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Abstract 24 

Tsetse are the insects responsible for transmitting African trypanosomes, which cause 25 

sleeping sickness in humans and animal trypanosomiasis in wildlife and livestock. Knowing 26 

the age of these flies is important when assessing the effectiveness of vector control programs 27 

and modelling disease risk. However, current methods to assess fly age are labour-intensive, 28 

slow, and often inaccurate as skilled personnel are in short supply. Mid-infrared spectroscopy 29 

(MIRS), a fast and cost-effective tool to accurately estimate several biological traits of insects, 30 

offers a promising alternative. This is achieved by characterising the biochemical composition 31 

of the insect cuticle using infrared light coupled with machine learning algorithms to estimate 32 

the traits of interest.  33 

We tested the performance of MIRS in estimating tsetse sex and age for the first time using 34 

spectra obtained from their cuticle. We used 541 insectary-reared Glossina m. morsitans of 35 

two different age groups for males (5 and 7 weeks) and three age groups for females (3 days, 36 

5 weeks, and 7 weeks). Spectra were collected from the head, thorax, and abdomen of each 37 

sample. Machine learning models differentiated between male and female flies with a 96% 38 

accuracy and predicted the age group with 94% and 87% accuracy for males and females, 39 

respectively. The key infrared regions important for discriminating sex and age classification 40 

were characteristic of lipid and protein content. Our results support the use of MIRS as a fast 41 

and accurate way to identify tsetse sex and age with minimal pre-processing. Further 42 

validation using wild-caught tsetse can pave the way for this technique to be implemented as 43 

a routine surveillance tool in vector control programmes.   44 

 45 
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Author summary (150-200) 47 

Male and female tsetse transmit the parasites that cause sleeping sickness in humans and 48 

nagana in livestock. To control these diseases, knowing the age of these flies is important, as 49 

it helps evaluate the efficacy of control measures and assess disease risk. However, current 50 

age-grading methods are laborious, often unreliable, and in the case of male tsetse, highly 51 

inaccurate. This study explores a novel approach that uses mid-infrared spectroscopy (MIRS) 52 

to estimate the age of individual tsetse. Machine learning can detect signatures in MIRS that 53 

help identify the composition of a fly's cuticle, which differs between sexes and changes as 54 

they age. 55 

We trained machine learning models that distinguished male from female flies with 96% 56 

accuracy and predicted the correct age group with 94% accuracy for males and 87% accuracy 57 

for females. MIRS offers a fast and reliable way to identify tsetse sex and age with minimal 58 

preparation. If this method is successfully validated with wild flies, it holds the potential to 59 

vastly increase the accuracy of the way we monitor and combat these disease-carrying 60 

insects, thus offering significant advantages in our efforts to control them. 61 

 62 

 63 

 64 
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Introduction 67 

Tsetse are blood-feeding flies that can transmit trypanosome parasites of human and animal 68 

concern. There are two parasite species that cause Human African Trypanosomiasis (HAT), or 69 

sleeping sickness, and infected patients can die if they do not receive treatment. The 70 

promising decline of cases in endemic areas[1] in recent years is due to ongoing disease and 71 

vector control efforts, but continued support is critical to ensure the success of disease 72 

elimination programmes. However, Rhodesiense HAT (the more severe form) is still a concern 73 

due to livestock and wildlife forming part of its transmission cycle. Animal African 74 

trypanosomiasis (AAT) affects wildlife and domestic animals, causing three million cattle 75 

deaths/year with agricultural losses nearing US$ 5 billion/year[2]. Both female and male 76 

tsetse can transmit trypanosomes, but only adult flies older than 20 days post-emergence 77 

that have ingested blood from a parasite-infected host can be infectious. Tsetse age is 78 

therefore crucial for estimating transmission risk and the efficacy of vector control 79 

programmes. Accurate age grading in the field is crucial for disease monitoring and evaluation 80 

operations.  An effective vector control intervention, which does not discriminate against age, 81 

overall will reduce the average age of tsetse populations. For example, if in an area of ongoing 82 

vector control only young flies are caught, this suggests newly emerged flies in the area, 83 

whereas capturing older flies either indicates fly reinvasion from outside the intervention 84 

zone or intervention failure. 85 

Tsetse age grading for female flies currently relies on performing a labour-intensive ovarian 86 

dissection, which requires the use of a microscope and an experienced dissector. Female 87 

tsetse give birth to a larva every 9 days[3] throughout life, and the four ovarioles develop in 88 

a specific, predictable sequence; as each egg descends into the uterus, it leaves behind a scar 89 
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(named ‘relic’) that can be microscopically identified[4]. No new relics are created after the 90 

