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ABSTRACT 1 

Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures of 2 

molecular complexes at near atomic resolution by averaging half a million subtomograms. While 3 

abundant complexes/particles are often clustered in arrays, precisely locating and seamlessly 4 

averaging such particles across many tomograms present major challenges. Here, we 5 

developed TomoNet, a software package with a modern graphical user interface to carry out the 6 

entire pipeline of cryoET and subtomogram averaging to achieve high resolution. TomoNet 7 

features built-in automatic particle picking and 3D classification functions and integrates 8 

commonly used packages to streamline high-resolution subtomogram averaging for structures 9 

in one-, two- or three-dimensional arrays. Automatic particle picking is accomplished in two 10 

complementary ways: one based on template matching and the other employing deep learning. 11 

TomoNet’s hierarchical file organization and visual display facilitate efficient data management 12 

as required for large cryoET datasets. Applications of TomoNet to three types of datasets 13 

demonstrate its capability of efficient and accurate particle picking on flexible and imperfect 14 

lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface 15 

layers within cellular lamellae, and membranes decorated with nuclear egress protein 16 

complexes. These results demonstrate TomoNet’s potential for broad applications to various 17 

cryoET projects targeting high-resolution in situ structures.  18 
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INTRODUCTION 19 

Single-particle cryogenic electron microscopy (cryoEM) is employed to elucidate atomic-level 20 

structures of purified biological complexes. This methodology adheres to a standardized and 21 

well-established workflow supported by advanced software packages such as Relion1 and 22 

cryoSparc2. In parallel, cryogenic electron tomography (cryoET), coupled with subtomogram 23 

averaging (STA), expands the investigative scope to encompass heterogeneous 24 

macromolecules in their native context3-10. To enhance the resolution of subunits within in situ 25 

macromolecules, subtomograms (i.e., particles) are extracted from each tomogram and then 26 

subjected to 3D alignment and averaging, thereby improving signal-to-noise ratio. Notably, STA 27 

has achieved resolutions up to sub-3 Å for in situ structures of large cellular complexes such as 28 

ribosomes, approaching the capabilities of single-particle cryoEM methodologies11-14.  29 

The workflow for cryoET and STA typically involves five key components across specific 30 

software packages. In cryoET preprocessing, dose fractionated frames are collected from an 31 

electron microscope, undergo motion correction, organized, and then assembled into individual 32 

tilt series. In tomogram reconstruction, three-dimensional reconstructions are generated from 33 

those tilt series. In particle picking, particles of interest are identified and extracted from 34 

tomograms. Complexity varies based on the diverse and intricate nature of in situ cellular 35 

samples and their unique configurations. Many packages include their own particle picking 36 

methods, such as oversampling using a supporting geometry in Dynamo15,16, template matching 37 

in emClarity17 and machine learning in crYOLO18. In 3D refinement and classification, particles 38 

are iteratively classified and refined to obtain a final structure at sub-nanometer or near atomic 39 

resolution, which has been demonstrated by software packages like Relion13,19, emClarity17, 40 

EMAN24 and Warp20. Finally, activities in post-processing include map sharpening, Fourier shell 41 

correlation (FSC) calculation, visualization by placing averaged maps back into the original 42 

tomogram, etc. Users often need to navigate between several specialized software packages 43 
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for optimal results, which often demands a certain level of computational proficiency that poses 44 

a barrier for many. 45 

The method for particle picking varies on a case-by-case basis, dictated by the 46 

characteristics of in situ cellular samples. In the early works of STA, manual particle picking was 47 

employed, particularly when aiming for resolutions between 20-50 Å with a maximum of several 48 

hundred particles21-23. However, for biological samples exhibiting periodic structures, 49 

oversampling on specified geometry was leveraged to significantly reduce the labor associated 50 

with acquiring enough particles for improved resolutions. For instance, HIV virus-like particles 51 

(VLPs) adopt a hexagonal Gag protein lattice in its sphere-like configuration16. Other examples 52 

include the Marburg Virus24, Herpes simplex virus25, and the Coat protein complex II26, all of 53 

which contain lattice-like arrangements with repeating subunits that could benefit from particle 54 

picking automation when performing cryoET data processing. With an increasing demand for 55 

automation to enhance efficiency with minimal manual intervention, template matching has 56 

emerged as a popular method for automatic particle picking, relying on a user-provided 57 

reference map17,27. Simultaneously, convolutional neural networks have shown promising 58 

results for cryoET automatic particle picking given its capacity to analyze three-dimensional 59 

feature maps and autonomously identify prominent features within specific samples28-31. These 60 

machine learning approach typically operate template-free and often obviates the need for 61 

human annotation32. 62 

The expanding array of specialized software tools designed for specific tasks posts a 63 

critical need for seamless software integration within the cryoET workflow. Transitioning 64 

between various software packages can be a cumbersome process. Remarkably, recent 65 

initiatives have made notable progress in tackling this integration challenge. For example, 66 

