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Abstract
In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-
nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole
genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors
for SNPs (-28.9%), INDELs (-19.3%), and SVs (-52.4%) across three datasets. Next, we correct a common flaw in
phasing evaluations, reducing measured flip errors by over 50%. Lastly, we show that vcfdist is more accurate than
previously published works and on par with the newest approaches, but with improved result interpretability.

Keywords: benchmarking, variant calling, structural variation, single nucleotide polymorphism, insertion, deletion,
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Background
Prior to the invention of DNA sequencing, structural variants (SVs) larger than 3Mb were observed using a mi-
croscope as early as 1959 [1, 2]. Following the initial sequencing of the human genome in 2001 using short read
technologies [3], however, the focus of most research investigations shifted to single nucleotide polymorphisms
(SNPs) and small insertions and deletions (INDELs). It quickly became apparent that SNPs are the most common
form of genetic variation, accounting for the approximately 0.1% difference in genomic sequence between two in-
dividuals [4], or about 3.1 million SNPs. Short-read technologies were well-poised to investigate these differences,
due to their short read lengths but high per-base accuracy. It has since been determined that though SVs and
INDELs are less common than SNPs, due to their larger size they account for a further 1.4% difference in genome
composition between individuals [5], or about 43.2 million bases.

A few years later, in 2009, the first tools to identify structural variants from short-read alignments were devel-
oped [6, 7, 8]. Although short-read based structural variant callers remain widely used, they have relatively low
recall (10-70%) due to the inherent difficulties of identifying large insertions and deletions from mapped short
reads [9]. The accurate detection of structural variants was greatly assisted by the development of new long-read
sequencing technologies around 2014, most notably from Pacific Biosciences (PacBio) and Oxford Nanopore Tech-
nologies (ONT) [10, 11]. Although early iterations of each technology had much lower per-base accuracy rates of
around 85% [10, 11], longer read lengths led to unambiguous read mappings and more accurate structural variant
calls [12]. Since then, accuracy has improved and both PacBio and ONT can sequence reads above 15Kb with 99
to 99.9% accuracy, rivalling the accuracy of short reads [13, 14]. As shown in Figure 1, this has led to the recent
development of variant calling pipelines built from long-read sequencing data [13].

Once small and structural variants have been called, accurate comparison of variant call files (VCFs) is important
for 1) genome-wide association studies (GWAS) [18, 19], 2) precision medicine [20], 3) variant annotation and ef-
fect prediction [21, 22], 4) sequencing and variant calling pipeline benchmarking [15, 16], and 5) variant database
curation [23, 24]. In short, accurate VCF comparison is necessary for studying the impacts of genetic variants,
for understanding the performance of variant calling methods, and for making decisions based on an individual’s
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Figure 1: (a) Until recently, small and structural variants were called separately using different pipelines because they
required different DNA sequencing technologies: short reads cannot be unambiguously mapped to call many structural
variants accurately, and long reads were not accurate enough for precise small variant calling. (b) Due to recent improvements
in long-read sequencing accuracy, whole genome sequencing (WGS) pipelines can now identify both small and structural
variants (SVs) from the same sequencing data. It is still standard practice to evaluate these variant call categories separately,
however, using vcfeval [15] for small variants and Truvari bench [16] for large INDELs and SVs. (c) We propose joint
benchmarking of small and structural variant calls in this work, by extending vcfdist [17] to evaluate SVs. By comparing
query and truth variants across size categories, vcfdist is able to detect a greater number of equivalent truth and query
variants. This improves benchmarking accuracy, as shown in Figure 2.

genetic composition. This information can then be used to identify mutations that cause genetic diseases, to select
the best variant calling pipeline for clinical usage, to develop targeted drugs, and to direct future research and
funding.

Although small and structural variant calls can now be made from the same analysis pipeline, the current standard
practice for VCF benchmarking involves separating small variants (smaller than 50bp) from structural variants
(larger than 50bp) prior to benchmarking (see Figure 1). This 50bp threshold was selected for historical and techni-
cal reasons related to the limitations of short-read sequencing, not because a 50bp threshold is biologically significant
in any way [9, 8]. Short-read sequencing’s variant calling performance is poor for INDELs larger than 50bp because
the mappability of a 100bp read containing such a large variant is significantly reduced. For this reason, variants
below and above this size threshold have been historically evaluated separately. Prematurely categorizing variant
calls into small and structural variants prior to benchmarking has a significant impact on measured variant calling
performance (see Figure 2), since several smaller variants are frequently equivalent to one or several larger variants.

The variant call file (VCF) format was first defined in 2011, and a simple exact variant comparison engine was re-
leased at the same time as part of vcftools [25]. vcfeval was introduced by Real Time Genomics (RTG) in 2015, and
is capable of handling equivalent variant representations [15]. It was designed to evaluate unphased small variant
calls, requires exact matches, and evaluates variants up to 1000bp in size. vcfeval has stood the test of time, being
the recommended small variant calling evaluator by the Global Alliance for Genomics and Global Health (GA4GH)
in 2019 [26, 27]. In 2023, vcfdist was released to evaluate locally phased small variant calls from long-read sequenc-
ing pipelines, relaxing vcfeval’s requirement that variants match exactly [17].

Most structural variant calling evaluators similarly allow inexact variant matches. Truvari bench, for example,
considers two structural variants equivalent if they are located nearby on the reference, are of similar total size,
overlap one another, and have a 70% similar sequence [16]. Although Truvari bench is able to perform whole genome
SV comparison, it ignores small INDELs under 50bp by default, and is not currently recommended for evaluating
SNPs [16]. Truvari’s refine module extends Truvari bench using an alignment algorithm (WFA [28], MAFFT [29],
or POA [30]) to harmonize phased query and truth VCF variant representations for benchmarking INDELs and
SVs at least 5bp in size [31].

In this work, we extend vcfdist to be the first tool to jointly evaluate phased SNP, INDEL, and SV calls for whole-
genome datasets. Doing so required major internal restructuring and improvements to vcfdist to overcome scalability
issues relating to memory and compute requirements. We show that performing a joint analysis of all variant sizes
leads to better measured overall accuracy than when evaluating small and structural variants separately, reducing
measured false negative and false positive variant calls by 28.9% for SNPs, by 19.3% for INDELs, and by 52.4% for
SVs of over 50 bases. We find that vcfdist’s alignment-based analysis obtains more accurate results than vcfeval or
Truvari bench and similar accuracy results to Truvari refine, but provides more interpretable results because the
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representation of evaluated truth and query variants is unchanged. Finally, we jointly evaluate SNP, INDEL, and
SV phasing and show that between 42.6% and 92.2% of all phasing flip “errors” that popular phasing analysis tool
WhatsHap reports are false positives. Differing variant representations cause variants to appear incorrectly phased,
though they are not. These false positive flip errors then lead to false positive switch errors, which will significantly
affect downstream tertiary analyses. We demonstrate that vcfdist is able to avoid these errors in phasing analysis
by using alignment-based variant comparison.

Results
Joint evaluations allow variant matches across size categories and increase measured performance.
In order to understand the impact of jointly benchmarking small and structural variants on measured accuracy, we
evaluated three whole genome sequencing (WGS) datasets with vcfdist using several different variant subsets from
the truth and query VCFs. More information on these WGS datasets can be found in the Methods section and
Supplementary Table 1. Figure 2 shows that compared to existing methodologies, which evaluate small variants (in
orange) and structural variants (in red) separately, jointly evaluating all variants (in green) leads to lower measured
error rates for each variant category.

(a)

(b)

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%

Fa
lse

 N
eg

at
iv

e 
Ra

te

SNP evaluation
SV variants
SMALL variants
ALL variants

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%
INDEL evaluation

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%
SV evaluation

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%

Fa
lse

 D
isc

ov
er

y 
Ra

te

SNP evaluation
SV variants
SMALL variants
ALL variants

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%

INDEL evaluation

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR
0.1%

0.2%

0.5%

1%

2%

5%

10%

20%

50%

100%

SV evaluation

Figure 2: We evaluated three phased HG002 whole genome sequencing (WGS) variant callsets (described in Supplementary
Table 1) on the whole-genome GIAB-Q100 benchmarking BED regions for small and structural variants using vcfdist. We
show that compared to existing methodologies, which evaluate small variants (in orange) and structural variants (in red)
separately, evaluating all variants at once (in green) leads to higher measured performance for each variant category. (a)
false negative rate (FNR) and (b) false discovery rate (FDR) decrease when all variants are evaluated together, across
all datasets. This occurs because correctly determining variant equivalence sometimes requires considering variants from
multiple categories. Please note that results are plotted on a logarithmic scale.