4th ovarian cycle, thus limiting the confidence of this method in flies older than seven 91 

weeks[4]. Furthermore, factors such as nutritional stress[5] , tsetse strain[6] and 92 

temperature[7] can affect the length of this 9-day process, and even with adjustments, the 93 

method can be imprecise. Ovarian dissections are time consuming and need to be performed 94 

while the tsetse is still ‘fresh’, and tissues maintain their form. After death, flies quickly 95 

become dehydrated and age grading is no longer possible by this method. This makes it 96 

difficult to process large numbers of flies when monitoring control interventions.  97 

The current situation is worse for male tsetse, as there are no dependable methods for age-98 

grading them. Wing fray analysis in either wild male[8] or female flies is unreliable as artifacts 99 

can be introduced through trapping protocols. Other approaches like tsetse eye pigment 100 

(pteridine) analysis[9] and gene expression [10] are too complex or costly for routine use in 101 

field settings. Thus, all current age-grading methods are either too imprecise, laborious, or 102 

expensive.  103 

Mid-infrared spectroscopy (MIRS) has proven to be a versatile technique for determining 104 

mosquito age and species in both insectary-reared and field-collected mosquitoes[11–14]. 105 

MIRS quantifies the energy a molecule absorbs based on its molecular vibrations[15,16]. As 106 

the insect surface is covered with a complex mixture of cuticular proteins, polysaccharides, 107 

wax and other lipids, this tool provides a way to detect the differences between different 108 

samples. The chemical composition of male and female cuticles, as well as different species-109 

specific signatures, can be resolved alongside more transient aspects such as cuticular 110 

changes over time[17]. Scanning a dried insect sample with MIRS is fast (1-2 minutes), and 111 

when combined with the use of machine learning (ML) algorithms, it provides a powerful 112 
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toolbox for researchers to rapidly assess vector populations with minimum sample processing 113 

and high accuracy. 114 

In this study, we use ML to estimate the age and sex from MIRS of different fly tissues 115 

collected from insectary-reared tsetse (Glossina morsitans morsitans) of known age and sex. 116 

We also identified the regions of the tsetse mid-infrared spectrum associated with age and 117 

sex, to elucidate the biological basis of our model predictions. 118 

 119 

Methods 120 

Tsetse rearing 121 

An age-stratified colony of Glossina morsitans morsitans Westwood, established in 2004 at 122 

the Liverpool School of Tropical Medicine (LSTM), UK, was daily maintained under the 123 

following conditions: 26 – 28 °C, 68 – 78 % humidity and a 12 h/12 h light/dark cycle. Tsetse 124 

were fed three times a week on sterile defibrinated horse blood (TCS Biosciences Ltd, 125 

Buckingham, UK) using a silicon membrane feeding system.  126 

Tsetse sampling strategy and desiccation 127 

Young, unmated female flies were first collected from emerging pupal pots as male 128 

emergence is delayed, and male collection was timed after the females had emerged. Both 129 

teneral (unfed, newly emerged) female and male collections were  isolated from each other 130 

to prevent potential cuticular contamination with contact sex pheromones (cuticular 131 

hydrocarbon) during mating[18]. 132 
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We collected 354 female and 187 male teneral tsetse from the LSTM colony in total for 133 

analysis. At specific ages, tsetse were killed with chloroform-soaked cotton, placed on a thin 134 

layer of cotton wool inside a 15 ml falcon tube half-filled with silica gel beads, sealed and then 135 

stored at 4°C until required.  Desiccated tsetse were transferred to 96-well plates in 136 

preparation for shipping to the University of Glasgow. Upon analysis, dried flies were 137 

dissected into three sections: head, thorax and abdomen using dissection tweezers. 138 

Infrared Spectroscopy 139 

Spectra from individual heads, thoraces and abdomens were taken by Attenuated Total 140 

