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ABSTRACT: 26 

Deficiency of vitamin B12 (B12), an essential water-soluble vitamin, leads to irreversible 27 

neurological damage, osteoporosis, cardiovascular diseases, and anemia. Clinical tests to detect B12 28 

deficiency lack specificity and sensitivity. B12 deficiency is thus insidious because progressive 29 

decline in organ functions may go unnoticed until the damage is advanced or irreversible. Here, 30 

using targeted unbiased metabolomic profiling in the sera of B12-deficient versus control 31 

individuals, we set out to identify biomarker(s) of B12 deficiency. Metabolomic profiling identified 32 

77 metabolites, and Partial least squares discriminant-analysis (PLS-DA) and hierarchical 33 

clustering analysis (HCA) showed a differential abundance in B12-deficient sera of taurine, 34 

xanthine, hypoxanthine, chenodeoxycholic acid, neopterin, and glycocholic acid. Random forest 35 

(RF) multivariate analysis identified a taurine/chenodeoxycholic acid ratio, with an AUC score of 36 

1, to be the best biomarker to predict B12 deficiency. Mechanistically, B12 deficiency reshaped the 37 

transcriptomic and metabolomic landscape of the cell identifying a downregulation of methionine, 38 

taurine, urea cycle, and nucleotide metabolism, and an upregulation of Krebs cycle. Thus, we 39 

propose taurine/chenodeoxycholic acid ratio in serum as a potential biomarker of B12 deficiency in 40 

humans and elucidate cellular metabolic pathways regulated by B12 deficiency. 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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INTRODUCTION 51 

Vitamin B12 (B12) is an essential water-soluble vitamin derived from animal-based diets that 52 

regulates a multitude of cellular processes in humans such as one-carbon metabolism and Krebs 53 

cycle.(1-4) The absorption of dietary B12 requires gastric intrinsic factor (GIF), a stomach-specific 54 

protein.(4) Gif binds to B12 in the small intestine forming the GIF-B12 complex. This complex is 55 

endocytosed by the intestinal epithelial cells and B12 is released into the bloodstream.(4) In the 56 

bloodstream, B12 binds to the protein transcobalamin 2, which then carries it to the liver, the 57 

primary storage and recycling organ for B12 in mammals.(5) Once acquired, humans, for instance, 58 

can recycle B12 to maintain B12-dependent cellular processes for up to a decade.(2) In the cells, 59 

B12–derivatives function as cofactors for only two known enzymes: methylmalonyl-CoA mutase 60 

and methionine synthase, and through them affect a variety of downstream metabolic pathways 61 

such as Krebs cycle, amino acid synthesis, and DNA and histone methylation. (1, 6)  In humans, 62 

decreased production of functional GIF protein or non-consumption of animal products causes B12 63 

deficiency and results in various abnormalities, such as anemia, osteoporosis, and cognitive 64 

defects. (7-10) 65 

 66 

In clinical practice, the diagnosis of B12 deficiency is typically established by the measurement of 67 

serum cobalamin (Cbl) levels.(11) Although B12 deficiency can be reflected by elevated 68 

methylmalonic acid (MMA) and homocysteine (Hcy) levels, these tests are not routinely used 69 

unless the initial Cbl levels are equivocal because MMA and Hcy can be elevated in conditions 70 

independent of B12 levels.(12-16) Despite the importance of B12 and its association with many 71 

physiological functions, many issues remain unresolved in the diagnosis of B12 deficiency, leading 72 

to poor diagnosis and irreversible consequences on the body.(17, 18) First, B12 is a very stable 73 

molecule and because 95-97% of B12 is stored in the liver, its serum levels do not accurately reflect 74 

its actual functional levels i.e., the amount of B12 required for maintaining body functions.(19) 75 
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Second, the cost of measurement of B12 in patient samples, despite being not able to accurately 76 

predict a B12-deficient state, remains high and therefore is not the first line of measurement; 77 

clinicians measure B12 only when a patient presents signs of B12 deficiency such as anemia to 78 

confirm a deficient state. (20-23) These facts necessitate the need to identify molecules regulated 79 

by B12, which can provide a functional readout of B12 deficiency in humans.  80 

 81 

We recently created a transgenic mouse model of B12 deficiency by deleting the gene essential for 82 

B12 absorption from the gut, Gif, to understand the molecular consequences of B12 deficiency.  83 

These studies led to the identification that B12 stored in the liver regulates the production of 84 

taurine. Taurine is a semi-essential micronutrient that has recently been shown to be a driver of 85 

aging as its supplementation increases healthy lifespan in diverse species from worms to mice, and 86 

low taurine levels are associated with poor health in aged humans(24). In the B12 mode of action, 87 

taurine plays an important role as the reversal of taurine deficiency through daily oral taurine 88 

administration was shown to fully rescue the consequences of B12 deficiency(25). More 89 

importantly, the targeted metabolomics analysis of liver tissue collected from control and B12-90 

deficient mice showed changes in a multitude of metabolites besides taurine that are secreted from 91 

cells and could be detected in the serum(25). These studies suggested a plausible and testable 92 

hypothesis that certain metabolites or sets of metabolites may exist which could serve as a readout 93 

of, difficult to detect, B12-deficient state in humans.  94 

 95 

The present study was initiated to test the above hypothesis by performing a metabolomic analysis 96 

on serum samples collected from control and B12-deficient individuals to identify which factor(s) 97 

could serve as a biomarker of B12-deficient state. Results showed that serum levels of certain 98 

metabolites such as taurine, xanthine and hypoxanthine were dramatically downregulated in the 99 