In Figure 2, the hifiasm-dipcall dataset uses alignment parameters which are identical to the draft benchmark Q100-
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dipcall VCF. As a result, it sees the lowest rates of improvement from a joint evaluation of small and structural
variants: a 4.6% reduction in SNP errors, a 1.2% reduction in INDEL errors, and a 24.9% reduction in SV errors.
The hifiasm-GIAB-TR VCF uses the same assembly as hifiasm-dipcall with very different alignment parameters,
and therefore sees great benefits from a joint evaluation: a 62.5% reduction in SNP errors, a 34.8% reduction
in INDEL errors, and a 75.3% reduction in SV errors. The Q100-PAV VCF lies somewhere between these two
extremes, with a 19.5% reduction in SNP errors, a 21.7% reduction in INDEL errors, and a 57.0% reduction in
SV errors. A visualization of the alignment parameters used for each dataset is included in Supplementary Figure 1.

These performance improvements originate from cases where multiple smaller variants are found to be nearly or
exactly equivalent to one or several larger variants. Figure 3, below, shows an example where this occurs and a
joint evaluation of small and structural variants improves measured performance. A similar example containing
sequence information in VCF format is provided in Supplementary Figure 2.
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Figure 3: An example from the Q100-PAV HG002 variant callset (chr1:3,287,250-3,287,700 on GRCh38) where using
vcfdist to jointly evaluate small and structural variants improves measured performance. Single nucleotide polymorphisms
(SNPs) are marked with black crosses, and deletions are represented as red rectangles. A joint evaluation of all variants dis-
covers that truth and query haplotypes are identical, despite variant representation differences. By prematurely categorizing
variants prior to evaluation into small and structural variants, this equivalence cannot be determined and variants would be
classified as false positive (FP) and false negative (FN) variant calls instead of true positives (TP).

Sophisticated variant comparison techniques result in better phasing evaluations.
To understand joint phasing evaluation accuracy, we compare vcfdist to WhatsHap, a current standard for phasing
evaluation [32, 33]. WhatsHap’s compare module performs one-to-one variant comparisons between truth and query
VCFs to evaluate phasing correctness. For each heterozygous query variant, WhatsHap searches for an identical
truth variant and notes whether that truth variant has the same or opposite phasing of the corresponding query
variant. Within each phase block, WhatsHap then uses a simple dynamic programming algorithm to minimize the
total number of flip errors (in which the phase of a single variant is mismatched) and switch errors (in which the
phases of all following variants are mismatched) [32]. Although WhatsHap’s approach seems intuitively correct, it
breaks down in repetitive regions of the genome where differing variant representations can result in false positive
reported flip errors. Table 1 clearly shows that WhatsHap reports far more switch and flip errors than vcfdist on
the exact same variant calls, particularly for the Q100-PAV and hifiasm-GIAB-TR datasets.

Dataset Tool
Measured

Switch Errors
Measured
Flip Errors

hifiasm-dipcall
WhatsHap 610 396

vcfdist 494 390

Q100-PAV
WhatsHap 324 433

vcfdist 6 52

hifiasm-GIAB-TR
WhatsHap 1074 1004

vcfdist 494 396

Table 1: Comparison of WhatsHap compare and vcfdist phasing evaluations relative to the Q100-dipcall truth VCF on the
whole-genome GIAB-Q100 BED. WhatsHap consistently reports more switch and flip errors than vcfdist. We demonstrate
in Supplementary Figure 3 that most of these supposed phasing errors are actually correctly phased and provide an example
below in Figure 4.

In contrast to WhatsHap, vcfdist performs full alignment of all nearby truth and query variants (a “supercluster”),
and is able to discover equivalencies in variant representations. As a result, vcfdist reports far fewer phasing errors.
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The Q100-PAV VCF contains the fewest switch and flip errors, likely because it was produced using the same
verkko assembly as the draft benchmark Q100-dipcall VCF. For the hifiasm-dipcall and hifiasm-GIAB-TR VCFs,
vcfdist reports nearly identical switch and flip error rates. We believe this is because they were both produced
using the same hifiasm scaffold [34]. In comparison, WhatsHap reports a much higher combined switch and flip
error rate for the hifiasm-GIAB-TR VCF than for the hifiasm-dipcall VCF. We expect this is because the variant
representation used by the hifiasm-GIAB-TR callset differs significantly from that used by the draft benchmark
Q100-dipcall VCF, whereas the parameters used by the hifiasm-dipcall VCF are identical (Supplementary Figure 1).

In Supplementary Figure 3, we present an extensive comparison of the switch and flip errors reported by WhatsHap
and vcfdist. We find that 42.6% of flip errors reported by WhatsHap proved to be false positives, since the truth
and query sequences match exactly when all neighboring variants are considered. An example is shown below in
Figure 4, where WhatsHap reports a flip error within a complex variant even though both truth and query haplo-
types match exactly. A further 49.6% of the flip errors reported by WhatsHap were not classified as flip errors by
vcfdist due to insufficient evidence. Since there was no ground truth for these instances, we manually examined 16
random cases from each dataset (48 in total) where the ground truth was unknown. We found that classifying flip
errors with WhatsHap resulted in 43 false positives, 4 true negatives, and 1 true positive. In comparison, classifying
flip errors with vcfdist resulted in 40 true negatives, 7 false positives, and 1 false negative when compared to a
manual examination. As can be seen in Table 1, these excess false positive flip error calls by WhatsHap artificially
inflate the reported switch error rate as well, which will significantly impact tertiary analyses.

(a)

(b)

CONTIG POS REF ALT FORMAT TRUTH QUERY

chr1 32,653,646 T G GT:BD:BC 0|1:TP:1.0 0|1:TP:1.0

chr1 32,653,657 TTTG T GT:BD:BC 0|1:TP:1.0 .:.:.

chr1 32,653,658 TTG T GT:BD:BC .:.:. 0|1:TP:1.0

chr1 32,653,658 TTG T GT:BD:BC 1|0:TP:1.0 .:.:.

chr1 32,653,659 TG T GT:BD:BC .:.:. 1|0:TP:1.0

chr1 32,653,665 TG T GT:BD:BC .:.:. 1|1:TP:1.0

chr1 32,653,666 G T GT:BD:BC 1|1:TP:1.0 .:.:.

Position 37 46 47 58 59 60 61 66 67

Reference GTTTTTTTT T TTTTTTTTTTT T T G TTTTTT G TTTT

Haplotype 1
Truth GTTTTTTTT T TTTTTTTTTTT T TTTTTT T TTTT

Query GTTTTTTTT T TTTTTTTTTTT T T TTTTTT TTTT

Haplotype 2
Truth GTTTTTTTT G TTTTTTTTTTT TTTTTT T TTTT

Query GTTTTTTTT G TTTTTTTTTTT T TTTTTT TTTT

Figure 4: (a) The variant call file (VCF) for an example WhatsHap false positive flip error call. Each VCF record shows
the variant chromosome (CONTIG) and positions (POS) in addition to the reference (REF) and alternate (ALT) alleles and their
genotypes (GT), the benchmarking decision (BD), and benchmarking credit (BC). In isolation, the two base deletion at position
32,653,658 (highlighted in red) appears to be phased differently between the truth and query VCFs (i.e. a flip error). (b)
The resulting haplotype sequences. When this supposed flip error is considered in the context of the surrounding variants,
vcfdist is able to determine that the two sets of truth and query variant calls are equivalent because both truth and query
haplotype sequences are exactly the same. As a result, it is clear that no such flip error has occurred and differences between
the truth and query VCF are due solely to differing variant representations.

vcfdist enables highly accurate comparisons with reasonable runtime.
Next, we compare vcfdist to previously published works vcfeval [15] and Truvari bench [16], designed for evalu-
ating small and structural variants, respectively. We also benchmark the performance of Truvari’s refine module,
a recently developed extension which realigns truth and query variants to one another using MAFFT [29], wave-
front alignment (WFA) [28], or partial-order alignment (POA) [30] for more accurate benchmarking. Truvari refine
achieves similar accuracy to vcfdist but changes the total counts of truth and query variants, making comparisons
across different evaluation tools and pipelines difficult (see Table 3 for an example). All current versions of Truvari
do not evaluate SNPs, since Truvari was designed for SV evaluation.