TomoBEAR33 offers an integrated solution, while ScipionTomo34 and nextPYP35 provide a 67 

comprehensive web-based platform for managing various tasks in the cryoET pipeline. Notably, 68 
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none of these packages takes specific advantage of the fact that abundant complexes exist in 69 

arrays of some sort, albeit with imperfections, variability, or flexibility. 70 

In this context, we have developed TomoNet, a software package designed for 71 

streamlining the cryoET and STA data processing workflow, with a modern GUI (Figure 1 and 72 

Figure 2). Our methodology employs a geometric template matching approach, rooted in the 73 

concept of "Auto Expansion”, which serves as a general particle picking solution for biological 74 

complexes organized in flexible, variable, or imperfect arrays. TomoNet is also powered by a 75 

deep learning-based solution to automate particle picking, which only needs 1-3 tomograms 76 

with known particle locations as ground truth for model training. Importantly, while TomoNet is 77 

particularly powerful for locating and averaging particles arranged on flexible or imperfect 78 

lattices, it can be applied to a broader range of particle types, offering a more generalizable 79 

trained model. These methods significantly diminish the need for manual inputs, and their 80 

outcomes can be seamlessly imported into Relion for subsequent high-resolution 3D 81 

classifications and refinements. We demonstrate the capabilities of TomoNet by applying it to 82 

three datasets with distinct protein lattice types, highlighting its accuracy and efficiency in 83 

identifying particles across diverse scenarios. 84 

RESULTS 85 

Overall design of TomoNet 86 

TomoNet is a Python-based software package that integrates commonly used cryoET packages 87 

to streamline the cryoET and STA pipeline, with a particular emphasis on automating particle 88 

picking of lattice-configured structures and cryoET project management. As shown in the main 89 

menu and the entire TomoNet pipeline (Figure 1 and Figure 2), after data collection from 90 

electron microscopy, TomoNet can perform motion correction with integration of MotionCorr236; 91 

tilt series assembly and tomogram reconstruction with integration of IMOD37 and AreTomo38; 92 

CTF estimation with integration of CTFFIND439; manual particle picking with IMOD; particle 93 
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picking using built-in geometric template matching-based algorithms with integration of PEET40; 94 

automatic particle picking using built-in deep learning-based algorithms; 3D 95 

classification/particle cleaning and subtomograms placing back with built-in algorithms. This 96 

design also allows on-the-fly tomogram reconstruction processing during data collection, which 97 

facilitates a quick quality check. TomoNet generates particle picking results in STAR format41, 98 

which can be incorporated into Relion for high-resolution 3D refinement. It can also read Relion 99 

results in STAR format for particle cleaning and subtomograms placing back (Figure 1).  100 

Particle picking with “Auto Expansion”  101 

The “Auto Expansion” module is based on template matching and uses cross-correlation 102 

coefficient as a selection criterion, with a design to pick particles on flexible lattices with minimal 103 

manual inputs, its basic concept is elucidated in Figure 3. These particles exist in array-like 104 

configurations and manifest as flexible, partial, and imperfect lattices in one, two and three 105 

dimensions (1-3D). Examples are abound: microtubule doublets, ubiquitous in most cells, 106 

consist of 96 nm axonemal 1D translational repeat units22,42 (1D rotational lattice); HIV VLPs43 107 

and surface layer (S-layer) lattice of prokaryotic cells44,45 are composed of hexametric subunits 108 

(2D lattice); paraflagellar rod of protozoan species is organized into para-crystalline arrays in its 109 

distal zone21 (3D lattice). In TomoNet, each of these isolated lattice densities is called a patch, 110 

within which all subunits of the complex are connected. For instance, Figure 3 illustrates two 111 

patches with different sizes.  112 

“Auto Expansion” is an iterative process; each iteration expands the particle set by 113 

adding more unpicked ones. To initiate “Auto Expansion”, users need to prepare a few “seed” 114 

particles that sparsely distribute across all observed patches. Typically, the numbers of such 115 

“seed” particles per tomogram range from 20 to 200, which depends on the number and size of 116 

patches in the input tomogram. Then, “Auto Expansion” iteratively expands the “seed” particle 117 

set to a final particle set that contains all particles on given flexible lattices, following three steps 118 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 19, 2024. ; https://doi.org/10.1101/2024.02.17.580557doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.17.580557


7 | P a g e  
 

for each iteration (Figure 3). Firstly, potential particles adjacent to each “seed” particle are 119 

calculated and selected as “candidate” particles. Secondly, these “candidate” particles undergo 120 

alignments to a user-provided reference and are evaluated based on cross-correlation 121 

coefficient, such that “wrong” particles with low cross-correlations are excluded. Thirdly, 122 

qualified “candidate” particles are added to the particle set and become “seed” particles for the 123 

next iteration. During this process, only unpicked ones can be considered as “candidate” 124 

particles, and “Auto Expansion” stops either when no “candidate” particles are detected or when 125 

the user-defined maximum iteration number is reached. Doing this allows for an exhaustive 126 

exploration of particles on given lattices following their assembly topology with no restriction on 127 

geometry and outputs a final particle picking result (Figure 2).  128 

Compared with conventional template matching methods, “Auto Expansion” incorporates 129 

prior knowledge of lattice configuration to iteratively guide the search for “candidate” particles, 130 

i.e., unpicked particles following user-defined paths, as detailed in the Method section and 131 