B12-deficient individuals. Using various downstream analyses, we suggest that taurine in 100 
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conjugation with chenodeoxycholic acid can serve as a biomarker of B12-deficient state in humans. 101 

Furthermore, using mouse B12-deficient tissues, we elucidate how despite only needed for 2 102 

enzyme functions, B12 deficiency alters the metabolic and transcriptomic landscape in the cells, 103 

which will facilitate advances in further understanding biology of B12.   104 

 105 

RESULTS 106 

Study population, sample classification, acquisition, pre-processing, and normalization of 107 

metabolomic data  108 

A schematic diagram illustrating different steps of this study is presented in Figure 1. The samples 109 

utilized in this study are from the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study 110 

aimed at identifying the risk factors for coronary heart diseases, atherosclerosis, and other related 111 

conditions in the Eastern Finnish population.(26) Sera were classified in accordance with 112 

internationally established criterion into control subjects (n=13) with B12 levels >250 pmol/L, and 113 

into deficient subjects (n=8) with B12 levels <150 pmol/L.(1, 11, 17, 27) Samples were randomized 114 

before metabolite extraction and quantified using a ACQUITY UPLC-MS/MS system. Ninety-four 115 

metabolites could be detected in the sera, out of which 77 that passed quality control were selected 116 

for further downstream analysis. Imputation of one missing value with the minimum value in that 117 

cohort was done, and data was pre-processed by generalized log transformation (glog) and auto-118 

scaling of metabolite concentration peaks in each sample to represent uniform distribution.  119 

 120 

Identification of differentially expressed serum metabolites following B12 deficiency 121 

We first performed a principal component analysis (PCA), an unsupervised multivariate analysis, 122 

to group/classify samples without any consideration of prior classification to detect any outliers in 123 

the two cohorts. The principal component 1 (PC1) accounted for 22.6% of the variance and PC2 124 

accounted for 13.6% of the variance (Figure 2A). To identify differential concentration of each 125 
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metabolite between the control and B12-deficient groups, we calculated the mean fold change and 126 

performed t-tests to compare the mean of each metabolite. A metabolite was considered 127 

significantly different between each group when the value of p ≤ 0.05 and log2 fold change ±0.5. 128 

In the colvano plot the 3 blue dots in the upper left and 3 red dots in upper right quadrants 129 

represent the most significantly altered metabolites in B12-deficient subjects compared to that in 130 

controls (Figure 2B). A hierarchical clustering analysis (HCA) of the metabolomic data using the 131 

top 3 downregulated and top 3 upregulated metabolites showed well-defined clustering of thirteen 132 

healthy subjects (pink, left cluster) versus eight B12-deficient subjects (green, right cluster) (Figure 133 

2C). The control group showed high abundance (shades of red colour) of taurine, hypoxanthine 134 

and xanthine compared to the B12-deficient group, whereas the abundance of glycocholic acid, 135 

neopterin and chenodeoxycholic acid was significantly higher in the B12-deficient group as 136 

compared to healthy controls (Figure 2C). Following the identification of differentially expressed 137 

metabolites (DEMs), we did Metabolite Set Enrichment Analysis (MSEA) and Metabolomic 138 

Pathway Analysis (MetPA) to determine the metabolic pathways that are associated with 139 

differences in the abundance of identified metabolites, and perturbations of which is associated 140 

with the B12 deficiency. The MSEA classified the 77 DEMs into 50 different metabolic pathways 141 

(Figure 2D) that include divergent cellular metabolism pathways such as bile acid biosynthesis, 142 

amino acid biosynthesis, glucose metabolism, and nucleic acid synthesis, which are listed in the 143 

order of descending fold enrichment (Figure 2D). Out of the 50 listed pathways, the taurine and 144 

hypotaurine metabolism pathway was the most enriched pathway with highest fold enrichment 145 

value (-logP value ~6). MetPA results revealed that taurine and hypotaurine metabolism pathway 146 

had the highest pathway impact value between the controls and B12-deficient subjects, further 147 

validating the importance of this pathway (Figure 2E).  148 

 149 
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Once we identified the most significant DEMs and major pathways to which these DEMs belonged 150 

to, we wanted to check the consistency of identified DEMs as most discriminant variables for 151 

classifying healthy controls versus B12-deficient subjects. For this purpose, we performed a PLS-152 

DA analysis that helps in highlighting whether a metabolite is upregulated or downregulated in a 153 

group/sample by creating a latent structure, and the values of variable importance projection (VIP) 154 

score which represent the importance of the metabolite in the PLS-DA model (Figure 2F). The 155 

VIP score plot (threshold of >1.0) revealed that taurine had the maximum score with low 156 

abundance in B12-deficient samples versus controls (Figure 2F). The other metabolites that were 157 

identified in volcano plot i.e., xanthine, hypoxanthine, chenodeoxycholic acid, neopterin, and 158 

glycocholic acid also came up in PLS-DA plot, suggesting the consistency of these metabolites as 159 

important DEMs in controls versus B12-deficient subjects. Further, we performed univariate 160 

analysis (t-test) on individual DEMs to determine the significant difference in the abundance of 161 

each metabolite between the two groups. Based on the analysis, abundance of taurine (p=0.002), 162 

xanthine (p=0.019) and hypoxanthine (p=0.000) was significantly lower whereas the levels of 163 

chenodeoxycholic acid (p= 0.063), neopterin (p= 0.023), and glycocholic acid (p= 0.027) was 164 

significantly higher in sera of B12-deficient subjects (green bars) compared to healthy controls 165 