At the other end of the spectrum, vcfeval only evaluates variants smaller than 1000 bases. For this reason, we
restrict the maximum variant size to 1Kb in Figure 5. As variant length increases in Figure 5, vcfeval reports
an increasingly high error rate compared to vcfdist (90.6% higher for SNPs, 128% higher for INDELs, and 321%
higher for SVs). This is because vcfeval requires truth and query variants to match exactly (which is less likely
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for larger variants), whereas vcfdist and Truvari do not. A more lenient matching heuristic will lead to strictly
fewer false positives and false negatives in Figure 5. To avoid falsely inflating vcfdist’s performance, we set vcfdist’s
credit threshold to 70% in order to match Truvari’s sequence similarity threshold of 70% as closely as possible. We
additionally standardize the method of variant counting across all tools in Figure 5 to be consistent with vcfdist
because otherwise differences in counting credit for partial allele matches would dominate the results (see Table 4).
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Figure 5: Comparison of vcfdist with prior works vcfeval and Truvari bench (and its unpublished refine variants) in terms
of measured (a) false negative rate (FNR) and (b) false discovery rate (FDR) on the GIAB-Q100 BED, which contains
benchmarking regions covering 90.3% of the human genome. Note that Truvari does not evaluate SNPs, and that all results
are plotted on a logarithmic scale.

Figure 5 shows that vcfdist measures lower false negative and discovery rates for all variant sizes across all three
datasets when compared to previously published works Truvari bench and vcfeval. It is able to accomplish this
by allowing inexact matches, evaluating groups of variants simultaneously, and allowing variant matches to occur
across size categories. In comparison to Truvari refine, vcfdist achieves a similar improvement in benchmarking ac-
curacy but without modifying the variant representations during benchmarking, and evaluating SNPs in addition to
INDELs and SVs. Despite vcfdist’s advantages, we find that Truvari refine currently scales better with variant size,
since it uses more memory-efficient alignment algorithms. We plan to incorporate wavefront alignment (WFA) [28]
into the next release of vcfdist, but for now the maximum recommended variant length is 10Kb. Table 2 shows the
runtimes of vcfdist, vcfeval, Truvari bench, and Truvari refine on our server; configuration details are provided in
the Methods section.

Both Truvari and vcfdist perform alignment-based evaluation, which allows detection of variant calls that are
mostly but not exactly correct. This is crucial for identifying large structural variants that are less likely to be
called perfectly. In contrast, vcfeval finds matching subsets of truth and query variants that result in the exact
same haplotype sequence. This computation would be less expensive if not for the fact that vcfeval does not assume
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GIAB-Q100 BED Runtime
hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR

vcfdist 52:19 1:04:56 59:22
vcfeval 14:40 50:39 46:18

Truvari bench 10:03 10:59 10:46

Truvari refine (MAFFT) 14:10 23:08 22:36
Truvari refine (WFA) 12:26 1:13:53 1:24:03
Truvari refine (POA) 11:57 21:47 24:39

Table 2: Runtime results for vcfdist, vcfeval, Truvari bench, and Truvari refine in (hh:)mm:ss format.

the input VCFs are phased. Because there are 2n possible phasings for n heterozygous variants, vcfeval’s runtime
depends more closely on the number and representation of variants than either Truvari or vcfdist. As a result,
vcfeval has a wide range of runtimes. It is also important to note that when the number of nearby heterozygous
variants is too large, vcfeval fails to complete. This happened for 9,712 variants (0.20%) on the hifiasm-dipcall VCF,
for 21,886 variants (0.45%) on the Q100-PAV VCF, and for 136,073 variants (2.50%) on the hifiasm-GIAB-TR VCF.

The runtimes of vcfdist and Truvari, on the other hand, depend closely on the size of the sequences to be aligned.
Truvari reduces total runtime by evaluating variants in two stages; only complex regions are passed on to Truvari’s
refine module for more sophisticated evaluation. vcfdist segments contigs into independent superclusters using
heuristics or a bidirectional wavefront algorithm (biWFA) [35], as shown in Supplementary Table 3.

An example of benchmarking interpretability for the HLA-DQB1 gene.
The results of variant call benchmarking tools such as vcfeval, Truvari, and vcfdist are frequently used in downstream
tertiary analyses. In order to compare the interpretability of these tools, we evaluated the chr6:32,664,600-32,664,899
region of the HLA-DQB1 gene, since it is known to cause difficulties during analysis arising from differing variant
representations. The HLA-DQB1 gene is part of a family of genes called the human leukocyte antigen (HLA)
complex, and plays an essential role in the human immune system. Deleterious mutations in HLA-DQB1 are highly
associated with common autoimmune diseases such as celiac disease [36] and multiple sclerosis (MS) [37].

SNP Results INDEL Results SV Results
Truth Query Truth Query Truth Query

TP FN TP FP TP FN TP FP TP FN TP FP
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t hifiasm-dipcall 32 0 32 0 2 0 2 0 2 0 2 0

Q100-PAV 32 0 66 0 2 0 3 0 2 0 0 0
hifiasm-GIAB-TR 32 0 71 0 2 0 1 0 2 0 0 0
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l hifiasm-dipcall 14 0 14 0 2 0 2 0 2 0 2 0
Q100-PAV 13 0 13 4 1 0 0 0 2 0 0 0

hifiasm-GIAB-TR 12 0 12 4 0 0 0 0 2 0 0 0

T
ru
va
ri

b
en

ch

hifiasm-dipcall * * * * 2 0 2 0 2 0 2 0
Q100-PAV * * * * 2 0 2 1 0 2 0 0

hifiasm-GIAB-TR * * * * 1 1 1 0 0 2 0 0

T
ru
va
ri

re
fi
n
e hifiasm-dipcall * * * * 2 0 2 0 2 0 2 0

Q100-PAV * * * * 3 0 3 0 0 0 0 0
hifiasm-GIAB-TR * * * * 3 0 3 0 0 0 0 0

Table 3: Comparison of tools evaluating the chr6:32,664,600-32,664,899 region of the HLA-DQB1 gene. All three query
VCFs called both haplotype sequences exactly correct; the resulting sequences are shared in Supplementary Figure 2. As a
result, there should be no false negative (FN) or false positive (FP) variant calls counted, and the number of truth VCF true
positives (TP) should be consistent across all three datasets. The only tool that correctly ascertains this is vcfdist. SNP
results for Truvari are marked with a * because Truvari does not evaluate SNPs.

We found through a manual examination that all three query VCFs called both haplotype sequences in this region
exactly correct. A summary of these results is shown in Table 3, and the resulting sequences are included in Sup-
plementary Figure 2. Although all sequences were the same, there were significant differences in how this genetic
variation was represented. Compared to the first Q100-dipcall haplotype, the Q100-PAV and hifiasm-GIAB-TR
VCFs chose to represent a 169-base insertion and a 168-base deletion as a 1-base insertion and 34 SNPs. Relative
to the second Q100-dipcall haplotype, the hifiasm-GIAB-TR VCF chose to represent a 1-base insertion and 1-base
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deletion as 5 SNPs. These differences account for the wide range of query true positive variant counts in Table 3.

Note that because both truth sequences were called exactly correct, there should be no false negative (FN) or false
positive (FP) variant calls counted, and the number of truth VCF true positives (TP) should be consistent across
all three datasets. vcfdist correctly counts all variants, as expected. vcfeval correctly counts the SVs, but fails to
evaluate a large number of the SNP and INDEL variants because there are too many heterozygous variants in close
proximity. It excludes these variants from the analysis and proceeds with a warning that the region is too complex
to be evaluated. Truvari bench does not evaluate the SNPs, and fails to identify several of the INDELs and SVs.
This failure occurs because it discards the SNPs prior to evaluation, and therefore does not discover the two cases
where numerous SNPs are equivalent to an insertion and deletion. Truvari refine also does not evaluate SNPs. It is
able to detect that all variant calls are correct, though it does convert both query and truth SVs to an INDEL for
the Q100-PAV and hifiasm-GIAB-TR datasets.

