δ values approached the true Γ values with increasing
sample sizes. The true Δ values did not converge exactly to the true Γ values, but the RMSE remained low at 0.05 and the
two values differed in sign only around 5.3% of the time. Increasing the number of samples of 𝑿 to 50,000 did not change
performance, confirming that we reached the floor. We conclude that the empirical results replicate the theoretical results
because Δ and Γ do not match exactly. However, the two quantities take on similar values and their signs matched around 95%
of the time in practice.
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Supplementary Figure 2. Mean RMSE and percent sign incongruence of RCE and signed RCS values. The RMSE continues
to decrease with increasing sample size but reaches a floor of around 0.05. Similarly, the percent sign incongruence decreases
but reaches a floor of around 5%.

Functional Causal Models and Measurement Error
The experiments in the Results section quantify the accuracies of the algorithms in estimating Φ. However, the functional
causal models ANM and LiNGAM also estimate the error terms as an intermediate step, whereas RCSP does not. We therefore
also investigated the accuracies of ANM and LiNGAM in estimating the error term values.

Theoretical results suggest that ANM and LiNGAM cannot consistently estimate the error terms in RNA-seq due to the
Poisson measurement error. We empirically tested this hypothesis by sampling from bulk RNA-seq data as in the Methods but
with 𝑝 +1 = 100 and a batch size of one in order to isolate the effect of measurement error. We repeated the experiment 100
times for bulk RNA-seq sample sizes of 100, 200, 400, 800, 1600 and 3200. We plot the results in Supplementary Figure 3.
The accuracies of ANM and LiNGAM did not improve beyond an RMSE of 0.44 even with a large sample size of 6400. We
conclude that ANM and LiNGAM cannot estimate the error terms accurately in the presence of measurement error even with
large sample sizes.

Supplementary Figure 3. Mean RMSE values to the ground truth error term values across different sample sizes. The
accuracies of ANM and LiNGAM do not improve with increasing sample sizes.
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Additional Results for Age-related Macular Degeneration
Algorithm Comparisons
We say that an algorithm performs well in real data if it simultaneously (1) identifies an omnigenic model, (2) recovers known
pathogenic pathways with high specificity measured by the sparsity of leading edge genes, and (3) clusters patients into clear
subgroups.

We compared the algorithms with the AMD data. We summarize the results in Supplementary Figure 4 plotted on the next
page. The first column denotes the standard deviation of the outputs for each algorithm. We standardized the outputs to have
mean zero unit variance, and then added the minimum value so that all histograms begin at zero. Only the RCSP algorithm
had a histogram with large probability mass centered around zero. Incorporating feature selection and causal discovery with
CausalCell introduced more outliers in the histogram of ANM. We conclude that only RCSP detected an omnigenic root causal
model.

We plot the results of pathway enrichment analysis in the second column of Supplementary Figure 4. RCSP, LiNGAM and
univariate regression detected pathways related to oxidative stress in AMD. However, the “mitotic prometaphase” and “DNA
strand elongation” pathways in blue for LiNGAM involved 94 and 27 leading edge genes, respectively. The “cellular responses
to stimuli” and “signal transduction” pathways for multivariate regression also involved 253 and 282 leading edge genes. In
contrast, the “amino acid plasma membrane transport” pathway for RCSP involved two leading edge genes. We conclude that
RCSP identified a known pathogenic pathway of AMD with the fewest number of leading edge genes.

We finally plot the clustering results in the third column of Supplementary Figure 4. The RCSP sum of squares plot revealed
four clear groups of patients, whereas the other plots did not reveal a clear number of categories using the elbow method. We
conclude that only RCSP identified clear subgroups of patients in AMD.

In summary, RCSP detected the most omnigenic model, identified pathogenic pathways with maximal specificity and
discovered distinguishable patient subgroups. We therefore conclude that RCSP outperformed all other algorithms in the AMD
dataset.
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Supplementary Figure 4. Comparison of the algorithms in age-related macular degeneration.
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Biological Results
We provide the full pathway enrichment analysis results in Supplementary Table 1 corresponding to Figure 2 (c). We summarize
pathway enrichment analysis of the black cluster of Figure 2 (g) in Figure 2 (j). However, analyses of the blue, green and pink
clusters did not yield significant pathways even at a liberal FDR threshold of 10%.