Reflection (ATR) FT-IR spectroscopy using a Bruker ALPHA II spectrometer equipped with a 141 

Globar lamp, a deuterated L-alanine doped triglycene sulphate (DLaTGS) detector, a 142 

Potassium Bromide (KBr) beam splitter, and a diamond ATR accessory (Bruker Platinum ATR 143 

Unit A225). Twenty-four scans were collected at room temperature between 4000 and 400 144 

cm−1 with 4 cm−1 resolution per sample. When measuring the tsetse samples, we made efforts 145 

to avoid practices that introduce sources of bias such as: not always measuring first young 146 

and then old samples, or first females and then males. Low-quality spectra were discarded 147 

using a custom script designed for mosquito spectra [11,19].  148 

Machine learning analysis  149 

Spectra were centred around a mean of 0 and scaled to a standard deviation of 1 prior to any 150 

analysis. Uniform Manifold Approximation and Projection (UMAP) was applied for clustering 151 

analysis. Sex and age groups were binarized using one hot encoding[20]. First, we shuffled 152 

and split the dataset into the training (80%) and test sets (20%), stratified by sex and age 153 

groups (Supplementary Material Table S1). The training set was used to compute baseline 154 

performance of four machine learning algorithms: Logistic Regression (LR), Random Forest 155 
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(RF), Support vector machine (SVC) and Classification and Regression Tree (CART) using 10-156 

fold cross validation and default parameter settings on the training set. Additionally, a 157 

permutation score test was performed to evaluate if there was a dependency between the 158 

features (absorbance of each wavenumber) and classes (sex and age groups)  (Supplementary 159 

Material Fig S1). The best model was then optimized using hyperparameter tuning, which 160 

consists in choosing a set of optimal values for the model hyperparameters to maximize its 161 

performance. The remaining 20% of the data (the test set) was used for the final evaluation 162 

of the optimized models. The individual metrics used to evaluate the models were accuracy, 163 

sensitivity, and specificity. Machine learning was performed using Python 3.10 and scikit-learn 164 

1.2.2.  165 

Data and code availability 166 

The infrared spectral data generated for this study have been deposited in the Enlighten 167 

database and are available at http://dx.doi.org/10.5525/gla.researchdata.1564.  168 

All code to reproduce the machine learning analysis and figures is available at 169 

https://github.com/maurocolapso/Pazmino_TsetseMIRS_2023.git  170 

Results 171 

Optimization of tsetse desiccation 172 

To understand how long it took for tsetse in different nutritional states to fully dehydrate 173 

(which is key to avoid the noise in the spectra caused by the water signal), we placed 174 

individual tsetse into 15ml tubes containing a deep layer of silica gel under a thin cap of cotton 175 

wool. Fly weight loss was daily recorded until it stabilised. Unfed flies rapidly desiccated within 176 

24h, while fully engorged, bloodfed male and female flies took over three days to dehydrate 177 
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the water-rich meal. Based on this data we adopted a standardized ~72h of desiccation on 178 

silica for all flies subjected to MIRS analysis (Error! Reference source not found.) 179 

 180 
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Table 1. Desiccation time test for unfed and bloodfed female and male tsetse 181 

 182 

 183 

Differences between tsetse tissues 184 

Initial tests focused on finding the best body regions or tissues to give a high signal clarity 185 

when doing spectrometric readings, as the large size tsetse presented novel logistical 186 

challenges. Because wild-caught flies are likely to acquire foreign hydrocarbons from mating, 187 
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blood feeding, or the resting environment, we sampled zones of the cuticle expected to show 188 

the least contamination (Error! Reference source not found.). 189 

 190 

 191 

Fig 1. Tsetse biology and ecology suggest the heads and dorsal side of male tsetse or the 192 

lateral side of the thorax in both sexes would be the best areas (blue circles) to detect 193 

individual cuticular hydrocarbons. 194 

 195 

We further investigated the variation between spectra of different tissues. Spectra from fly 196 

abdomens differed substantially those from heads and thoraces (Fig 2A), showing lower 197 

intensity and a higher variability, especially in the 1800 to 900 cm-1 region (Fig 2B). Moreover, 198 

visual inspection of the abdomens indicated that despite ~60 days in a sealed anhydrous 199 

environment, complete desiccation was not achieved, particularly if the fly had ingested a 200 

large blood volume prior to collection. This residual horse blood and water could be driving 201 

the greater variability of the abdominal spectra compared to the other tissues. On top of that, 202 

previous work in other insects showed the thorax as a target tissue for MIRS. Consequently, 203 

we decided to focus our analysis on the spectra obtained from heads and thoraces only. A 204 

total of 1071 spectra were obtained by scanning the heads and lateral part of the thoraces of 205 