(pink bars) (Figure 2G).  166 

 167 

Metabolites that belong to the same pathway tend to work in coherence. To this end, we subjected 168 

the metabolite data to Pearson’s correlation matrix analysis to reveal any correlation that might 169 

exist between the 77 identified metabolites or between 21 study subjects (Figure S1A-B).  170 

Between the two cohorts, metabolites such as taurine, xanthine, and hypoxanthine were positively 171 

correlated (red color) to each other and negatively correlated (blue color) to chenodeoxycholic 172 

acid, neopterin, and glycocholic acid (Figure S1A). Moreover, there was a high positive 173 

correlation observed between all the essential amino acids. This suggests a strong inter-relationship 174 
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between these metabolites which could be expected as these belong to same metabolic pathway 175 

such as amino acid biosynthesis. Pearson’s correlation matrix analysis on the different cohort 176 

subjects, however, revealed no significant trends (Figure S1B), suggesting no inter-relationship or 177 

correlation between the samples, which negates the possibility of any biases in the sample 178 

workflow. 179 

 180 

Taken together, these multiple lines of evidence suggest that taurine, hypoxanthine, xanthine, 181 

chenodeoxycholic acid, neopterin, and glycocholic acid are the most significant DEMs in the sera 182 

of healthy controls versus B12-deficient subjects. Pathway enrichment analysis further confirmed 183 

that the alteration in taurine and hypoxanthine metabolic pathway is strongly associated with B12 184 

deficiency. 185 

 186 

Selection and identification of metabolite and/or metabolite ratio as biomarker 187 

To identify the best metabolite and/or metabolites ratio that could serve as a sensitive biomarker 188 

for prediction of B12 deficiency, we subjected the data to two statistical analysis tools: Partial least 189 

squares discriminant-analysis (PLS-DA) (Figure 3A and 3E) and Random forest (RF) analysis 190 

(Figure 3C and 3G). Multiple statistical models generated by these analyses were validated and 191 

compared for their ability to identify the metabolite or metabolites ratio which can serve as the best 192 

biomarker to predict B12 deficiency. All models generated by PLS-DA or RF were validated using 193 

Receiver Operating Characteristic (ROC) analysis, in which Area Under the Curve (AUC) score 194 

was used to monitor the sensitivity and specificity of a model (variable) in predicting the B12 195 

deficiency. Although both are predictive modelling tools, PLS-DA analysis has a tendency to 196 

overfit even on completely random data as compared to RF analysis. Thus, the quality of the 197 

models was further assessed using Monte-Carlo cross validation (MCCV) to create ROC curve for 198 

every model generated from both PLS-DA and RF analysis. These models use a combination of 199 
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the most important features to build classification models, ranging from a minimum of 2 to a 200 

maximum of 100. Since MCCV uses defined sub-sampling, 2/3 of the samples were used to 201 

evaluate the feature importance and 1/3 of the samples were used for validation. This iterative 202 

procedure was used to calculate the performance (AUC) and confidence interval of each model 203 

and the one with AUC closest to 1 with low variability (CI) was considered to be the best model. 204 

The software gave output in the form of ROC curves of top 6 models, referred to as variables, 205 

based on the CV performance. we used the most significant DEMs (Figure 3A & C) or metabolite 206 

ratio (Figure 3E & G) as top features to generate best 6 models for prediction of B12 deficiency. 207 

Note that the nomenclature of models (referred to as variables, hereinafter) is representative of the 208 

number of features used to create the model. Figure 3B, D, F, and H represent the ROC curve for 209 

the top 6 models obtained following PLS-DA and RF analysis, whereas the model numbers 1, 2, 3, 210 

4, 5 and 6 represent the variables (Var.) 3 (red), 5 (green), 10 (blue), 20 (cyan), 28 (pink) and 77 211 

(yellow), respectively, signifying that model 1 was created using 2 metabolites of top importance, 212 

whereas model 6 used top 77 metabolites.   213 

 214 

Both PLS-DA (Figure 3A) and RF (Figure 3C) analysis, using singular metabolites as features, 215 

showed that models with more than 20 metabolites (38 and 77) have high AUC (> 7) and tight CI, 216 

suggesting their potential to be better models, compared to those with fewer than 20 metabolites. A 217 

higher score suggests better predictive ability of a model to identify the B12-deficient state. The 218 

feature ranking plot for both PLS-DA (Figure 3B) and RF (Figure 3D) analysis showed the top 15 219 

metabolites arranged in descending order of average importance scores contributing to the model 220 

accuracy. The average importance scores of hypoxanthine and taurine were among the top three 221 

metabolites in both analyses, with hypoxanthine having the maximum score. Both models showed 222 

lower (blue) abundance of taurine in B12-deficient cohort, but the same was not true for 223 

hypoxanthine. This was consistent with PLS-DA analysis done in Figure 2F. It is important to 224 
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note that (a) 7 of 15 top metabolites were different between the models generated by PLS-DA and 225 

RF and (b) the individual average importance score for the 8 identical metabolites varied in the 226 

two analyses. This suggested that both analyses work on independent algorithms and there was no 227 

bias in the selection of hypoxanthine and taurine as top metabolite biomarkers for predicting B12 228 

deficiency.  229 

Next, we investigated whether abundance ratios of metabolite pairs could increase the sensitivity 230 

of PLS-DA and RF models to detect B12 deficiency (Figure 3C, 3D). Ratios of all possible 231 

metabolite pairs were computed, and top ranked ratios (based on p values) and top 20 were 232 

included for biomarker analysis. Using abundance ratios of metabolite pair as a feature, both PLS-233 