TomoNet’s user manual. Thus, “Auto Expansion” significantly reduces computational complexity 132 

by searching in the regions of interest only, with restricted angular and translational search 133 

ranges defined by users. As a result, it reduces the number of incorrectly picked particles. 134 

Notably, “Auto Expansion” potentially works for any flexible, imperfect, or variable lattices in 1D, 135 

2D and 3D and has no intrinsic size limit of subunits.  136 

Automatic particle picking by deep learning 137 

The “AI AutoPicking” module is designed for automatic particle picking using supervised 138 

machine learning, which employs a U-net convolutional neural network for model training. There 139 

are three main steps in “AI AutoPicking”: training data preparation, neural network training, and 140 

particle coordinate prediction, as detailed in the Method section (Figure 4). It only requires an 141 

input training dataset consisting of 1-3 tomograms paired with their corresponding particles 142 

coordinate files. The trained model can then be applied on the entire tomography dataset and 143 

output predicted particles for each tomogram.  144 
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 Essentially, the neural network in “AI AutoPicking” is trained as a voxel-wise binary 145 

classifier, which determines whether a voxel in density maps is part of a particle (Figure 4b). To 146 

prepare for training, data pairs (ground truth) consist of extracted subtomograms coupled with 147 

their associated segmentation maps, within where each particle is labeled by a cube near its 148 

center (Figure 4a). The trained neural network model can be applied on other tomograms to 149 

perform particle segmentation. Finally, the particles coordinate information can be retrieved from 150 

the predicted segmentation maps (Figure 4c). 151 

3D classification using TomoNet 152 

In addition to the above two commentary modules for particle picking, TomoNet allows users to 153 

eliminate “bad” particles based on user-defined geometric constraints, which could serve as 3D 154 

classification during high-resolution particle refinements. Lattice variation in cryoET data has 155 

multiple plausible causes. Biologically, particles may be incomplete near the lattice edge due to 156 

paused biology assembly process46. Experimentally, lattices tend to become flattened near the 157 

air-water interface of the sample during imaging. These variabilities pose challenges for 3D 158 

classification in the process of high-resolution STA, making it difficult to exclude “bad” particles 159 

that exhibit unexpected coordinates and orientations assignment as subunits of lattices 160 

(Supplementary Movie 1).  161 

Removing these “bad” particles is necessary for achieving better resolutions47. To 162 

accomplish this, TomoNet assesses each particle by counting its neighboring particles and 163 

calculating the averaged tilt angle to these neighbors to represent local surface curvature of a 164 

lattice. TomoNet identifies particles with too few neighbors or large tilt angles to their neighbors 165 

as “bad” particles since they potentially deviate from the lattice configuration. This step can be 166 

integrated into high-resolution refinement in Relion, providing an alternative 3D classification 167 

method based on analyzing spatial relationships between particles. 168 

Application to in situ viral protein arrays: the matrix protein lattice in HIV VLPs  169 
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To validate TomoNet as an integrated high-resolution cryoET and STA pipeline and an efficient 170 

particle picking tool, four tomograms were processed from the HIV-1 Gag dataset which 171 

resolved the Gag hexamer structure at 3.2 Å resolution. Motion corrected images underwent tilt 172 

series assembly, CTF estimation, and tomographic reconstruction using TomoNet. Within these 173 

tomograms, the VLP hexagonal lattice and its building blocks were observed, and some of 174 

these observed VLPs exhibited sphere-like geometry (Figure 5a).  175 

As detailed in the Method section, a combination of “Auto Expansion” and “AI 176 

AutoPicking” was applied on the above four tomograms; as a result, particles were readily 177 

picked on all the observed lattice patches (Figure 5b, c). Then, these picked particles were 178 

imported to Relion to perform high-resolution particle refinements, resulting in a final 179 

reconstruction of the Gag hexamer structure (Figure 6).  180 

Using the “3D subtomogram place back” function in TomoNet, 3D visualizations were 181 

generated to illustrate the in situ assembly of the VLP lattices (Figure 5d and Figure 7). All VLP 182 

lattices with various sizes and shapes were captured even with irregular shapes (Figure 7e and 183 

Supplementary Movie 2), demonstrated TomoNet’s particle picking ability on flexible lattices. 184 

Lattice defects on each VLP were also identified consistent with previous studies48, enhancing 185 

the understanding of lattice assembly mechanisms49. 186 

Application to focused ion beam (FIB)-milled cellular sample: the S-layer lattice of 187 

prokaryotic cell  188 

We validated TomoNet’s particle picking capability by processing one tomogram of FIB-milled 189 

Caulobacter crescentus cells from EMD-2362250. The S-layer functions as a component of the 190 

cell wall covering the cell body. Thus, its lattice geometry is typically defined by the shape of 191 

cells (Figure 8a). The pleomorphic shape of C. crescentus cell in variable sizes, with the low 192 

contrast shown in this tomogram, hindered locating subunits on the S-layer lattice and raised 193 

difficulty for efficient particle picking on its S-layer lattice (Figure 8a).  194 
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TomoNet overcame the above challenges by utilizing the hexagonal configuration of S-195 

layer lattices. With a minimal manual input, “Auto Expansion” picked over a thousand hexamer 196 