Validation of vcfdist.
Lastly, we compare vcfdist to existing variant calling evaluation tools in order to verify its correctness. Following
variant normalization (described in the Methods section), we organize all variants evaluated by vcfdist, vcfeval, and
Truvari in Table 4. 57,865 SNPs in this region are excluded from Figure 4 because they were not evaluated by
Truvari; we include these results in Supplementary Figure 4a. An additional 723 INDELs and SVs occurring at the
border of the GIAB-TR BED regions are excluded because they were only analyzed by some of the VCF comparison
tools. Variants are then categorized based on the apparent reason for differences in evaluated correctness between
the three tools and counted. An example from each of the eight discovered categories is shown in Supplementary
Figure 5, and described in further detail below.

Category Count
Allele
Match

Different
Thresholds

Complex
Variant

Pick
Single

Flip
Error

Backtracking
Tie

Variant
Overlap

all agree FP 451
only vcfeval calls TP 5 5
only Truvari calls TP 256 223 12 12 9
only vcfdist calls TP 23 10 13

all agree TP 35,376
only vcfeval calls FP 662 346 307 1 8
only Truvari calls FP 1 1
only vcfdist calls FP 52 2 37 6 6 1

Table 4: A comparison of INDEL and SV variant calling evaluation by vcfdist, vcfeval, and Truvari, restricting to chr20 of
the GIAB-TR tandem repeats BED. SNPs were excluded because they were not evaluated by Truvari. Prior to evaluation,
truth and query VCFs were normalized using Truvari phab. This means that the Truvari results reported in this figure are
largely equivalent to Truvari refine (MAFFT). Variants that were not evaluated uniformly by the three tools are categorized
and counted. Each category is described in greater detail within the manuscript text, below, and an example provided in
Supplementary Figure 5.

Firstly, all three tools handle allele matches differently, which accounts for the majority of differences in Table 4.
Truvari will match a query homozygous variant to a truth heterozygous variant and consider both to be true pos-
itives. vcfeval will perform the same match but consider the variants to be a false positive and false negative.
vcfdist will match the heterozygous variant to one haplotype of the homozygous variant, consider both to be true
positives, and then consider the second haplotype of the query homozygous variant to be a false positive. None
of these methods is best; rather, each has strengths for certain applications. We caution that users consider these
performance differences based on their downstream goals.

The second most common area of disagreement between tools stems from the fact that they have different thresholds
for considering variant calls to be true positives. For example, vcfeval requires variants to match exactly, whereas
vcfdist requires variants to have a partial credit score above 0.7 and Truvari requires a sequence similarity above 0.7.
For certain edge cases, such as where a length three deletion is called length four, even Truvari and vcfdist may differ.

The next most common differences are intentional implementation differences between the tools. In particular,
vcfdist refuses to split a complex variant into multiple variants and consider only a subset of those to be correct.
Truvari, by default, only allows a variant to participate in one match (with the ––pick single parameter), re-
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gardless of allele count. vcfeval is the only tool that does not enforce local phasing and allows flip errors of nearby
variants to occur.

Lastly, there are rare cases where unintentional implementation differences lead to slightly differing results. Not all
backtracking algorithms behave identically, leading to cases in which different algorithms will adjudicate which of
a pair of variants is a false positive differently. There are also differences due to directly adjacent or overlapping
variants. For example, only vcfeval allows two separate insertions at the same exact location on the same haplotype
and Truvari evaluates spanning deletions, whereas vcfeval and vcfdist do not.

Discussion
In this paper, we demonstrate that evaluating small and structural variants together is necessary for discovering
equivalent sets of truth and query variant calls. Furthermore, we show that intelligent variant comparison, which is
able to identify equivalent variant representations, is important for accurate phasing analyses. We then show that
vcfdist is now able to scale to whole-genome analysis of phased SNPs, INDELs, and SVs with improved accuracy
over prior work. Lastly, we describe and explain the differences between vcfdist and prior work as they relate to
our variant calling benchmarking results.

As variant calling performance improves and increasingly complex clusters of variants are evaluated, minor differ-
ences in the implementations of evaluation tools such as Truvari, vcfeval, and vcfdist begin to significantly impact
the results. Currently, the way each tool handles partially correct variant calls differs greatly. Partial correctness
can occur in many ways: a single insertion is called mostly but not entirely correct, a homozygous variant is called
heterozygous (genotype error), a deletion is called with the incorrect length, a heterozygous variant is called on
the wrong haplotype (flip error), or only a subset of several variants that comprise a complex variant are called.
In Table 4, we show that differences in how these cases are handled lead to significant differences in the reported
summary metrics (Figure 5). Ideally, as a community we would define a standard methodology to handle each of
these cases and clearly delineate how to count and categorize these errors. Unfortunately, there are both advan-
tages and disadvantages for each method of categorizing and counting these errors, and the best method to use may
depend on the end application. In the absence of a standardized approach, it is important that users of variant
calling evaluation tools understand how each tool handles these cases, and the impact that may have on their results.

In this work, we have revisited some of the earlier design decisions we made in vcfdist v1. Although we still believe
that total alignment distance is a useful supplementary metric to precision and recall curves, we now skip this
computation by default, and allow re-enabling it with the ––distance parameter. We believe that stratifying pre-
cision and recall curves by variant size offers many of the same benefits, with a more easily interpretable result. We
have also replaced variant calling partial credit with a credit threshold ––credit-threshold [0.7]. Partial credit
is still calculated, but rather than assigning partial false and true positives (which is unnecessarily complicated
and non-intuitive), we allow the user to select a partial credit threshold above which variants are considered true
positives and below which variants are considered false positives. This more closely aligns with the behavior of
other structural variant calling benchmarking tools such as Truvari. Lastly, vcfdist no longer realigns truth and
query variants to a standard normalized representation by default. We found this behaviour to be undesirable in
Truvari refine because it complicates comparisons with other pipelines or datasets. vcfdist still retains this ca-
pability, however, which can be enabled using ––realign-query and ––realign-truth. Although we no longer
enable this feature by default, we urge individuals benchmarking variant calling pipelines to be aware of the variant
representations used in their truth and query VCFs.

At the moment, vcfdist is designed to compare phased variants from a single sample query VCF to a truth VCF.
We plan to extend vcfdist in the near future to handle unphased variant calls as well, since many genomic datasets
do not contain phasing information. Along a similar vein, we would like for vcfdist to be able to work with multi-
sample population VCFs for use in genome wide association studies (GWAS). We believe joint evaluation of small
and structural variants will be incredibly valuable in this context. In order to make this a reality, we will need to
continue to improve the efficiency of vcfdist. The alignment-based calculation of precision and recall will need to be
shifted to a wavefront alignment based implementation [28], and when large or many nearby variants are present,
we may need to sacrifice accuracy in order to improve efficiency.
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Conclusion
Recent improvements in long-read sequencing accuracy have enabled calling phased small and structural variants
from a single analysis pipeline. Despite this, the current standard tools for variant calling evaluation are only
designed for either small (vcfeval) or large (Truvari) variants. In this work we extend vcfdist – previously a small
variant calling evaluator – to evaluate structural variants, making it the first benchmarking tool to jointly evaluate
phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs)
for the whole genome.

We find that a joint evaluation reduces measured false negative and false positive variant calls across the board:
by 28.9% for SNPs, 19.3% for INDELs, and 52.4% for SVs over 50 bases. Building on vcfdist’s alignment-based
evaluation, we also jointly analyze phasing accuracy. vcfdist identifies that 43% to 92% of all flip errors called
by standard phasing evaluation tool WhatsHap are false positives due to differences in variant representations.
Lastly, we compare the accuracy of vcfdist to prior works and demonstrate that it is able to find more true positive
variant matches than vcfeval and Truvari bench. We find that vcfdist performs similarly to Truvari refine, while
also providing more easily interpretable results.

Methods
All scripts described below are available in the Github repository https://github.com/TimD1/vcfdist [38] in the
analysis-v2/ subdirectory.

Datasets.
Q100-dipcall VCF: The v0.9 Q100-dipcall draft benchmark VCF and its associated GIAB-Q100 BED containing
small and structural variants were used as the ground truth VCF throughout this manuscript [13]. They were created
during a collaboration between the Telomere-to-Telomere Consortium (T2T, https://sites.google.com/ucsc.
edu/t2tworkinggroup/home), the Human Pangenome Reference Consortium (HPRC, https://humanpangenome.
org/), and the Genome in a Bottle Consortium (GIAB, https://www.nist.gov/programs-projects/genome-bottle)
in an attempt to establish a diploid whole genome benchmark that is perfectly accurate. The term “Q100” refers to a
Phred quality score [39] of 100, or one error per ten billion bases (i.e. zero expected errors per human genome). The
v0.9 draft benchmark contains many errors, but improvements are still being made towards this ultimate goal. A
combination of data from Oxford Nanopore Technologies (ONT), Pacific Biosciences high-fidelity sequencing (HiFi),
Strand-Seq, and Hi-C were used in combination with the trio-based verkko assembler [13] and manual review to
create a high-quality assembly. Lastly, dipcall [40] was used to generate a VCF of this assembly relative to the
GRCh38 reference FASTA.