DA (Figure 3E) and RF (Figure 3G) models showed that all the top 6 models have high AUC (> 234 

9) and high CI which were comparable, suggesting any model with more than 3 features was a 235 

good model with high specificity and sensitively but high variability (scattered CI) as well. One-to-236 

one comparison of AUC and CI scores for both the PLS-DA and RF models based on the 237 

abundance ratios of metabolite pair versus singular metabolites revealed that the former can serve 238 

as better biomarkers in predicting B12 deficiency. The feature ranking plot for models in Figure 3F 239 

and Figure 3H listed 13 identical sets of metabolite pairs with taurine/chenodeoxycholic acid 240 

gaining the highest average importance score in both (Figure 3G-H). The abundance for 241 

taurine/chenodeoxycholic acid ratio however was reversed in the two models, being low (blue) in 242 

PLS-DA and high (red) in RF for B12-deficient group (Figure 3E, 3G). It is important to note that 243 

this analysis was consistent with the previous analysis shown in Figure 2 (PCA, volcano plot, 244 

PLS-DA and univariate analysis).  245 

 246 

Together, results suggest that out of the metabolites identified to be differentially expressed 247 

between healthy controls and B12-deficient group taurine, hypoxanthine and the ratio of 248 

taurine/chenodeoxycholic acid could serve as biomarkers for B12 deficiency.  249 
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 250 

Comparison of the abilities of taurine, hypoxanthine and taurine/chenodeoxycholic acid ratio 251 

to predict B12-deficient state 252 

We performed ROC analysis to further characterise the predictive ability of taurine alone, 253 

hypoxanthine and taurine/chenodeoxycholic acid ratio, which were shortlisted from previous PLS-254 

DA and RF analysis. The sensitivity and significance of taurine, hypoxanthine and 255 

taurine/chenodeoxycholic acid in predicting B12 deficiency is represented using AUC score from 256 

ROC analysis (Figures 4A-C). The scaled concentration of the indicated metabolites are shown in 257 

Figures 4D-F. This analysis showed that AUC for taurine/chenodeoxycholic abundance ratio was 258 

1, which is equivalent to being a perfect diagnostic biomarker (Figure 4C). Furthermore, the AUC 259 

and p-values for taurine/chenodeoxycholic acid ratio were the lowest (p-value=5.3193E-7) in 260 

comparison to hypoxanthine (AUC = 0.885, p-value =7.0513E-4) and taurine alone (AUC = 0.885, 261 

p-value =0.002), suggesting that taurine/chenodeoxycholic ratio was the best variable as a 262 

biomarker to predict B12 deficiency compared to others. Between taurine and hypoxanthine, the 263 

AUC scores were comparable, but hypoxanthine  was significant in differentiating the two groups 264 

because of lower p-value. 265 

 266 

These results suggest that serum taurine/chenodeoxycholic acid abundance ratio can serve as a 267 

diagnostic biomarker for predicting B12 deficiency with high specificity and sensitivity. 268 

 269 

 270 

To further test the ability of RF using taurine alone or and in combination with other metabolites as 271 

biomarker to predict B12 deficiency, we trained a RF model on train data using cross validation and 272 

predicted on the test data. For unbiased assessment, equal number of samples (n=4/group) were 273 

randomly selected from control and B12-deficient group as hold-out samples. These samples were 274 
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not used for fitting process in the model but used as testing samples. The rest of the samples were 275 

used as training samples to predict B12 deficiency. We compared predictive ability of taurine alone, 276 

taurine and hypoxanthine, and ratio of taurine/chenodeoxycholic acid using AUC score (ROC 277 

analysis), predicted class probabilities, and cross validation (CV) prediction (Figure 5). Amongst 278 

these model (Figure 5A, 5C, 5E) comparisons, taurine/chenodeoxycholic acid showed the highest 279 

margin of separation between the control (empty grey circles, left edge of x-axis) and B12-deficient 280 

(filled grey circles, right edge of x-axis) group in training set, (Figure 5E). Also, the hold-out 281 

samples from both groups (control = empty red circles, B12-deficient = red filled circles) fit 282 

perfectly well with the corresponding group in testing data set. Moreover the ROC-AUC curve 283 

showed that taurine/chenodeoxycholic abundance ratio had the highest accuracy (AUC CV=1, 284 

AUC  holdout =1, Figure 5F) in predicting B12 deficiency compared to taurine alone (AUC CV = 285 

0.665, AUC holdout=0.938, Figure 5B) or hypoxanthine (AUC CV= 0.809, holdout=0.938, 286 