S-layer subunits. The intermediate STA result clearly reveals the hexagonal distribution of S-197 

layer inner domains (Figure 8b). Visualization of S-layer lattices also shows that the picked 198 

particles were arranged in the expected hexagonal pattern, confirming the reliability and 199 

applicability of TomoNet as a particle picking tool (Figure 8c) and its broad application to 200 

structure determination of prokaryotic and archaeal cell walls45,51.  201 

Application to in vitro assembled arrays: nuclear egress complex (NEC) lattice 202 

We further validated TomoNet as an integrated high-resolution STA pipeline and an efficient 203 

particle picking tool by processing samples containing NEC lattices within budded vehicles. 204 

Nuclear egress is a pivotal step in herpes virus replication, driven by NEC and responsible for 205 

translocating nascent viral particles from nucleus to cytoplasm. In our reported dataset52, NEC 206 

heterodimers budded into large vesicles with diameters ranging from 100 nm to 500 nm, forming 207 

beehive-like lattices on the inner surface of these vesicles (Figure 9a, b). Because of their large 208 

sizes, noticeable compressions were observed during the sample freezing, reshaping the 209 

vesicles and NEC lattices from spherical to flattened disk shapes (Figure 9a, b). This 210 

conformational change was a consequence of the limitation in ice thickness imposed by cryoET, 211 

which restricts the sample thickness to approximately 250 nm, consequently posing challenges 212 

for particle picking. 213 

TomoNet successfully picked NEC hexamer subunits following the topology of lattices. 214 

The intermediate STA result generated in TomoNet already showed the six heterodimers within 215 

one hexamer subunit (Figure 9c). With these picked particles, high-resolution 3D classifications 216 

and refinements were carried out to obtain a final reconstruction of NEC hexamer subunit at 5.4 217 

Å resolution, without preferred orientation bias (Figure 9c, d and Figure 6c), and all the helices 218 

were well resolved (Figure 9e). Visualization of subtomograms placing back shows that the 219 

large vesicle was compressed during sample freezing which stretched the NEC lattice, making it 220 
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appears flat and split at the air-water interface, while the middle part of the lattice appears to be 221 

more curved. 222 

Application to other types of arrays and free-floating particles 223 

The above examples show how TomoNet’s ability to locate particles arrays arranged on flexible 224 

spheres (HIV), cell surfaces (S-layer) and nuclear membranes (NEC), which can be considered 225 

as topologically 2D lattices. In our published work of various cryoET structures, TomoNet has 226 

also been used to locate subtomograms arranged on flexible filaments (i.e., 1D arrays) such as 227 

the flagella of Trypanosoma brucei22,42 and the amyloid-like sheath protein on β-hoops of the 228 

prototypical archaeon, Methanospirillum hungatei53. In the case of 3D lattices, TomoNet has 229 

been also used to obtain the paraflagellar rod structure of T. brucei21. Since TomoNet has 230 

integrated packages and is designed for the entire cryoET and STA data processing pipeline, it 231 

can also be used as a general-purpose package for subtomogram averaging towards high 232 

resolution when particles are free floating and without local order. In the latter case, TomoNet 233 

would have the same limitation recognized for all other cryoET software packages, that is, high 234 

resolution is currently only achieved for large complexes, such as ribosomes.  235 

DISCUSSION  236 

In this paper, we report the implementation and application of TomoNet and demonstrate its 237 

efficacy in particle picking across three distinct datasets featuring particles with varying lattice 238 

configurations. TomoNet stands out as the first software to exhaustively trace lattices following 239 

its inherent topology. This unique approach ensures that the particle picking results faithfully 240 

reflect in situ or in vitro lattice shape, providing valuable insights into how these lattices are 241 

formed by their constituent subunits. For HIV VLPs, TomoNet application enabled us to directly 242 

visualize the VLPs lattices and their defects potentially caused by the absence of pentamer 243 

subunits. Similarly, for the NEC dataset, TomoNet facilitated a more direct observation of lattice 244 

conformation changes resulting from the sample freezing process. Since vesicles in this dataset 245 
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were too large to be compressed from a sphere into a disk-like shape, the lattice regions near 246 

the air-water interface became stretched and subsequently divided into smaller fragments. 247 

Moreover, TomoNet demonstrated its exceptional performance, even when dealing with 248 

datasets characterized by extremely low contrast. For instance, in the cellular S-layer tomogram 249 

of a lamella, S-layer subunits were nearly imperceptible to human observations. Therefore, 250 

"Auto Expansion" excelled in particle picking without requiring denoising or contrast-251 

enhancement algorithms.  252 

Additionally, "AI AutoPicking", the deep learning-based module, demonstrated excellent 253 

performance on automatic particle picking, showing potential in handling a wide range of particle 254 

types even beyond those with lattice-like arrangements. Compared to the template matching-255 

based “Auto Expansion”, “AI AutoPicking” has several advantages in particle picking. Firstly, it 256 

applies to particles situated on flexible lattices and those arranged in scattered patterns, such as 257 

cellular ribosomes. The neural network learns to pick by discerning 3D features of individual 258 

particles, and it does not require prior knowledge about lattice configuration. Secondly, it utilizes 259 