Pathway p-value q-value Effect Size Leading Edge
Amino acid transport across the plasma membrane 2.44e-05 0.038 0.995 8140,6510
RHO GTPases Activate ROCKs 2.09e-03 0.388 0.976 4659,5500
Endosomal/Vacuolar pathway 2.32e-03 0.388 0.998 3107
Diseases of Cellular Senescence 2.97e-03 0.388 0.997 1021
Binding of TCF/LEF:CTNNB1 to target gene promoters 6.52e-03 0.680 0.993 4609
APEX1-Indep. Resolution of AP Sites via Nucleotide Replacement 7.28e-03 0.712 0.980 11284,7515
MASTL Facilitates Mitotic Progression 1.59e-02 0.978 0.911 84930,983
PI5P Regulates TP53 Acetylation 1.94e-02 0.978 0.980 79837
Formation of Incision Complex in GG-NER 2.24e-02 0.978 0.791 2966,9978,2967
Glycine degradation 2.24e-02 0.978 0.977 1738
Prefoldin mediated transfer of substrate to CCT/TriC 3.96e-02 0.978 0.787 5203,5201,10576

Supplementary Table 1. Full pathway enrichment analysis results for all patients in the AMD dataset. We list the Entrez gene
IDs of up to the top three leading edge genes in the right-most column.

We examined whether the clusters of Figure 2 (g) differentiate dry and wet macular degeneration. Wet macular degeneration
is associated with the highest Minnesota Grading System (MGS) score of 41. We plotted the UMAP embedding against MGS
(Supplementary Figure 5 (a)). None of the two UMAP dimensions correlated significantly with the MGS score (5% uncorrected
threshold by Spearman’s correlation test). These results and the large RCS scores of age in Figure 2 (a) seem to support
the hypothesis that wet macular degeneration is a more severe type of dry macular degeneration. However, MGS does not
differentiate between wet macular degeneration and late stage dry macular degeneration involving geographical atrophy. We
therefore cannot separate late stage dry and wet macular degeneration using the RCS scores alone.

We correlated the two UMAP dimensions with the top 30 genes ranked by their RCS scores. We plot genes with the highest
correlation to the first and second UMAP dimensions in Supplementary Figures 5 (b) and 5 (c), respectively. Many genes
correlated with the first dimension, but only three genes correlated with the second at an FDR threshold of 5%.

(a) Severity (b) UMAP Dimension 1 (c) UMAP Dimension 2

Supplementary Figure 5. Additional UMAP embedding results for AMD. (a) The UMAP dimensions did not correlate with
AMD severity as assessed by the MGS score. Many genes correlated with the first UMAP dimension in (b), but only three
genes correlated with the second UMAP dimension in (c). Blue bars passed an FDR threshold of 5%, and error bars denote
95% confidence intervals.

We finally performed drug enrichment analysis in each of the four clusters in Figure 2 (g). We summarize the results in
Supplementary Figure 6. Only two drugs – and one potentially therapeutic option – passed FDR correction in patients in the
black cluster with the most identified root causal genes according to the RCS scores. In contrast, enrichment analysis identified
many drugs in patients in the green cluster with the lowest RCS scores and thus relatively few root causal genes. The pink and
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blue clusters yielded moderate results. We conclude that drug enrichment analysis expectedly identified more drugs for patients
on the left hand side of the UMAP embedding with fewer root causal genes than on the right hand side with many simultaneous
root causal genes.

(a) Black (b) Pink

(c) Green (d) Blue

Supplementary Figure 6. Drug enrichment analysis results by cluster in Figure 2 (g). The analyses recovered similar drugs
across clusters, but the results for the green cluster in (c) were supra-significant.

Additional Results for Multiple Sclerosis
Algorithm Comparisons
We compared the algorithms using the MS data with the same criteria used for the AMD dataset. We summarize the results in
Supplementary Figure 7 plotted on the next page. Only the histogram of RCSP had large probability mass centered around zero
as shown in the first column. The histogram of LiNGAM contained many outliers, so it appears to spike around a value of 18.
The histograms of ANM and CausalCell were again near identical. We conclude that only the histogram of RCSP supported an
omnigenic root causal model in MS.

We performed pathway enrichment analysis on the algorithm outputs and summarize the results in the second column of
Supplementary Figure 7. The functional causal models ANM, LiNGAM and CausalCell did not identify significant pathways
at an FDR corrected threshold of 0.05. In contrast, multivariate and univariate regression both identified many significant
pathways in blue with no specific link to the blood brain barrier. The top six significant pathways for multivariate and univariate
regression involved 112 to 831 and 18 to 545 leading edge genes, respectively. In contrast, the two significant pathways of
RCSP involved only 2 and 9 leading genes. We conclude that RCSP detected pathogenic pathways of MS with the sparsest set
of leading edge genes.