Figure 5D). Overall, this analysis was consistent with previous RF analysis, suggesting towards 287 

great potential of taurine/chenodeoxycholic acid to serve as serum biomarker for predicting B12 288 

deficiency. 289 

 290 

Metabo-transcriptomic network analysis linked B12-dependent reactions with 291 

taurine/chenodeoxycholic acid. 292 

We performed a network analysis of differentially expressed genes and metabolites 293 

between controls and B12-deficient livers in a mouse model of B12 deficiency reported previously 294 

by us.(28) Liver is a suitable tissue to investigate effects of B12 deficiency since it is one of the 295 

principal site of B12 storage, and we demonstrated earlier that B12 deficiency compromises its 296 

functions.(28) In the cells, B12 is known thus far to be converted into two cofactors (methyl-B12 297 

and adenosyl-B12), which are required for the functioning of two known enzymes, methionine 298 

synthase and methyl-malonyl CoA mutase.(29, 30) Thus, we focused our attention on metabolic 299 
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pathways that are interconnected with the B12-derived cofactor-dependent reactions such as Krebs 300 

cycle, amino acid metabolism, urea cycle, and nucleotide metabolism.  301 

 302 

The network visualization of differentially expressed transcriptome showed that transcripts 303 

encoding the enzymes that catalyze metabolite conversions in these pathways were overall 304 

downregulated (in blue), except for the Krebs cycle, in which expression of 5 out of 9 enzymes 305 

was upregulated (in red) (Figure 6). This upregulation in the expression levels of Krebs cycle 306 

enzymes could be linked to decreased activity of methyl-malonyl CoA mutase (Mut), which is 307 

dependent on the adenosyl-B12 for its activity. Mut catalyzes the synthesis of Succinyl-CoA, an 308 

intermediate in the Krebs cycle that plays a critical role in providing protons for the OXPHOS 309 

system, and thus, energy production in the cells. B12 deficiency leads to an energy deficit in the 310 

cells, and consequently likely, a compensatory increase in the expression levels of enzymes in the 311 

Krebs cycle. However, no reactions surrounding the adenosyl-B12-dependent Mut enzyme and 312 

Krebs cycle could relate to known taurine biosynthetic machinery in B12-deficient cells.  313 

 314 

An analysis of reactions surrounding methionine synthase (Mtr), the second enzyme that is 315 

dependent on the methyl-B12 as a cofactor, showed that the concentrations of methionine, the 316 

downstream product, were decreased while concentrations of its precursor, homocysteine, were 317 

increased (Figure 6). Expression levels of the enzymes in the methionine cycle were either not 318 

affected or were decreased. The methionine cycle is linked to cysteine synthesis in the cells and 319 

through a relay of changes, to taurine biosynthesis. Most of the enzymes and their downstream 320 

products in this pathway were downregulated, consequently leading to deficiency of multiple 321 

metabolites in taurine metabolic pathway (taurine, taurocholate, tauro-chenodeoxycholate) (Figure 322 

6). The expression levels of the enzyme, Csad, that catalyzes the rate limiting step in taurine 323 
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biosynthesis, was increased likely as a compensatory mechanism due to deficiency of taurine 324 

(Figure 6). 325 

 326 

Further analysis of gene-metabolite networks interconnected with B12-dependent reactions showed 327 

that gene expression of enzymes and metabolite intermediates in the urea cycle were 328 

downregulated. In the amino acid metabolism pathway, barring tryptophan metabolite, HIAA and 329 

NAD+ pathways, all enzyme expressions and metabolite intermediates were downregulated. In the 330 

nucleotide metabolism pathways, metabolite intermediates were either downregulated or not 331 

affected, and apart from a few enzymes, most of the enzyme expressions were downregulated.  332 

 333 

Together, these integrated metabolomic and transcriptomic analyses in the WT and B12-deficient 334 

liver samples revealed global downregulation of metabolic networks upon B12 deficiency and 335 

identified a hitherto unanticipated connectivity between B12-dependent reactions and taurine 336 

metabolism.  337 

 338 

DISCUSSION: 339 

By using metabolomic analysis of serum from controls and B12-deficient subjects, we were able to 340 

identify that a ratio of taurine/chenodeoxycholic acid levels can serve as a biomarker of, difficult 341 

to detect, B12 deficiency. The quantitative metabolomic analysis of 77 relevant metabolites in the 342 

sera of B12-deficient patients revealed that most of the metabolites were downregulated and are 343 

involved in metabolism of amino acids, betaine, glutathione, bile acid, and purines (Figure 2). 344 

Metabolite set enrichment analysis on the perturbed metabolite profiles showed alterations in the 345 

metabolic pathways associated with amino acid and methionine metabolism (Figure 1). 346 

Downregulation in methionine levels in this metabolome is consistent with the role of B12 as an 347 

essential cofactor of methionine synthase, while homocysteine accumulated from the dysfunction 348 
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of methionine synthase was 1.8-fold elevated. Furthermore, univariate analysis of the B12-deficient 349 

metabolome identified a differential abundance of taurine, hypoxanthine, and xanthine between the 350 

two groups. The multivariate random forest (RF) analysis aimed towards identifying which 351 

metabolite(s) contributed to the separation of the two groups with higher specificity and sensitivity 352 

showed taurine/chenodeoxycholic ratio as the metabolic parameter that could separate the two 353 

groups with 99% accuracy. Thus, we propose taurine/chenodeoxycholic acid ratio as a potential 354 

biomarker of a B12-deficient state in humans. 355 

Previous studies have characterized the human serum metabolome in B12-deficient subjects in an 356 

attempt to reveal connections between B12-deficient state and serum metabolic markers. Alex et 357 

al., performed metabolomic profiles in sera of Chilean older adults with subclinical borderline B12 358 

deficiency (defined by serum B12 <148 pmol/L, holotranscobalamin <35 pmol/L, tHcy >15 359 

μmol/L, or MMA >271 nmol/L).(31) Although, this study showed perturbations in multiple 360 

metabolite such as acylcarnitine and plasmalogens Authors did not subject their data to 361 

downstream algorithms to identify potential biomarkers of B12 levels. Moreover, the previous 362 

study did not include a control group, whereas our study has a well-defined control group. 363 