GPUs for fast convolution operations, enabling particle prediction in just several minutes for 260 

each tomogram. Thirdly, it does not require the “seed” particles used in “Auto Expansion”, which 261 

further reduces human efforts by approximately 5-15 minutes per tomogram. This is especially 262 

beneficial for processing extensive tomography datasets with hundreds of tomograms. 263 

However, comparing their final output particles, “AI AutoPicking” typically picks fewer particles 264 

than “Auto Expansion” because it misses certain particles on the flexible lattices. Thus, these 265 

two modules are complementary to each other and can be incorporated to further explore these 266 

missing particles.  267 

Regarding the pipeline design, each module within TomoNet is designed to be highly 268 

independent, ensuring flexibility for integrating future methods and third-party packages. This 269 

adaptable framework positions TomoNet as a platform of choice for other developers to build 270 

their own innovations. At present, TomoNet is primarily tailored for integration with the Relion-271 
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related pipeline. However, it can accommodate specific demands and can be extended to 272 

integrate other pipelines, including emClarity17, EMAN24, M54, and others in the future. In 273 

summary, TomoNet significantly simplifies the overall process for users in managing and 274 

monitoring every step of the complete cryoET and STA pipeline. Its user-friendly GUI design 275 

notably reduces the entry barrier for newcomers to the fast-emerging cryoET field. The particle 276 

picking modules of TomoNet provide a general solution for particles organized in lattice-like 277 

arrangements, ensuring both accuracy and efficiency, thereby facilitating the high-resolution 278 

STA pipeline.  279 

METHODS 280 

TomoNet is an open-source software package developed using Python. It follows a highly 281 

modularized architecture with each module responsible for specific tasks in a typical cryoET and 282 

STA data processing pipeline. Modules in TomoNet mainly cover the upper stream of the 283 

cryoET and STA pipeline including procedures of motion correction, tilt series generation, 284 

tomogram reconstruction, CTF estimation and particle picking, while leave the high-resolution 285 

3D refinement to established software package like Relion (Figure 1). The design of a modern 286 

GUI, established with PyQt5 platform, enhances user-friendliness, and helps with tracking the 287 

processing progress (Figure 2). With table views, users can obtain a comprehensive overview of 288 

the entire dataset, facilitating direct and intuitive management for each tomogram (Figure 2).  289 

Implementation of modules for motion correction, tomogram reconstruction and CTF 290 

estimation 291 

Motion correction, tomogram reconstruction, and CTF estimation related functions are 292 

organized into individual modules in TomoNet, with the integration of corresponding external 293 

software packages including MotionCorr236, IMOD37 or AreTomo38 and CTFFIND439, 294 

respectively. Since their codes are not rewritten in TomoNet, users have to install each of them 295 

before using the corresponding modules.  296 
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The “Motion Correction” module is used to correct bean-induced sample motion. It 297 

requires an input folder path that contains all the dose fractionated frames, then user can 298 

specify their MotionCorr2 parameters in the GUI. After clicking the “RUN” button, TomoNet will 299 

perform motion correction for all the input images and save the results in a separated directory. 300 

This module also allows on-the-fly motion correction during data collection. 301 

The “3D Reconstruction” module comprises two sub-functions: “TS Generation” and 302 

“Reconstruction”. Within “TS Generation”, users can readily assemble tilt series for each 303 

tomogram from the previously generated motion corrected images. It provides advanced options 304 

for data cleaning, such as setting a minimum acceptable number of tilt images for a tomogram, 305 

removing duplicate images at the same tilt angle by excluding images with older time stamps. 306 

The “Reconstruction” tab automatically reads and lists all tomograms in a table view, with 307 

essential information, such as tilt image number and alignment errors, and action buttons for 308 

restart, continue and delete individual tomogram reconstruction process. This simplifies the 309 

assessment of reconstruction results and facilitating tomogram reconstruction management.  310 

 The "CTF Estimation" module is used for the tilt series defocus estimation, with support 311 

of parallel processing using multiple CPUs. Its outcomes are also listed in a table view with 312 

visualization features, such as displaying defocus at 0 degree and plotting the defocus 313 

distribution across all tilt angles. 314 

Implementation of the “Manual Picking” module 315 

The “Manual Picking” module is designed for general management of manual particle picking, 316 

especially for the preparation of “seed” particles required in “Auto Expansion”. IMOD stalkInit 317 

picking criteria is implemented to define the Y-axis for each particle with 2 points, and the center 318 

in between them. In the example of HIV dataset, 5-10 particles were manually picked as the 319 

“seed” particles for each VLP lattice, which only takes several minutes per tomogram (Figure 320 