541 flies of different ages (Fig 1, Table 2). 206 
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 207 

 208 

 209 

Fig 2. Spectra comparison from the abdomen, head, and thorax. A) Uniform Manifold 210 

Approximation and Projection (UMAP) of the abdomens, heads, and thoraces showed that 211 

the spectra collected from abdomens formed a separate cluster. Abdomens (olive green), 212 

head (yellow), thorax (purple) B) High variability of the spectra from abdomens (olive green 213 

line) showed that the sources of those inconsistencies were of low intensity and great 214 

variability at some wavelengths (primarily in the 1800 to 900 cm-1 region) compared to spectra 215 

from head (yellow line) and thorax (purple line). Spectra shown in panel B have been manually 216 

shifted across the Y-axis for ease of comparison. 217 

 218 

Table 2. Summary of aggregated samples sizes. 219 

Sex Age Tissue # spectra # samples 

Female 

3 days 
Head 133 

136 
Thorax 136 

5 weeks 
Head 92 

96 
Thorax 96 

7 weeks 
Head 120 

122 
Thorax 122 

Male 

5 weeks 
Head 94 

94 
Thorax 93 

7 weeks 
Head 93 

93 
Thorax 92 

Total number of samples 1071 541 
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Differences between sexes and age groups 220 

We used the unsupervised machine learning algorithm Uniform Manifold Approximation and 221 

Projection (UMAP) to investigate whether the spectra from fly heads ( 222 

Fig 3 A-C) and thoraces ( 223 

Fig 3 D-F) differed between flies of different sex and age. Most of the male flies produced 224 

different spectra than females, with the thorax showing clearer clusters with fewer samples 225 

overlapping between them (Fig 3 A and D). For age groups, there were not clusters in males 226 

regardless the tissue (Fig 3 B and E). In females, there were a distinct cluster composed of old 227 

flies (5 and 7 weeks) when using the thorax, however, there was a high overlap between 228 

samples from different age groups (Fig 3 C and F). These results show that MIRS contains 229 

biochemical information associated with sex and age as expected from relative changes in the 230 

cuticular composition of tsetse.  231 

 232 

  233 
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 234 

Fig 3. MIRS spectra according to tsetse sex and age from specific tissues. Unsupervised 235 

clustering of MIRS measurements using Uniform Manifold Approximation and Projection of 236 

MIRS in two-dimensional space using the heads and thorax. Samples are coloured by: A, D) 237 

sex (females: blue, males: purple). B, E) Males coloured by age (5 weeks: yellow, 7 weeks: 238 

dark blue). C, F) Females coloured by age (3 days: olive green, 5 weeks: yellow, 7 weeks: 239 

dark blue)  240 

 241 

Sex and age prediction using the complete spectral data  242 

To identify tsetse sex and age-specific patterns within our MIRS dataset, we compared logistic 243 

regression (LR), Random Forest (RF), support vector machine (SVC) and the Classification and 244 

Regression Tree (CART) algorithms. Among these, LR had the highest accuracy (Fig 4A) when 245 

estimating the sex of five- and seven-week-old flies. Training accuracy was 94% when using 246 

both head (Fig 4A) and thorax (Supplementary Material Table S2). Similar accuracies were 247 

obtained in the test set (head = 99%, thorax = 94%, Supplementary Material Table S2). Logistic 248 

Regression was also the most accurate algorithm for identifying age groups among flies of the 249 
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same sex (Fig 4C). For males, the thorax was marginally better at age prediction with an 250 

accuracy of 88% compared to 85% for the head (Supplementary Material Table S2). Similar 251 

performance was found in the test set with 92% and 89% for thorax and head, respectively 252 