We finally clustered the algorithm outputs into patient subgroups. We list the sum of squares plots in the third column of
Supplementary Figure 7. Univariate regression did not differentiate between the patients because it detected one dominating
cluster. RCSP and multivariate regression identified clear subgroups according to the elbow method, whereas the sum of squares
plots for ANM, LiNGAM and CausalCell showed no clear cutoffs. We conclude that only RCSP and multivariate regression
identified clear patient subgroups in MS.

In summary, only RCSP simultaneously detected an omnigenic root causal model, identified pathogenic pathways with high
specificity and discovered clear patient subgroups. We therefore conclude that RCSP also outperformed all other algorithms in
the MS dataset.
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Supplementary Figure 7. Comparison of the algorithms in multiple sclerosis.
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Biological Results

We provide the full global pathway enrichment analysis results for MS in Supplementary Table 2. Pathway enrichment analysis
of the individual clusters in Figure 3 (f) consistently implicated EPH-ephrin signaling among the top two pathways. However,
each cluster also involved one separate additional pathway. The green cluster involved the same APC-AXIN pathway as the
global analysis via beta-catenin. On the other hand, the blue cluster involved “platelet sensitization by LDL.” Low density
lipoprotein enhances platelet aggregation. Platelet degranulation in turn drives the generation of autoreactive T cells in the
peripheral circulation during disturbance of the blood brain barrier2. Finally, CTLA4 regulates T-cell homeostasis and inhibits
autommunity for the pink cluster3. The D-RCS scores of each cluster thus implicate different mechanisms of T cell pathology.

Pathway p-value q-value Effect Size Leading Edge
APC truncation mutants have impaired AXIN binding 1.91e-06 3.45e-4 0.960 5525,5527
EPH-ephrin signaling 4.23e-05 6.12e-3 0.826 8874,102,8976
Ethanol oxidation 2.02e-03 0.182 0.967 219,128
RHOQ GTPase cycle 2.72e-03 0.226 0.793 9322,8874,10395
Glycogen storage disease type 0 (muscle GYS1) 4.32e-03 0.322 0.996 2992
NFE2L2 regulating TCA cycle genes 6.31e-03 0.414 0.970 4199,3417
C6 deamination of adenosine 7.42e-03 0.414 0.981 103,104
Ion channel transport 7.63e-03 0.414 0.728 57198,540,55515
Synthesis of IP3 and IP4 in the cytosol 7.65e-03 0.414 0.904 3633,805,23236
Diseases associated with glycosaminoglycan metabolism 8.21e-03 0.414 0.894 2132,11285,3339
Signaling by SCF-KIT 8.67e-03 0.414 0.794 7006,5578,3815

Supplementary Table 2. Full pathway enrichment analysis results for all patients in the MS dataset. We again list up to the
top three leading edge genes in the right-most column.

(a) Blue (b) Pink (c) Green

Supplementary Figure 8. Pathway enrichment analysis results by cluster consistently revealed EPH-ephrin signaling as well
as an additional pathway implicating T cell pathology.

The severity of MS, as assessed by the Expanded Disability Status Scale (EDSS) score, did not correlate with either dimension
of the UMAP embedding (Supplementary Figure 9 (a)). The top genes in Figure 3 (d) such as MNT and CERCAM also did not
correlate. However, lower ranked genes such as TRIP10 did (Supplementary Figure 9 (b)). An expanded correlation analysis
with the top 30 genes revealed significant correlations across a variety of lower ranked genes (Supplementary Figures 9 (c) and
9 (d)). We conclude that the distribution of lower ranked genes govern the structure of the UMAP embedding in Figure 3 (f).
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(a) Severity (b) TRIP10

(c) UMAP Dimension 1 (d) UMAP Dimension 2

Supplementary Figure 9. Additional analyses of the UMAP embedding for MS. (a) The UMAP dimensions did not correlate
with MS severity as assessed by EDSS. However, lower ranked genes such as TRIP10 correlated with both dimensions in (b).
We expanded the analysis to the top 30 genes and plot the genes with the highest correlations to UMAP dimension one and two
in (c) and (d), respectively.

Proofs
Lemma 1. Assume Lipschitz continuity of the conditional expectation for all 𝑁 ≥ 𝑛0:

E
���E(𝑌 |𝑼) −E(𝑌 |𝑼, 𝐿, 𝐵)

��� ≤ E𝐶𝑁

����𝑼− 𝑼

𝑑𝐿

���� , (6)

where 𝑑 =
𝜋𝑼𝐵∑

𝑋𝑖 ∈𝑨
�̃�𝑖 𝜋𝑖𝐵

, 𝐶𝑁 ∈ 𝑂 (1) is a positive constant, and we have taken an outer expectation on both sides. Then

E(𝑌 |𝑼) = lim𝑁→∞E(𝑌 |𝑼, 𝐿, 𝐵) almost surely.