5a).  321 

Design and implementation of the “Auto Expansion” module 322 
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“Auto Expansion” consists of three steps as shown in Figure 2. “Generate tomograms.star” is 323 

used to generate a STAR format file that maintain information of tomograms and their 324 

associated “seed” particles to be applied in “Auto Expansion”. “Generate Picking Parameter” is 325 

used to set up parameters required for particle set expansion through the described iterative 326 

process. The parameters include angular search ranges and steps, translational search ranges 327 

and steps, a “transition list” (explained later), box size used in particle alignment, distance 328 

between neighboring repeating subunits, reference and mask map, cross-correlation threshold, 329 

etc. The “transition list” is customized by users to describe the targeting lattice configuration, 330 

with each transition denoted by [sx, sy, sz], where sx, sy and sz are translational shifts from the 331 

center of “seed” particle to one of its neighbors along X, Y and Z-axis, respectively. Thus, “Auto 332 

Expansion” can use it to guide the search of “candidate” particles. These user defined 333 

parameters will then be saved into a JSON format file. “Run Particle Expansion” takes the 334 

above STAR and JSON format files as inputs to perform the iterative particle set expansion.  335 

During the “Auto Expansion” processing, three directories will be generated for each 336 

tomogram. They are “TomoName” as the working directory for carrying out the current iteration, 337 

“TomoName_cache” that stores intermediate results from finished iterations, and 338 

“TomoName_final” that stores the final particle picking results. The iteration number of “Auto 339 

Expansion” is typically greater than one. However, “Auto Expansion” allows for some special 340 

usage cases. For example, in the scenario when users need to modify the particle picking 341 

setting such as a different cross-correlation threshold, user can generate the new picking 342 

parameter file, then execute “Run Particle Expansion” by setting the iteration number as 0. This 343 

prompts the program to skip the “candidate” searching steps, but just gather all intermediate 344 

results saved in “TomoName_cache” directories, then generate a new “TomoName_final” result. 345 

Design and implementation of the “AI AutoPicking” module 346 

The “AI AutoPicking” module comprise 3 main steps, “Prepare Training Dataset”, “Train Neural 347 

Network” and “Predict Particles coordinates”. It uses supervised machine learning that requires 348 
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users to provide ground truth, i.e., tomogram with the associated particle coordinates files, for 349 

the model training. In this study, the ground truth data were prepared by “Auto Expansion”. 350 

 In “Prepare Training Dataset”, extracted subtomograms are used as inputs to the 351 

network training model for two reasons. Firstly, the size of tomogram used for picking is typically 352 

around 1000x1000x1000 voxels which is not applicable to be loaded in the GPU memory, but 353 

the size of extracted subtomograms is under 100x100x100 voxels. Secondly, it helps with 354 

increasing the number of training data pairs to avoid over-fitting during the network training. For 355 

the model output, the particle coordinates information was embedded into 3D binary 356 

segmentation maps, where the voxels associated with particles were set to 1, otherwise set to 0 357 

(Figure 4a).  358 

In “Train Neural Network”, the above extracted subtomograms paired with their 359 

associated segmentation maps are used to train a neural network model to be a binary classifier 360 

that predict whether a voxel is near the center of a particle. The network architecture employed 361 

is derived from the one used in IsoNet46 as it is well-suited for capturing generalized features of 362 

3D objects (Figure 4b). Since the learning task is voxel-wisely binary classification, cross 363 

entropy loss function is used instead of minimum squared error (MSE). Equipped with one RTX 364 

3080Ti graphic card, the training process can be completed swiftly within 1-2 hours if using the 365 

default parameters. 366 

 In “Predict Particles coordinates”, users can apply the trained model on the entire 367 

tomography dataset for particle coordinate prediction (Figure 4c). For each tomogram, TomoNet 368 

generate a predicted segmentation map first, then its particle coordinates information can be 369 

retrieved from the segmentation map by utilizing the hierarchical clustering algorithm from scipy 370 

module in Python.  371 

Implementation of tools within the “Other Utilities” module 372 

The “Other Utilities” module consists of two sub-functions: "Recenter | Rotate | Assemble 373 

to .star file" and "3D Subtomogram Place Back" as useful tools for post particle picking 374 
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processing. The first one allows users to assemble and convert the particle picking results into a 375 

STAR format file following the Relion4 convention, reset particles center to its symmetric center, 376 

and align the rotation axis to Relion Z-axis. The second one takes a user-provided STAR format 377 

file that contains particles information as input, then generates a ChimeraX55 session file for 3D 378 

subtomograms placing back and a clean version of STAR format file with “bad” particles 379 

removed. This not only allows users to validate the accuracy of particle picking before importing 380 

into Relion, but also enables direct observation of the distribution and configuration of subunits 381 

after the high-resolution 3D refinements, providing overall in situ lattice observations (Figure 7). 382 

Processing tomograms of HIV VLP dataset  383 

The HIV VLP dataset was downloaded from the Electron Microscopy Public Image Archive 384 

(EMPIAR) with the accession code EMPIAR-1016443. Four tilt series, TS_01, TS_43, TS_45 385 

and TS_54, were used in this study. Downloaded micrographs were loaded into the TomoNet 386 

pipeline to perform tilt series assembly, CTF estimation, and tomogram reconstruction using the 387 