(Supplementary Material Table S2). In females, even though there was some difference in 253 

accuracy between the head and thorax on the training set (head = 86%, thorax = 92%), 254 

accuracy on the test set was similar for both tissues at 93% (Supplementary Material Table 255 

S2). While these initial results suggest that infrared spectra could be used to predict key 256 

biological traits of tsetse flies, further analysis of model coefficients suggested that the 257 

predictions were being based mostly on flat regions of the spectra, between 4000 – 3750 cm-258 

1 and 2250 – 1800 cm-1 (Fig 4 B, D and E), which are unlikely to contain biochemical 259 

information associated with insect cuticle[11] and are primarily used to monitor the presence 260 

of CO2 in the environment[15]. This phenomenon was observed with all predictive algorithms 261 

regardless of what tissue was used. To further investigate this, we applied the framework by 262 

Eid et al. [21]. Briefly, we divided the spectrum into three parts: two regions known to contain 263 

vibrations from key chemical bonds (3500 – 2500 cm-1 and 1800 – 600 cm-1) and one region 264 

where no chemical information associated with insect cuticle is expected (2500 – 1800 cm-1). 265 

We then compared the accuracy of four algorithms: Logistic regression, SVM with two kernels 266 

(RBF and linear) and Random Forest on each region. While the biochemical fingerprint regions 267 

(3500 – 2500 cm-1, 1800 – 600 cm-1) gave variable prediction accuracies (60 – 96%), when 268 

using the region with no chemical information associated with insect cuticle (2500 – 1800 cm-269 

1), two algorithms (Logistic Regression and SVM with a linear kernel) could still predict 270 

different traits with high accuracy (83 – 94%), indicating possible overfitting (Supplementary 271 

Table S3). To produce more generalisable models, we therefore chose to base our predictions 272 
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on the spectral region of 1800 – 600 cm-1, which is known to contain the most relevant 273 

biochemical information in insects[12–14]. 274 

 275 

Fig 4. Prediction of tsetse sex and age using MIRS. Model performance on the training set of 276 

various ML models (LR: Logistic regression, RF: random forest, SVC: support vector machine 277 

and CART: decision tree classifier) for sex and age prediction using the heads of tsetse (A, C, 278 

E). Boxplots show the distribution of accuracies using 10-fold cross-validation. The horizontal 279 

dashed red line indicates a 0.5 accuracy for binary predictions (A, C) and 0.3 for a three-class 280 

prediction (E). Coefficients of the best model (blue line) plotted against the mean spectra of 281 

tsetse (B, D, F) show how the model relies on the 4000 – 3500 and 2500 –1800 cm-1 regions 282 

for prediction, which are lacking key biological information.  283 

 284 
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Sex and age prediction using the biochemical fingerprint region of 285 

the spectra 286 

When considering only the spectral region from 1750 - 600 cm-1, the accuracy of predicting 287 

fly sex and age marginally declined regardless of the algorithm used for analysis 288 

(Supplementary Material Fig S2). Logistic regression was able to clearly predict sex using the 289 

spectra from the heads with an accuracy of 96% (Fig 5A). The most informative wavenumbers 290 

appeared around the 1000 and 800 cm-1 areas of the spectra (Fig 6). Logistic regression was 291 

able to predict 5-week vs. 7-week-old males using spectral data from the head with an 292 

accuracy of 95% (Fig 5B). Most of the coefficients used by this model were in the 1636 and 293 

1400 cm-1 region (Fig 6Fig 6). Finally, age prediction in females was better when using the 294 

thorax. Young teneral flies were identified by the model with over 90% accuracy and older 295 

flies with 80% accuracy (Fig 5F). Like males, the important wavenumbers were in the same 296 

range, the 1750 to 1450 cm-1 800 to 600 cm-1region (Fig 6). However, when using spectral 297 

data from the head, the model struggled to identify the 5-week-old age group; an accuracy of 298 

58% (Fig 5C) was obtained, which was likely influenced by several 5-week-old samples being 299 

misclassified as 3-day-olds. A summary of the performance of Logistic Regression is shown in 300 

Table 3 and wavenumber importance and their assignments are presented in Supplementary 301 