Although, these studies provide evidence that serum metabolome is altered by B12 deficiency it 364 

was unknown whether any of the metabolites of set of metabolites could serve as a biomarker of 365 

B12-deficient state. Our study fills this gap in our knowledge and elucidates the effect of B12 366 

deficiency on the cellular, metabolic and transcriptomic landscape of the cell using liver biopsies 367 

from a B12-deficient mouse model. Together, these studies pave a way towards better 368 

understanding of the cellular defects caused by B12 deficiency.   369 

 370 

We acknowledge that our study has certain limitations. Firstly, the small sample size limits the 371 

statistical power of the RF models. Repeating the same study in a larger sample size may allow a 372 

greater number of metabolites to pass quality control for downstream analysis. Secondly, the 373 
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current study population was only tested for B12 deficiency, which does not rule out the possibility 374 

of deficiency of other vitamins or nutrients in the study population. These and other questions will 375 

need to be addressed in future studies. 376 

 377 

Vitamin B12 deficiency leads to perturbed levels of taurine, hypoxanthine, xanthine, 378 

chenodeoxycholic acid, neopterin, and glycocholic acid. We show that taurine levels alone and 379 

taurine/chenodeoxycholic acid ratio are promising candidates for serum metabolite-based 380 

biomarkers to identify B12 deficiency. The two critical metabolites identified in this study 381 

regulated by B12, taurine and chenodeoxycholic acid, belong to the taurine metabolic pathway. 382 

Taurine metabolism gets compromised with age and leads to taurine deficiency in humans, 383 

however, the cause of this deficiency is unknown(24). The present study identifies vitamin B12 as 384 

the very first upstream regulator of taurine metabolism in aged humans and illustrates the 385 

transcriptomic and metabolomic changes through which B12 regulates this process. These results 386 

are significant given that taurine deficiency has recently been shown to be a driver of aging in 387 

diverse species, and is associated with poor health in humans. This study paves a way for future 388 

clinical work to streamline diagnostic tools to detect B12 deficiency through a simple blood test and 389 

perhaps other age-associated diseases. 390 
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 400 

MATERIAL AND METHODS: 401 

Chemicals and reagents 402 

All the metabolite standards, ammonium formate, ammonium acetate and ammonium hydroxide 403 

were obtained from Sigma-Aldrich (Helsinki, Finland). Formic acid (FA), 2-proponol, acetonitrile 404 

(ACN), and methanol (all HiPerSolv CHROMANORM, HPLC grade, BDH Prolabo) were 405 

purchased from VWR International (Helsinki, Finland). Isotopically labelled internal standards 406 

were obtained from Cambridge Isotope Laboratory. Inc., USA (Ordered from Euriso-Top, France). 407 

Deionized Milli-Q water up to a resistivity of 18 MΩ � cm was purified with a purification system 408 

(Barnstead EASYpure RoDi ultrapure water purification system, Thermo scientific, Ohio, USA). 409 

 410 

Metabolite extraction protocol 411 

The working calibration solutions were prepared in 96-well plate by serial dilution of the stock 412 

calibration mix using Hamilton’s MICROLAB® STAR line (Hamilton, Bonaduz AG, 413 

Switzerland) liquid handling robot system. Starting from a stock solution mix, 10 additional lower 414 

working solutions were prepared using water as the diluent to build the calibration curves. 415 

 416 

Clinical serum samples: 417 

Clinical samples used for assessing the changes in vitamin B12 levels and metabolites in blood 418 

were obtained from the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD study), a 419 

population-based cohort study described previously (25, 32), and were donated by J. Kauhanen 420 

and T. Nurmi (University of Eastern Finland, Kuopio, Finland). Ten microliters of labelled internal 421 

standard mixture was added to 100 μL of serum sample. Metabolites were extracted by adding 4 422 

parts (1:4, sample: extraction solvent) of the 100% ACN + 1% FA solvent. The collected extracts 423 
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were dispensed in OstroTM 96-well plate (Waters Corporation, Milford, USA) and filtered by 424 

applying vacuum at a delta pressure of 300-400 mbar for 2.5 min on robot’s vacuum station. This 425 

resulted a cleaner extract to the 96-well collection plate, which was placed under the OstroTM 426 

plate. The collection plate was sealed with the cap map and placed in auto-sampler of the LC 427 

system for the injection. 428 

 429 

Instrumentation and analytical conditions 430 

Sample analysis was performed on an ACQUITY UPLC-MS/MS system (Waters Corporation, 431 

Milford, MA, USA). The auto-sampler was set at 5°C, and the column, 2.1 × 100 mm Acquity 432 

1.7um BEH amide HILIC column (Waters Corporation, Milford, MA, USA), temperature was 433 

maintained at 45°C. The total run time is 14.5 min including 2.5 min of equilibration step at a flow 434 

rate of 600 μL/min. Initially the gradient started with a 2.5 min isocratic step at 100% mobile 435 

phase B (ACN/ H2O, 90/10 (v/v), 20 mM ammonium formate, pH at 3), and then rising to 100% 436 

mobile phase A (ACN/H2O, 50/50 (v/v), ammonium formate, pH at 3) over the next 10 min and 437 

maintained for 2min at 100% A and finally equilibrated to the initial conditions for 2.5 min. An 438 

injection volume of 5 μL of sample extract was used and two cycles of 300 μL of strong wash 439 