Q100-PAV VCF: The same verkko assembly [13] was then used by researchers at the National Institute of Standards
and Technology (NIST, https://nist.gov) to generate a second VCF using the Phased Assembly Variant Caller
(PAV) [41]. For this reason, the Q100-PAV variant phasings match very closely with the Q100-dipcall phasings,
as can be seen in Table 1. Note that by default, PAV merges some non-identical haplotypes, resulting in inexact
variant calls.

hifiasm-dipcall VCF: The hifiasm-dipcall VCF was created by the HPRC using a combination of ONT ultra-long
(UL), HiFi, Hi-C, and Bionano optical mapping data [34]. First, the trio-based hifiasm assembler [42] was used
to create the initial assembly using HiFi and Hi-C data. Bionano optical mapping data was used to verify these
scaffolds, and a combination of manual variant curation and polishing with ONT-UL data was used to generate
the final assembly [34]. Lastly, dipcall [40] was used to generate a VCF of this assembly relative to the GRCh38
reference FASTA.

hifiasm-GIAB-TR VCF: The v4.20 hifiasm-GIAB-TR VCF and its associated GIAB-TR BED were generated by
the Genome In A Bottle Consortium (GIAB) using the same hifiasm assembly, in addition to custom scripts that
use minimap2 and paftools [43]. The methodology is described in detail in [31], and was part of an effort to create a
high-quality tandem repeat benchmark. Because the same hifiasm assembly was used, the phasing analysis results of
hifiasm-GIAB-TR closely match hifiasm-dipcall in Table 1, but the variant representation is much different than the
other VCFs, as shown in Supplementary Figure 1 (see https://github.com/ACEnglish/adotto/discussions/4
for details).
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Preprocessing.
Prior to evaluation, multi-allelic variants were split using bcftools norm v1.17 [44] with the -m-any parameter.
Where required, the HG002 sample was extracted from the original VCF into a single-sample VCF using bcftools
query.

Separate vs. joint evaluation of small and structural variants.
For each dataset, each subset (small variants (SNPs and INDELs) only, structural variants only, and all variants)
of variants was first extracted into a separate VCF using bcftools view v1.17 [44]. SVs were defined as insertions or
deletions greater than or equal to 50 base pairs in size. INDELs are below this size threshold. vcfdist v2.5.0 [38] was
used to compare each VCF to the Q100-dipcall ground truth within the GIAB-Q100 benchmarking regions. Scripts
available in the small_sv_all/ directory of our Github repository [38] were used to calculate and plot the false
negative and false discovery rates for each variant categorization within each VCF. The results are shown in Figure 2.

Description of vcfdist phasing analysis.
The original vcfdist v1 release contained an experimental phasing analysis algorithm that was untested and unready
for production. In this work we extended the original algorithm, described in [17], to perform a proper evaluation
of phasing. First, we added support for phase blocks using the input VCFs’ FORMAT:PS fields. Unlike most other
tools, vcfdist allows the ground truth VCF to contain phase sets as well. Using the reported phase sets, vcfdist
now correctly identifies switch and flip errors. In addition to reporting detailed switch and flip error information,
vcfdist also calculates several useful summary metrics such as phase block NG50 (breaking regions on new phase
blocks), switch NGC50 (breaking regions on new phase blocks and switch errors), and switchflip NGC50 (breaking
regions on new phase blocks, switch errors, and flip errors). The NG50 metric reports the largest region such
that all regions of that size and larger cover at least 50% of the genome. Lastly, we added a phasing threshold so
that variant clusters are considered unphased unless one phasing significantly improves the cluster’s edit distance
from the ground truth versus the other phasing. The default value is set at –-phasing-threshold [0.6], or 60%
reduction in edit distance, although the results from Supplementary Figure 3c suggest that a higher threshold may
be appropriate.

Phasing analysis comparison with WhatsHap.
First, because WhatsHap does not allow providing a BED file to mask analysis regions, we use bcftools filter
v1.7 [44] to restrict all three VCFs to the GIAB-Q100 benchmarking BED regions. We then performed phasing
analyses using WhatsHap v2.1 [32] and vcfdist v2.5.0 [38]. We then used several scripts, available in the phasing/
directory of our Github repository [38], to compare and plot the resulting flip and switch errors reported by each
tool. The results are shown in Supplementary Figure 3 and Table 1. In Supplementary Figure 3, a random subset of
16 clusters with unknown phasing from each VCF was selected and manually examined in order to define a ground
truth and compare vcfdist’s and WhatsHap’s performances on this subset of cases.

Accuracy comparison of variant calling evaluation tools.
In order to determine the differences in variant evaluation between vcfdist, vcfeval, Truvari bench, and Truvari
refine, we evaluated all three datasets using each tool on the GIAB-Q100 BED. We ran vcfdist v2.5.0 [17] with -l
1000 to limit the maximum SV length because vcfeval does not consider variants larger than 1000 bases. We ran
rtg vcfeval v3.12.1 [15] with the following parameters: ––ref-overlap ––all-records ––vcf-score-field=QUAL.
We ran Truvari bench v4.2.1 with the following command line options: ––no-ref a ––sizemin 1 ––sizefilt 1
––sizemax 1000 ––pick single ––typeignore ––dup-to-ins. We then ran Truvari refine v4.2.1 using ––regions
candidate.refine.bed from the previous Truvari bench step with the following parameters: ––use-original-vcfs
––use-region-coords ––recount ––align <method> where <method> was WFA, MAFFT, and POA. We then
merged results from Truvari refine and bench by subtracting the candidate.refine.bed (used by Truvari refine)
from the GIAB-Q100 BED using bcftools subtract v1.17, evaluating the remaining regions with Truvari bench, and
then merging the results. Lastly, we used several scripts, available in the vs_prior_work/ directory of our Github
repository [38], to compare and plot the false negative and false discovery rates of each tool. These results are
shown in Figure 5.

The same methodology was used to evaluate the example complex variant in the HLA-DQB1 gene for each tool.
Scripts are available in the hla/ directory of our Github repository [38], and results are shown in Table 3.
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Validation of vcfdist.
In order to validate the correctness of vcfdist’s reported variant calling results, we needed a way to compare how
vcfdist classified a single variant to the classifications reported by prior works vcfeval and Truvari refine (MAFFT)
for that same variant. We chose to compare against Truvari refine instead of Truvari bench because it is more
accurate [31]. Unfortunately, Truvari refine changes the representations of the input truth and query variants,
making it difficult to compare benchmarking results across tools. Instead of directly using Truvari refine, we used
an equivalent workflow that involves normalizing variant representations using Truvari phab (which internally uses
MAFFT) followed by Truvari bench evaluation. This approach enabled us to directly compare the decisions made
by vcfdist, vcfeval, and Truvari on the exact same set of variants while also enabling Truvari to be more accurate.

We first normalized chr20 of the GIAB-TR BED from each of our three VCFs with the truth VCF using Truvari
v4.2.1 phab (MAFFT). We then converted these VCFs into single sample VCFs of the desired format and split up
multi-allelic variants using bcftools reheader, norm, and view v1.18 [44]. Afterwards, we evaluated each VCF using
vcfdist v2.5.0 [17], vcfeval v3.12.1 [15], and Truvari bench v4.2.1 [16]. Scripts available in the phab_cm/ directory of
our Github repository [38] were used to run and summarize the evaluations. The results are presented in Table 4,
Supplementary Figure 4, and Supplementary Figure 5.

Improvements to the vcfdist clustering algorithm.
A naive variant comparison algorithm would compare each query variant to a single reference variant individually
in order to discover matches. While this approach works for the majority of variant calls, there are cases where
several query variants are equivalent to one or many truth variants (Supplementary Figure 6a). Several examples
of this are shown in Supplementary Figure 7. This is especially true for repetitive regions of the genome, or as the
representations of the truth and query VCFs diverge. In order for a benchmarking tool to recognize these cases of
complex equivalency, all the variants involved must be evaluated at once in a group, or “cluster”.