WBP algorithm.  388 

Four-time binned tomograms with 5.4 Å pixel size were used for further particle picking. 389 

Firstly, tomograms TS_01 and TS_43 were used for “seed" particles preparation on 3 selected 390 

VLPs per tomogram, and an initial reference map was generated by averaging them in PEET. 391 

Secondly, one run of “Auto Expansion” was applied on the above two tomograms to get more 392 

particles, such as to refine the reference. Thirdly, with an improved reference, a new run of 393 

“Auto Expansion” was applied on the selected 3 VLPs in both tomogram (Figure 5b), then the 394 

particle picking result was used for neural network training in “AI AutoPicking”. Fourthly, after 395 

the particle prediction on all four tomograms with a trained model, “AI AutoPicking” produced 396 

4,860, 3,704, 4,550 and 2,101 particles for tomograms TS_01, TS_43, TS_45 and TS_54, as 397 

shown in Figure 5c. Lastly, the predicted particles were input as “seed” particles for the final run 398 

of “Auto Expansion”, resulting in 5,765, 4,043, 5,006, and 2,838 particles for tomograms TS_01, 399 
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TS_43, TS_45 and TS_54, which were imported into Relion to perform high-resolution 400 

refinements.  401 

 Following the same procedure carried out in the Relion4 tutorial together with TomoNet 402 

3D classification, the Gag hexamer structure was resolved at 3.2 Å resolution with 13,558 403 

particles from four tomograms. Resolution was calculated in Relion and on 3DFSC Processing 404 

Server56. The global resolution reported is based on the “gold standard” refinement procedures 405 

and the 0.143 Fourier shell correlation (FSC) criterion (Figure 6).  406 

Processing one tomogram of C. Crescentus S-layer  407 

The FIB-milled C. crescentus data of one reconstructed tomogram was downloaded from 408 

Electron Microscopy Data Bank (EMDB) with the accession code EMD-2362250. This tomogram 409 

was directly used for “seed” particles preparation on two of the cells. Around 30 “seed” particles 410 

were manually picked and averaged using PEET to generate an initial reference map. “Auto 411 

Expansion” was applied on the “seed” particles for 5 iterations to get more particles such as to 412 

refine the reference map. With the improved reference map, another run of “Auto Expansion” 413 

was applied to the same “seed” particles for 15 iterations to search all particles on the outer 414 

surface of the cells, and finally yielded ~1,500 S-layer particles of hexamer subunits (Figure 8c).  415 

Processing tomograms of NEC budding in vitro 416 

The cryoET grid preparation and data collection were previously described52. Motion correction, 417 

tomogram reconstruction and CTF estimation were performed using TomoNet. Around 50-150 418 

“seed” particles were manually picked for each tomogram. “Auto Expansion” were applied on a 419 

total of 35 tomograms and yield the ~48,000 particles before Relion refinements. Following one 420 

round of 3D auto-refine job under four-binned pixel size and several rounds of 3D auto-refine 421 

jobs under two-binned pixel size and one round of 3D auto-refine under unbinned pixel size, 422 

together with TomoNet 3D classifications, the NEC hexamer structure was resolved at 5.4 Å 423 

resolution with totally 35,039 particles. 424 

3D visualization   425 
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IMOD37 was used to visualize the 2D tomographic and segmentation map slices. UCSF 426 

ChimeraX55 was used to visualize the STA results and the lattices generated by 3D 427 

subtomogram place back. The atomic models were fitted into the density map using the “fit in 428 

map” tool in ChimeraX.  429 

AVAILABILITY  430 

TomoNet code is available on Github website at https://github.com/logicvay2010/TomoNet, with 431 

a user manual. For the HIV VLPs dataset, the raw data was downloaded from the Electron 432 

Microscopy Public Image Archive (EMPIAR) with accession code EMPIAR-1016443, the Gag 433 

atomic model was downloaded from the Protein Data Bank (PDB) with accession code 5L9343. 434 

For the C. Crescentus S-layer dataset, the reconstructed tomogram was downloaded from the 435 

Electron Microscopy Data Bank (EMDB) with accession code EMD-2362250, and the subunit 436 

model was generated using atomic model with PDB accession code 6P5T57. The STA result of 437 

NEC hexamer is from EMDB with accession code EMD-4022452. The other data that support 438 

the findings of this study are available from the corresponding authors upon reasonable request. 439 
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Figure Legends  597 

Figure 1, Illustration of TomoNet’s comprehensive pipeline for cryoET and STA.  598 

The pink border encloses the sequential functions implemented in TomoNet, and they can be 599 

subdivided into three principal segments, delineated by the orange borders. These segments 600 

include tomogram preparation on the left, template matching-based particle picking “Auto 601 

Expansion” in the center, and deep learning-based automatic particle picking on the right. 602 

Figure 2, A screenshot of TomoNet GUI.  603 

The TomoNet GUI contains three main areas: the menu bar (top left), the input and operate 604 

area (top right), and the log window (bottom). Bottom left: results generated by the “3D 605 