(methanol/isopropanol/ACN/H2O, 25/25/25/25, 0.5% FA) and 900 μL of weak wash 440 

(methanol/isopropanol/ACN/H2O, 25/25/25/25, 0.5% ammonium hydroxide) and in addition 2 441 

min of seal wash (90/10, methanol/H2O) were carried out. The auto-sampler was used to perform 442 

partial loop with needle overfill injections for the samples and standards. 443 

 444 

The detection system, a Xevo® TQ-S tandem triple quadrupole mass spectrometer (Waters, 445 

Milford, MA, USA), was operated in both positive and negative polarities with a polarity 446 

switching time of 20 msec. Electro spray ionization (ESI) was chosen as the ionization mode with 447 

a capillary voltage at 0.6 KV in both polarities. The source temperature and desolvation 448 
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temperature of 120°C and 650°C, respectively, were maintained constantly throughout the 449 

experiment. Declustering potential (DP) and collision energy (CE) were optimized for each 450 

compound. High pure nitrogen and argon gas were used as desolvation gas (1000 L/hr) and 451 

collision gas (0.15 ml/min), respectively. Multiple Reaction Monitoring (MRM) acquisition mode 452 

was selected for quantification of metabolites with individual span time of 0.1 sec given in their 453 

individual MRM channels. The dwell time was calculated automatically by the software based on 454 

the region of the retention time window, number of MRM functions and depending on the number 455 

of data points required to form the peak. MassLynx 4.1 software was used for data acquisition, 456 

data handling and instrument control. Data processing was done using TargetLynx software and 457 

metabolites were quantified by using labelled internal standards and external calibration curves.  458 

 459 

Data analysis using MetaboAnalyst 5.0 software and downstream analysis.  460 

The raw data was analyzed using MetaboAnalyst 5.0 software (https://www.metaboanalyst.ca/). 461 

(33, 34) Metabolite raw values were generalized log (glog) transformed and auto-scaled (mean-462 

centered and divided by the standard deviation of each variable).(35) Missing values for any 463 

metabolites in the sample below the limit of detection were inputted with 1/5 of the minimum 464 

positive value for each variable. Unsupervised Principal component analysis (PCA) was done to 465 

differentially cluster the two groups.(36, 37) Hierarchical clustering and Pearson’s correlation 466 

analysis were also performed to cluster the metabolite and sample data in the form of a heatmap to 467 

easily identify patterns in metabolite concentrations across samples. Metabolite Set Enrichment 468 

Analyses (MSEA)(38) were performed on all metabolites with a VIP ≥1.5 that matched the 469 

database using the “Pathway-associated metabolite sets (SMPDB)” database in the MetaboAnalyst 470 

software . Pathway analysis was performed using the “Homo sapiens (KEGG(39, 40))” database in 471 

the MetaboAnalyst software. Interactive scatter plot with ‘Enrichment Factor’ as x axis and 472 

‘−log10(P)’ as y axis was generated for functional analysis to show the significance of top 50 473 
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metabolic pathways involving the metabolites identified. The variable importance to projection 474 

(VIP) score for each metabolite was calculated to quantitatively represent metabolite feature 475 

importance in the model. A volcano plot scatterplot that shows statistical significance (-log10(p-476 

value) versus magnitude of change (log 2-fold change) of metabolites. Metabolites that show 477 

significant (p ≤ 0.05) change (log 2-fold change ±0.5) are highlighted. Multivariate supervised 478 

Partial least squares discriminant analysis (PLS‐DA) and Random-forest (RF) analysis were 479 

performed to assess the difference between the abundance of top metabolites or metabolite ratio 480 

between the two groups. The area under the curve (AUC) of the receiver operating characteristic 481 

(ROC) curve was also calculated for each metabolite to determine its predictive ability as a 482 

biomarker. The ROC curve is a plot of false positive rate (FPR) vs the true positive rate (TPR). 483 

The higher the AUC value, the better the measurements are at classifying between the two groups.  484 

 485 

 486 
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 582 

 583 

FIGURE LEGENDS: 584 

FIGURE 1:  585 

Study population, sample classification, acquisition, pre-processing, and normalization of 586 

metabolomic data. Schematic diagram illustrating the steps for metabolomic analysis of serum 587 

samples from B12-deficient (B12 levels <150 pmol/L) versus the healthy control group. (1) In this 588 

study, 8 and 13 subjects were grouped in B12-deficient and control groups (age- and gender-589 

matched), respectively, (2) blood samples were collected and processed, (3) metabolomics data 590 

was acquired from serum samples using ACQUITY UPLC-MS/MS system (Waters Corporation, 591 

Milford, MA, USA), data was pre-processed and analyzed using MetaboAnalyst 5.0 to identify (4) 592 

differentially expressed metabolites between 2 study groups, (5) serum metabolic biomarker for 593 

Vitamin B12 deficiency followed by (6) pathway analysis.  594 
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 595 

 596 

 597 

FIGURE 2:  598 

Identification of differentially expressed serum metabolites following B12 deficiency. (A) 599 

Unsupervised multivariate PCA plot showing the spread of control (pink dots) versus B12-deficient 600 

(green dots) cohort based on the serum metabolic profile. The horizontal and vertical coordinates 601 

are the first and second principal components, respectively. Each dot represents a sample. (B) 602 

Volcano plot showing six (blue and red dots) most significant differentially expressed metabolites 603 

between the B12-deficient patients versus controls, with a p-value < 0.05 and a log2 fold change 604 