The default clustering algorithm employed by vcfdist discovers all cases in which variants could participate in a
complex match and groups those variants together into a single cluster. vcfdist achieves this by first initializing each
cluster to a single variant. Next, the leftmost and rightmost reference positions that can be reached by aligning
through each cluster with an alignment cost less than or equal to the cost of the current variant representation are
recorded. If the reach of a cluster overlaps with the reach of a neighboring cluster, the two clusters are merged.
This occurs until all clusters have stabilized.

In order to handle structural variants, vcfdist’s original clustering algorithm (described briefly above and in greater
detail in [17]) was required to undergo significant changes to improve efficiency and reduce memory usage. Firstly,
the bidirectional Smith-Waterman-Gotoh [45] algorithm used to calculate cluster left and right reaches was con-
verted to a wavefront alignment based [28] equivalent in order to reduce memory usage from O(n2) to O(n). Next,
the alignment cost of each cluster was recalculated (and lowered, when possible) following each cluster merge in
order to reduce unnecessary cluster growth in following iterations. The left and right reaches of each cluster were
cached across iterations and only recalculated following a merge. A greedy merging strategy was employed to merge
multiple clusters at once when possible. Cluster reaches were calculated using iterative reach doubling to avoid
unnecessary computation. Lastly, multi-threading support was added for clustering.

Comparison of vcfdist clustering methods.
vcfdist v2.5.0 was run with “gap n” clustering for n = (10, 100, 500) in addition to the default biWFA clustering
using the command line options ––cluster gap 10. Wall clock runtime was measured using the GNU time com-
mand on an Intel Xeon E5-2697 v3 CPU, with 56 threads and 64GB RAM. Scripts used to calculate the cluster
sizes shown in Supplementary Table 3 from vcfdist’s verbose outputs are available in the clustering/ directory of
our Github repository [38].

Extending vcfdist to evaluate structural variants.
In order to evaluate larger structural variants using vcfdist, we made several changes such as introducing command
line parameter ––largest [5000] to control the size of variants evaluated by vcfdist. We also added summary met-
ric reporting for structural variants separately from INDELs and added the ––sv-threshold [50] flag to control the
threshold for this classification. In addition to the numerous clustering efficiency improvements mentioned above,
we decreased the memory usage of the precision and recall calculations. Since each cluster can be evaluated inde-
pendently, we also added multi-threading and work balancing based on cluster size for all intra-cluster computations.
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Runtime comparison of variant calling evaluation tools.
Variants larger than 1000bp were pre-filtered using bcftools view v1.17 and inversions were filtered using GNU
grep v2.20 because otherwise they significantly impact the runtime of Truvari refine (even when excluded from the
analysis with ––sizemax 1000). Wall clock runtime was measured using the GNU time command on an Intel Xeon
E5-2697 v3 CPU, with 56 threads and 64GB RAM. The scripts with the exact parameters used to run each tool
are available in the vs_prior_work/ directory of our Github repository [38]. The results are shown in Table 2.
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Supplementary Information

Datasets

Q100-dipcall hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR

Consortium(s) T2T, GIAB, HPRC HPRC NIST GIAB
Assembler verkko hifiasm verkko hifiasm

Assembly Method trio-based trio-based trio-based trio-based
Assembly T2T-HG002-Q100v0.9 polished HPRC scaffold T2T-HG002-Q100v0.9 polished HPRC scaffold

Variant Caller minimap2, dipcall minimap2, dipcall PAV minimap2, paftools

Supplementary Table 1: The origins of each phased whole genome sequencing dataset used in this manuscript.
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Supplementary Figure 1: The design space for affine-gap alignment and variant representation with match, mismatch,
gap opening, and gap extension penalties m, x, o, and e. All parameters have been normalized so that m = 0, and the
penalties for starting (o+ e) and extending (e) a gap are plotted relative to substitutions (x). This plot includes the variant
representations used in all four datasets, along with short-read [47], long-read [48, 49], assembly [43], edit distance [50], copy
number variant [51], and structural variant [52] aligners for comparison. Each aligner is plotted in a unique color, except
for when multiple aligners use identical parameters. For dual affine gap aligners [43, 48, 49], two points are plotted with an
arrow indicating the transition to a lower extension penalty e2. NGMLR [52] uses a logarithmic gap penalty, and so there is a
continuous lowering of e. verkko is plotted at (0, 0) because it uses tandem repeat compression [13]. nPoRe [51] uses different
gap penalties for simple tandem repeats (STRs) based on their measured likelihoods, resulting in many plotted points.
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Joint Benchmarking Example

SMALL
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996555 T C GT:BD:BC 1|1:FN:0.000 .:.:.
chr1 996559 G A GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996596 A AGGACCCCCCGCTGGAGGGG GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996674 G T GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996691 G A GT:BD:BC 1|1:FN:0.000 .:.:.
chr1 996707 T G GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996722 G A GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996728 A AG GT:BD:BC .:.:. 1|1:FP:0.000
chr1 996731 A C GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000

SV
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996282 G GGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAA

GT:BD:BC 1|1:TP:0.867 .:.:.

chr1 996348 A AGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAAG

GGGCACCCCACATCTGGGGCCACAGGATGCAGGG

TGGGGAGGGCAGAAAGGACCCCCCGCTGGAGGGG

GCACCTCACGTCTGGGGCCACAGGATGCAGGGTG

GGGAGGACAGAAAGGACCCCCCGCTGGAG

GT:BD:BC .:.:. 1|1:TP:0.867

chr1 996728 A AGGACCCCCCGCTGGAGGGGGGACCCCCCGCTGG

AGGGGGCACCCCACATCTGGGGCCACAGGATGCA

GGGTGGGGAGGGCAGAAAGGACCCCCCGCTGGAG

GGGGCACCTCACGTCTGGGGCCACAGGAGGCAGG

GTGGGGAGGACAGAAAG

GT:BD:BC 1|1:TP:0.867 .:.:.

ALL
CONTIG POS REF ALT FORMAT TRUTH QUERY
chr1 996282 G GGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAA

GT:BD:BC 1|1:TP:1.000 .:.:.

chr1 996348 A AGGGGCACCCCACATCTGGGGCCACAGGATGCAG

GGTGGGGAGGGCAGAAAGGCCCCCCCGCGGGAAG

GGGCACCCCACATCTGGGGCCACAGGATGCAGGG

TGGGGAGGGCAGAAAGGACCCCCCGCTGGAGGGG

GCACCTCACGTCTGGGGCCACAGGATGCAGGGTG

GGGAGGACAGAAAGGACCCCCCGCTGGAG

GT:BD:BC .:.:. 1|1:TP:1.000

chr1 996350 A G GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996423 C T GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996555 T C GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996559 G A GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996596 A AGGACCCCCCGCTGGAGGGG GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996674 G T GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996691 G A GT:BD:BC 1|1:TP:1.000 .:.:.
chr1 996707 T G GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996722 G A GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000
chr1 996728 A AG GT:BD:BC .:.:. 1|1:TP:1.000
chr1 996728 A AGGACCCCCCGCTGGAGGGGGGACCCCCCGCTGG

AGGGGGCACCCCACATCTGGGGCCACAGGATGCA

GGGTGGGGAGGGCAGAAAGGACCCCCCGCTGGAG

GGGGCACCTCACGTCTGGGGCCACAGGAGGCAGG

GTGGGGAGGACAGAAAG

GT:BD:BC 1|1:TP:1.000 .:.:.

chr1 996731 A C GT:BD:BC 1|1:TP:1.000 1|1:TP:1.000

Supplementary Figure 2: An example (from the Q100-PAV dataset) where joint evaluation of small and structural
variants changes the benchmarking results from 4 true positives (TP), 4 false positives (FP), and 2 false negatives (FN) to 9
true positives. Each variant call file (VCF) entry reports the variant contig (CONTIG), position (POS), reference allele (REF),
alternate allele (ALT), and truth and query information: genotypes (GT), benchmarking decision (BD), and benchmarking
credit (BC).