Subtomogram Place Back” function can be visualized in ChimeraX. Bottom right: intermediate 606 

results of picked particles viewed with IMOD. 607 

Figure 3, Illustration of the first two iterations of "Auto Expansion" particle picking. 608 

There are two patches of a hexagonal lattice with individual particles represented by solid 609 

hexagons. At iteration 0, 18 “candidate” particles (dashed blue) were selected from the 610 

neighbors of 3 “seed” particles (orange). 14 good particles remained and will serve as “seed” 611 

particles in iteration 1, and 3 “seed” particles in iteration 0 were saved in the final particle set 612 

(green). At iteration 1, 35 “candidate” particles were selected from the neighbors of 14 “seed” 613 

particles. 29 good particles remained and will serve as “seed” particles in iteration 2, and 14 614 

“seed” particles were saved in the final particle set. “Auto Expansion” is an iterative process and 615 

will stop when no “candidate” can be detected. 616 

Figure 4, Illustration of "AI AutoPicking" process consisting of three steps.  617 

The HIV dataset was used for this illustration, and the particles refer to Gag hexamers. a, 618 

Training dataset preparation. Using the user-provided tomograms with associated particle 619 

coordinate files, subtomograms containing particle densities were extracted. For each 620 
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subtomogram, TomoNet generated a segmentation map based on the coordinates of particles, 621 

where the voxels near a particle's center are shown as white and the others as black. b, Neural 622 

network training. The generated subtomograms and segmentation maps were used as the input 623 

and output to train the convolutional neural network in learning how to segment out particle 624 

densities. c, Particle coordinate prediction. Firstly, TomoNet applied the trained neural network 625 

model to unseen tomograms and generated associated predicted segmentation maps. Then, 626 

the particle coordinate information was obtained from the segmentation maps using clustering 627 

algorithms. 628 

Figure 5, TomoNet application to arrays of matrix protein in HIV VLPs. 629 

a, Illustration of picked “seed” particles on a spherical VLP. Green segments represent the 630 

particles’ Y-axis. Scale bar is 20 nm. b, “Auto Expansion” result on three VLPs within tomogram 631 

TS_01, with yellow dots representing the center of the hexamer subunits. c, “AI AutoPicking” 632 

particle prediction result of tomogram TS_45 shows its ability to pick particles on all lattices of 633 

different sizes and shapes. d, Visualization of three different variations of the HIV Gag lattices 634 

generated by placing back averaged structures, two exhibiting a spherical shape, and one 635 

presented as a fragment. Blue arrows indicate defects in the lattice. 636 

Figure 6, Final map resolution of HIV Gag hexamer.  637 

a, Final reconstruction of Gag hexamer (grey) fitted with the atomic model (PDB: 5l93). b, One 638 

segmented Gag monomer structure, inset shows a closer view of carboxy-terminal domain 639 

overlay with the atomic model. c, Directional Fourier shell correlation (FSC) curves for the STA 640 

of Gag hexamer structure, with a global resolution at 3.2 Å. 641 

Figure 7, Comparative visualization of lattices obtained from TomoNet and Relion 642 

tutorial.  643 
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a, b, Visualized comparison of particles used in TomoNet and Relion tutorial within tomogram 644 

TS_01. TomoNet can pick particles not only on a sphere-like lattice but also on others with 645 

random shapes. c, d, A comparison of particle picking results on two sphere-like shape VLPs 646 

from TomoNet and Relion tutorial. e, A zoom-in view of an irregularly shaped lattice. Coloring is 647 

based on surface curvatures at the point of each subunit. 648 

Figure 8, TomoNet application to S-layer structure in FIB-milled cellular sample. 649 

a, A tomographic slice view shows two C. crescentus cells in a FIB-milled lamella. b, Orthogonal 650 

slice views of the averaged density map generated in TomoNet, showing the hexagonal 651 

distribution of S-layer inner domains. Scale bar is 20 nm. c, Visualization of S-layer lattices 652 

generated by placing back hexamer subunit maps simulated from PDB: 6P5T. Coloring is based 653 

on surface curvatures at the center of each subunit. 654 

Figure 9, TomoNet application to in vitro assembled NEC-bound membrane. 655 

a, b, Tomographic slice views show a large NEC lattice; the insets show different views of NEC 656 

hexamer subunits. Scale bar is 20 nm. c, Orthogonal slice views of an averaged density map 657 

generated in TomoNet show that NEC hexamer subunits consist of UL31/UL34 heterodimers. 658 

Scale bar is 10 nm. d, Visualization of an NEC lattice generated by placing back averaged maps 659 

shows that the large vesicle is compressed into a disk-like shape. The compression caused by 660 

sample freezing stretched the lattice, making it flat and split at the air-water surface. Coloring is 661 

based on surface curvatures at the center of each subunit. e, Atomic model of the UL31/UL34 662 

heterodimers fits into the final averaged map, with all helices well resolved. 663 

  664 
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Movie Legends  665 

Movie 1, A spherical VLP consisting of hexamer Gag subunits, colored by local surface 666 

curvature. “bad” particles with wrong alignment are shown as red. 667 

Movie 2, A VLP lattice with irregular shape. 668 
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