Proof. We can write the following sequence:

E

����E(𝑌 |𝑼) − lim
𝑁→∞

E(𝑌 |𝑼, 𝐿, 𝐵)
���� = E lim

𝑁→∞

���E(𝑌 |𝑼) −E(𝑌 |𝑼, 𝐿, 𝐵)
���

≤ E lim
𝑁→∞

𝐶𝑁

����𝑼− 𝑼

𝑑𝐿

���� ≤ 𝐶E ����𝑼− 1
𝑑

lim
𝑁→∞

𝑼

𝐿

���� = 𝐶E

����𝑼− 1
𝑑
𝑼𝑑

���� = 0,

where we have applied Expression (6) at the first inequality. We have 𝐶𝑁 ≤ 𝐶 for all 𝑁 ≥ 𝑛0 in the second inequality because
𝐶𝑁 ∈ 𝑂 (1). With the above bound, choose 𝑎 > 0 and invoke the Markov inequality:

P

(����E(𝑌 |𝑼) − lim
𝑁→∞

E(𝑌 |𝑼, 𝐿, 𝐵)
���� ≥ 𝑎

)
≤ 1

𝑎
E

����E(𝑌 |𝑼) − lim
𝑁→∞

E(𝑌 |𝑼, 𝐿, 𝐵)
���� = 0.

The conclusion follows because we chose 𝑎 arbitrarily.

Proposition 1. If 𝐸𝑖 ̸⊥⊥ 𝑌 or 𝐸𝑖 ̸⊥⊥ 𝑌 |Pa(𝑋𝑖) (or both), then 𝐸𝑖 is a root cause of 𝑌 .

Proof. If 𝐸𝑖 ̸⊥⊥𝑌 or 𝐸𝑖 ̸⊥⊥𝑌 |Pa(𝑋𝑖) (or both), then 𝐸𝑖 and 𝑌 are d-connected by the global Markov property. Since 𝐸𝑖 is a root
vertex, the d-connection implies that there exists a directed path from 𝐸𝑖 to 𝑌 .
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Proposition 2. We have P(𝑌 |𝐸𝑖 ,Pa(𝑋𝑖)) = P(𝑌 |𝑋𝑖 ,Pa(𝑋𝑖)) under Equation (3).

Proof. We can write:

P(𝑌 |𝐸𝑖 ,Pa(𝑋𝑖)) = E𝑋𝑖 |𝐸𝑖 ,Pa(𝑋𝑖 )P(𝑌 |𝐸𝑖 , 𝑋𝑖 ,Pa(𝑋𝑖)) = P(𝑌 |𝐸𝑖 , 𝑋𝑖 ,Pa(𝑋𝑖)) = P(𝑌 |𝑋𝑖 ,Pa(𝑋𝑖)).

The second equality follows because 𝑋𝑖 is a constant given 𝐸𝑖 and Pa(𝑋𝑖). The third equality follows by the global Markov
property because 𝑌 is a terminal vertex.

Theorem 2. (Fisher consistency) Consider the same assumption as Lemma 1. If unconditional d-separation faithfulness holds,
then RCSP recovers Φ almost surely as 𝑁→∞.

Proof. If 𝑋𝑘 ̸⊥⊥ 𝑃𝑖 in Line 2 of Algorithm 1, then 𝑋𝑘 is a descendant of the root vertex 𝑃𝑖 under the global Markov property.
Similarly, if 𝑋𝑘 is a descendant of 𝑃𝑖 , then 𝑋𝑘 is d-connected to 𝑃𝑖 so 𝑋𝑘 ̸⊥⊥ 𝑃𝑖 by unconditional d-separation faithfulness.
Hence, SD(𝑋𝑖) contains only and all the surrogate descendants of 𝑋𝑖 for each 𝑋𝑖 ∈ 𝑿. This in turn implies that SA(𝑋𝑖) in Line
5 of Algorithm 1 contains only and all the surrogate ancestors of 𝑋𝑖 . Hence, RCSP now has access to the correct set SA(𝑋𝑖) as
well as 𝐵 for each 𝑋𝑖 ∈ 𝑿. We finally invoke Theorem 1 to conclude that RCSP recovers Φ almost surely as 𝑁→∞.
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