Phasing Analysis
In Supplementary Figure 3b, vcfdist classifies a cluster’s flip error status as NONE when the original haplotypes match
exactly, and as FLIP when both haplotypes match exactly when the phasing of all variants is flipped. Because the
full haplotypes match exactly, the ground truth is known and vcfdist is correct. When neither phasing results in
an exact match, the ground truth is labelled UNKNOWN but vcfdist still makes a classification (NONE/FLIP) based on
how much closer the edit distance between the truth and query haplotypes is when all variant phasings are flipped.
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Because the hifiasm-dipcall dataset uses the same variant representation as the Q100-dipcall ground truth, there
are few WhatsHap false positive flip errors for this VCF. Once the query VCF variant representation differs from
the ground truth, however, the Q100-PAV and hifiasm-GIAB-TR datasets show a large number of WhatsHap false
positive flip errors in Supplementary Figure 3b.

Because vcfdist enforces local phasing of variants within a cluster, it may miss single-variant flip errors when the
phasing of one of several variants in a cluster is incorrect. In this case, the ground truth would be labelled UNKNOWN
because neither phasing would result in the truth and query haplotypes matching exactly. A manual investigation
of a random subset of these cases with unknown ground truth in Supplementary Figure 3c shows that in most
of these cases, no flip error has occurred. This shows that although vcfdist reports far fewer flip errors in total
than WhatsHap, few of these are false negatives. The majority of cases with unknown ground truth are likely also
WhatsHap false positives.

(a)

(b)

(c)

NONE SWITCH

WhatsHap

NONE

SWITCH

FLIP

vc
fd

ist

0 175

1 493

46 734

hifiasm-dipcall
phasing switch errors

NONE FLIP

WhatsHap

NONE

UNKNOWN / NONE

UNKNOWN / FLIP

FLIP

Tr
ut

h 
/ v

cf
di

st

0 16

13 70

14 3

40 315

hifiasm-dipcall
phasing flip errors

NONE FLIP

Truth

NONE

FLIP

W
ha

ts
Ha

p

3 0

12 1

hifiasm-dipcall
manual examination

of UNKNOWNs

NONE FLIP

Truth

NONE

FLIPvc
fd

ist 9 1

6 0

                      

NONE SWITCH

WhatsHap

NONE

SWITCH

FLIP

vc
fd

ist

0 1105

4 2

19 85

Q100-PAV
phasing switch errors

NONE FLIP

WhatsHap

NONE

UNKNOWN / NONE

UNKNOWN / FLIP

FLIP

Tr
ut

h 
/ v

cf
di

st

0 196

6 246

2 4

5 30

Q100-PAV
phasing flip errors

NONE FLIP

Truth

NONE

FLIP

W
ha

ts
Ha

p

0 0

16 0

Q100-PAV
manual examination

of UNKNOWNs

NONE FLIP

Truth

NONE

FLIPvc
fd

ist 16 0

0 0

                      

NONE SWITCH

WhatsHap

NONE

SWITCH

FLIP

vc
fd

ist

0 1928

4 490

128 664

hifiasm-GIAB-TR
phasing switch errors

NONE FLIP

WhatsHap

NONE

UNKNOWN / NONE

UNKNOWN / FLIP

FLIP

Tr
ut

h 
/ v

cf
di

st
0 459

16 347

12 5

75 285

hifiasm-GIAB-TR
phasing flip errors

NONE FLIP

Truth

NONE

FLIP

W
ha

ts
Ha

p

1 0

15 0

hifiasm-GIAB-TR
manual examination

of UNKNOWNs

NONE FLIP

Truth

NONE

FLIPvc
fd

ist 15 0

1 0

                      

Supplementary Figure 3: (a) Switch error confusion matrices for vcfdist and WhatsHap for all three whole genome
sequencing datasets, evaluated on the GIAB-Q100 BED. Note that WhatsHap considers flips errors to be equivalent to two
consecutive switch errors, whereas vcfdist counts each separately. (b) Flip error confusion matrices for vcfdist and WhatsHap.
Note that cluster ground truths are only labelled as NONE or FLIP when absolutely certain, i.e. if both haplotypes with all
variants using either the original or flipped phasing match exactly. As a result, many WhatsHap false positive flip calls can
be identified. An example is shown in Figure 4. (c) For UNKNOWN clusters, we manually examined a random subset of 16
clusters from each VCF to determine the ground truth and plot confusion matrices for WhatsHap and vcfdist.
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HLA-DQB1 Complex Variant Example

Q100-dipcall haplotype 0

Q100-dipcall hap 0, hifiasm-dipcall hap 0
CTGCCTGTCCCCCTGCTCTGCCCTAGGTCCCTGCCCCTCCGATGCACCAGCCCCCAGCAC

CCCCACCGCCTCCTCCTGTCAGCCGGGGTGGAACGAACAAGGCTCAGGTTCCAGAGGCCG

CGCCCCCTTCGCCCCTCCTGGCGCAGAGACTCTGGGCCCCTGCCAAGGATGGGCCTCGCA

GACGGGCGACGACGCTCACCTCGCCGCTGCAAGGTCGTGCGGAGCTCCAACTGCCGCCGC

CTCCTTTCCCCTGGGGTGGAATGAACTGGGCTCAGATTTCAGAGACCTCGCCCCCATCGC

CCCTCCCGGCACAGAAACTCGGGGTCTCGGCCAAGGGTGGGCCTCACGGAGGGGCGACGA

CGCTCACCTCTCCTCTGCAAGATCCCGCGGAACGCCACCTCGTAGTTGTGTCTGCACACC

GTGTCCAACTCCGCCCGGGTCCCTTCCAGGACTTCCTTCTGGCTGTTCC

Q100-PAV hap 0, hifiasm-GIAB-TR hap 1
CTGCCTGTCCCCCTGCTCTGCCCTAGGTCCCTGCCCCTCCGATGCACCAGCCCCCAGCAC

CCCCACCGCCTCCTCCTGTCAGCCGGGGTGGAACGAACAAGGCTCAGGTTCCAGAGGCCG

CGCCCCCTTCGCCCCTCCTGGCGCAGAGACTCTGGGCCCCTGCCAAGGATGGGCCTCGCA

GACGGGCGACGACGCTCACCTCGCCGCTGCAAGGTCGTGCGGAGCTCCAACTGGTAGTTG

TGTCTGCACACCGTGTCCAACTCCGCCCGGGTCCCTTCCAGGACTTCCTTCTGGCTGTTC

C

Q100-dipcall haplotype 1

Q100-dipcall hap 1, hifiasm-dipcall hap 1, Q100-PAV hap 0
CTGCTTGTCTCCCTGCTCTGCCCTAGGTCCCCGCCCATCTGATGCACCTGCCCCCACCAC

TCACGCCGCCAACTCCTGTCCCCTGGGGTGGAATAAACGGGGCTCAGGTTTCAGAGGCCG

CAACCCCATCGCCCCTCCCAGCACAGAGACTAGAGGTCCCGGCCAACGGTGGGCCTCACG

GAGGGGCGACGACGCTCACCTCTCCTCTGCAGGATCCCGCGGTACGCCACCTCGTAGTTG

TGTCTGCACACCCTGTCCACCGACGCCCGGGCCCCCTCCAGGACTTCCTTCTGGCTGTTC

C

hifiasm-GIAB-TR haplotype 0
CTGCTTGTCTCCCTGCTCTGCCCTAGGTCCCCGCCCATCTGATGCACCTGCCCCACCACT

CACGCCGCCAACTCCTGTCCCCTGGGGTGGAATAAACGGGGCTCAGGTTTCAGAGGCCGC

AACCCCATCGCCCCTCCCAGCACAGAGACTAGAGGTCCCGGCCAACGGTGGGCCTCACGG

AGGGGCGACGACGCTCACCTCTCCTCTGCAGGATCCCGCGGTACGCCACCTCGTAGTTGT

GTCTGCACACCCTGTCCACCGACGCCCGGGCCCCCTCCAGGACTTCCTTCTGGCTGTTCC

Supplementary Table 2: Full haplotype sequences for the truth (Q100-dipcall) and query (hifiasm-dipcall, Q100-PAV,
hifiasm-GIAB-TR) VCFs for a portion of the HLA-DQB1 gene (chr6:32,664,600-32,664,899), with all variants applied to
the reference sequence. Substitutions (SNPs) are highlighted in blue, insertions in green, and deletions in red. Please note
that the first and second pairs of sequences are identical, despite differing variant representations.
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Validation and Detailed Comparisons
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Supplementary Figure 4: A comparison of (a) SNP, (b) INDEL, and (c) SV variant calling evaluation by vcfdist, vcfeval,
and Truvari, restricting to chr20 of the GIAB-TR tandem repeats BED. Prior to evaluation, truth and query VCFs were
normalized using Truvari phab. This means that the Truvari results reported in this figure are largely equivalent to Truvari
refine (MAFFT).