±0.5. X-axis corresponds to log2(Fold Change) and Y-axis to −log10(p-value).  (C) Hierarchical 605 

clustering analysis sorted the control (pink) versus B12-deficient (green) group based on 606 

differential abundance of six metabolites (taurine, hypoxanthine, xanthine, glycocholic acid, 607 

neopterin, and chenodeoxycholic acid). Relative abundance scored from 4 (highest, red color) to -4 608 

(lowest, blue). (D) MSEA plot with top 50 enriched metabolic pathways (vertical-axis) to which 609 

the 77 identified metabolites belong. The pathways are arranged in descending order of fold 610 

enrichment score (horizontal axis) where the highest is 6 (red color) and lowest is 0 (yellow color) 611 

(E) MetPA plot showing most enriched pathways with significance (-logP) values for each of the 612 

pathway as dots of red (high significance) or yellow (low significance). X-axis corresponds to 613 

pathway impact and Y-axis to -logP values. The size of the dot represents its impact value. (F) VIP 614 

score plot from PLS-DA analysis showing the top 20 differentially expressed metabolites in serum 615 

of control versus B12-deficient group scored from 1 to 2. Relative abundance is depicted with red 616 

(highest) and green (lowest) color. (G) Box plots showing normalized concentrations of individual 617 

metabolites following univariate analysis: taurine (p=0.002), xanthine (p=0.019) and hypoxanthine 618 
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(p=0.000), chenodeoxycholic acid (p=0.063), neopterin (p=0.023), and glycocholic acid (p=0.027) 619 

in the sera of control (red) versus B12-deficient (green) groups. 620 

 621 

 622 

FIGURE  3: 623 

Selection and identification of metabolite and/or metabolite ratio as a biomarker. The top 6 624 

predictive models (Var.) generated by various multivariant analyses were compared for their 625 

performance as metabolite biomarker predictors for B12 deficiency using ROC-AUC curves based 626 

on the MCCV method. ROC-AUC curve for (A) PLS-DA and (C) RF models using singular 627 

metabolites as features. ROC-AUC curve for € PLS-DA and (G) RF models using abundance ratio 628 

of metabolite pairs as features. Feature ranking plot for (B) PLS-DA and (D) RF models 629 

representing the top 15 metabolites arranged in descending value of average importance score. The 630 

average importance scores range from 1 to 2 for PLS-DA and 0 to 2 for RF. Feature ranking plot 631 

for (F) PLS-DA and (H) RF models representing top 15 abundance ratio of metabolite pairs 632 

arranged in descending value of average importance score. The average importance score ranges 633 

from 1 to 2 for PLS-DA and 1 to 4 for RF. In all the feature ranking plots the relative abundance of 634 

each feature between the control and B12-deficient group was graded with red and blue colors 635 

representing high and low abundance, respectively. 636 

 637 

FIGURE 4:  638 

Comparison of the abilities of taurine, hypoxanthine and taurine/chenodeoxycholic acid ratio 639 

to predict B12-deficient state. ROC-AUC curve showing performance of (A) taurine, (B) 640 

hypoxanthine and (C) taurine/chenodeoxycholic acid ratio as biomarker to predict B12 deficiency 641 

based on AUC (sensitivity, specificity) and CI (variability) values. Each ROC curve is a plot 642 

between false positive rate (x-axis) and true positive rate (y-axis). Box plots showing normalized 643 
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concentration of (D) taurin€(E) hypoxanthine and (F) taurine/chenodeoxycholic acid ratio between 644 

control (pink) versus B12-deficient (green) group. Each dot represents a sample. Y-axis represents 645 

fold change values. P value <0.05. 646 

 647 

FIGURE 5:  648 

Statistical Model to test predictive ability of taurine alone and in combination as biomarker. 649 

Random forest was used as a model to test the predictive abilities of taurine, taurine and 650 

hypoxanthine together, and taurine/chenodeoxycholic acid ratio to predict B12 deficiency. 651 

Predicted class probability plot for (A) taurine, (B) taurine and hypoxanthine together, and (C) 652 

taurine/ chenodeoxycholic acid ratio showing the classification accuracy of each factor to 653 

differentiate between control (grey dots) and B12-deficient (red dots) samples. The solid dots are 654 

training data sets and the empty dots are test data sets. ROC-AUC curve analysis showing cross-655 

validation (pink) and hold-out (blue) scores to determine the performance of (D) tau€e, (E) taurine 656 

and hypoxanthine, and (F) taurine/chenodeoxycholic acid ratio as a biomarker to predict B12 657 

deficiency. Each ROC curve is a plot between the false positive rate (specificity) on the x-axis and 658 

true positive rate (sensitivity) on the y-axis. 659 

 660 

FIGURE 6:  661 

Metabo-transcriptomic network analysis links B12 dependent reactions with 662 

taurine/chenodeoxycholic acid. Network analysis showing the differentially expressed genes and 663 

metabolites between controls and B12-deficient livers in a mouse model of B12 deficiency reported 664 

previously(25). The network shows interactions between enzymes (italics font) and metabolites 665 

(normal font) across various metabolic pathways in the liver such as Krebs cycle, urea cycle, 666 

amino acid metabolism, nucleotide metabolism, etc. The arrows represent the direction of the 667 
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reaction. The downregulation and upregulation of enzyme transcript or metabolite concentrations 668 

are represented by blue and red color, respectively. 669 

 670 

FIGURE S1:  671 

Correlation analysis between metabolites and samples. Pearson’s correlation matrix to identify 672 

highly correlated (A) metabolites and (B) samples in two groups. Correlation score ranged from 1 673 

(highest, red) to -1 (lowest, blue). 674 

 675 
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