POS REF ALT FORMAT

VCFEVAL

TRUTH

VCFEVAL

QUERY

TRUVARI

TRUTH

TRUVARI

QUERY

VCFDIST

TRUTH

VCFDIST

QUERY

Allele
Match

40153469 GTATA G GT:BD:BK 0|1:FN:am 1|1:FP:am 0|1:TP:am 1|1:TP:am 0|1:TP:gm 0|1:TP:gm

40153469 GTATA G GT:BD:BK .:.:. .:.:. .:.:. .:.:. .:.:. 1|0:FP:.

Different
Thresholds

39864946 G GTTT GT:BD:BC 0|1:FN:0.0 .:.:. 0|1:TP:.75 .:.:. 0|1:FN:.67 .:.:.

39864946 G GTTTT GT:BD:BC .:.:. 0|1:FP:0.0 .:.:. 0|1:TP:.75 .:.:. 0|1:FP:0.0

Complex
Variant

11753707 C CGTGTGTGTGT GT:BD:BC 1|0:FN:0.0 .:.:. 1|0:FN:0.0 .:.:. 1|0:FN:.38 .:.:.

11753744 G GTGTGTA GT:BD:BC 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:FN:.38 1|0:FP:0.0

Pick
Single

18945947 C CAGAGAGAGAGAG GT:BD:BC .:.:. 1|0:FP:0.0 .:.:. 1|0:FP:0.0 .:.:. 1|0:TP:.80

18945947 C CAGAGAGAGAG GT:BD:BC 1|1:FN:0.0 0|1:FP:0.0 1|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0

18945947 C CAGAGAGAGAG GT:BD:BC .:.:. .:.:. .:.:. .:.:. 1|0:TP:.80 .:.:.

Flip
Error

33052546 G GTA GT:BD:BC 1|0:TP:1.0 1|0:FP:0.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0 1|0:TP:1.0

33052546 GTG G GT:BD:BC 0|1:TP:1.0 .:.:. 0|1:FN:0.0 .:.:. 0|1:FN:0.0 .:.:.

33052548 G A GT:BD:BC .:.:. 0|1:TP:1.0 .:.:. .:.:. .:.:. 0|1:FP:0.0

Backtracking
Tie

23651946 G GC GT:BD:BC 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:FP:0.0

23651955 C CC GT:BD:BC .:.:. 0|1:FP:0.0 .:.:. 0|1:FP:0.0 .:.:. 0|1:TP:1.0

Variant
Overlap

35755334 C CAT GT:BD:BC 0|1:FN:0.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0 0|1:TP:1.0

35755334 C CATAT GT:BD:BC .:.:. 0|1:TP:1.0 .:.:. 0|1:FP:0.0 .:.:. 0|1:FP:0.0

35755334 C CATATAT GT:BD:BC 0|1:TP:1.0 .:.:. 0|1:FN:.67 .:.:. 0|1:FN:.67 .:.:.

Supplementary Figure 5: A simple real example for each of the eight categories of variants in Table 4 that were evaluated
differently between tools. Each variant call file (VCF) entry shows the variant position (POS), reference and alternate alleles
(REF and ALT), and supplementary information such as genotype (GT), benchmarking decision (BD), benchmarking category
(BK, which is either a genotype (gm) or allele (am) match), and benchmarking credit (BC).
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Clustering
For alignment-based variant calling evaluation tools it is necessary to group variants together into many independent
clusters that can be evaluated individually, since aligning entire chromosomes is currently computationally infeasi-
ble. In order to understand the impact of variant clustering on the measured accuracy and runtime of evaluation
tools, we explore and compare several different options for variant clustering. Truvari clusters variants by BED
region during evaluation. vcfeval does not cluster variants since it is not alignment-based. Requiring exact variant
matches allows it to use a branch-and-bound approach instead. For vcfdist, we implemented two options: a simple
yet flexible variant clustering heuristic, and a more sophisticated clustering algorithm that attempts to minimize
computation while retaining perfect accuracy.

The simplest option that vcfdist offers is to group all variants less than n bases apart into a single cluster. We
call this “gap n” clustering, as shown in Supplementary Table 3. The average region size, runtime, and measured
variant calling performance all depend highly upon n. Using a gap of n = 10 results in the fastest runtime, but at
the cost of significantly lower measured SNP, INDEL, and SV accuracy. A larger gap of 100 is a reasonable balance
between performance and accuracy, and only SV accuracy is noticeably impacted. A much larger gap of 500 almost
completely eliminates cases where true positive variants are mistakenly labelled false positives due to equivalent
query and truth variants not being clustered together, but at the cost of a much higher runtime.

We develop our own clustering method based on bidirectional wavefront alignment (biWFA) [35] that dynamically
clusters variants based on whether truth and query variants have the potential to be equivalent. It aligns leftwards
and rightwards from each variant cluster, determining the span of reference bases that can be influenced by the
current cluster of variants. This algorithm is able to find long-range variant dependencies that may span repetitive
regions of the genome longer than 500bp, while also splitting up independent variants that are nearby on the ref-
erence. As shown in Supplementary Table 3, this approach achieves even higher accuracy than gap 500 clustering,
whilst running more than 10× faster end-to-end.

Clustering approach None GIAB-Q100 BED Gap 10 Gap 100 Gap 500 BiWFA

Total regions 24 300 4,363,640 3,343,352 1,503,147 4,259,395
Total regions size 3,088,269,832 2,789,029,111 18,548,559 69,515,796 550,160,873 24,589,303
Mean region size 128,677,910 9,296,764 4.25 20.8 366 5.77
Max region size 248,956,422 127,461,328 2,522 19,730 65,503 29,663
SNP F1 score * * 0.9644 0.9719 0.9722 0.9723

INDEL F1 score * * 0.9415 0.9626 0.9631 0.9631
SV F1 score * * 0.8244 0.9427 0.9514 0.9516

Runtime * * 00:02:57 00:11:53 11:25:06 01:04:56

Supplementary Table 3: The efficiency and measured accuracy of evaluating the Q100-PAV VCF with vcfdist on the
Q100-dipcall ground truth VCF using different clustering approaches. Accuracy entries marked with * were unable to be
computed due to long runtimes caused by large clustered regions. Clustering variants together whenever they are less than
10 bases apart (“Gap 10”) is the most efficient method, although its accuracy is significantly reduced. Bidirectional wavefront
alignment (biWFA) based clustering achieves the highest accuracy with reasonable performance.
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Supplementary Figure 6: (a) As variant representation becomes increasingly different from the Q100-dipcall ground
truth (shown in Supplementary Figure 1), the fraction of variants requiring complex comparisons involving multiple truth
and query variants increases. (b) vcfdist’s biWFA clustering algorithm groups possibly dependent variants (yellow) together,
and starts a new cluster when two adjacent variants are independent (red). Of the variants clustered together, only a
small fraction are actually dependent (green). However, grouping these variants together is necessary to correctly determine
equivalence between sets of truth and query variants.

Query VCF Truth VCF
POS REF ALT POS REF ALT

2 A G 2 A G
4 A AC 6 C CCT
6 C CT 15 T C
10 A ACA 16 A ATA
18 CGC C 18 CGCT C
23 T A 23 T TA

Legend
Query Truth
SINGLE SINGLE
SINGLE MULTI
MULTI SINGLE
MULTI MULTI

Pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ref T A A A C C T T G A C A C A T A G C G C T T T C A

Query T G A AC C CT T T G ACA C A C A T A G C T T A C A
Truth T G A A C CCT T T G A C A C A C ATA G C T TA C A
Gap 3
Gap 5
WFA

Supplementary Figure 7: An example of different variant clustering methods. The span of each cluster is shown in gray.
Equivalent sets of truth and query variants are depicted in different colors, and one example from each category is included.
The four categories describe whether a single or multiple truth or query variants participate in the match. For vcfdist to
determine variant equivalence, all dependent variants must be located in the same cluster. Incorrectly separating variants
into different clusters results in lower measured accuracy. Unnecessarily grouping variants together results in larger clusters
and more expensive evaluation. This tradeoff is shown in Supplementary Table 3.
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