Table S4. These results suggest that MIRS-ML is a promising approach when using the tsetse 302 

head or thorax to reliably produce quality spectra for sex and age prediction of laboratory-303 

reared flies. 304 
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 305 

Fig 5. Confusion matrix for predicting tsetse sex and age using reduced number of 306 

wavenumbers. Accurate identification of females (f) and males (m) (A, D) and two-week age 307 

difference (5 weeks (5w) vs 7 weeks (7w) old) in male flies (B, E). Spectra from the thoraces 308 

of young female flies (3d post emergence) compared to older female flies (5 weeks (5w) and 309 

7 weeks (7w) old (C, F) 310 
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 311 

Fig 6. Important wavenumbers for predicting tsetse sex and age change depending on the 312 

trait predicted. Coloured lines represent the position of the most informative wavenumbers 313 

used by the models to predict sex, male age, and female age. Lines are coloured depending 314 

on the tissue used for MIRS: head (purple), thorax (light blue). Example spectra with band 315 

assignments is added on the top for reference. 316 

 317 
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Table 3. Accuracy, sensitivity and specificity of tsetse sex and age prediction on males and 318 

females in the training set and test set 319 

 Tissue 
Accuracy 

(train set) 

Accuracy 

(test set) 

Sex prediction 
Head 0.95 ± 0.04 0.96 

Thorax 0.93 ± 0.03 0.90 

Males age 

prediction 

Head 0.85 ± 0.06 0.94 

Thorax 0.82 ± 0.06 0.86 

Females age 

prediction 

Head 0.84 ± 0.05 0.83 

Thorax 0.85 ± 0.04 0.87 

 320 

Discussion  321 

Here, we showed for the first time how a MIRS + ML toolbox can be applied to predict the sex 322 

and age of desiccated insectary-reared tsetse. The spectra collected from the head and 323 

thorax, but not the abdomen, allow accurate sex prediction. Age grading was successful in 324 

both sexes, even when flies were only two weeks apart in age.  When using exclusively the 325 

thorax, this toolbox can easily differentiate between females and males using the infrared 326 

region related to lipids and carbohydrates. Interestingly, predictions using the head identified 327 

a narrow spectral region related to lipids as the most informative. It has been previously 328 

reported that G. pallidipes females possess a higher amount of cuticular lipids than males[22], 329 

which is likely linked to the female sex pheromone that constitutes the main cuticular 330 

hydrocarbon. Considering this potential bias, we did not mix the two sexes for analysis since 331 

the signal difference can mask the differences between the ages of each sex.  332 

When analysing the most important regions for age grading in both males and females, some 333 

clear patterns emerged depending on the tissue and biological trait. In male flies, the C-CH3 334 
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and COO- bands were consistently important in age grading for all tissues. However, the bands 335 

related to proteins and lipids and the –(CH2)-rock functional group related to wax was 336 

important across female tissues. Characterizing the informative and predominant 337 

wavenumbers is an important for understanding the association between age and absorption 338 

bands, which can be used to optimize data collection or model generalisation. An early 339 

staining method showed a relationship between cuticular layers in the thorax from laboratory 340 

and field caught flies[23]. Other methods using gene expression panels have also found that 341 

genes related to cuticular proteins were important for age grading. One study used RNAseq 342 

to analyse gene expression associated with age and sex in G. m. morsitans that were sourced 343 

from the same colony at LSTM [7]. Out of the ten genes shortlisted in the study, two proved 344 

to be enough for accurate age classification, one of these being cuticular protein 92F 345 

(GMOY002920). A second cuticular protein, 49Aa (GMOY005321), was also part of the list 346 

[10]. Previous work using MIRS with other insect vectors also reported differences in female 347 

cuticles between very young and old individuals, and the model predicted 3-day old females 348 

with minimal misclassification. However, when differentiating between 5- and 7-week-olds, 349 

the misclassification between both classes increased.  350 

When we used the complete spectra for training, we found that LR and SVM with a linear 351 

kernel used the region from 2500 – 1800 cm-1 to predict sex and age, which does not contain 352 

any biochemical information related to insect cuticle. To ensure the algorithms learn from the 353 

biochemical differences between sexes and age groups, we restricted the inputs to specific 354 

spectral regions and limit the features the model uses. The strength of machine learning lies 355 

in finding patterns to separate classes; however, patterns can arise from confounding effects 356 

of contamination by water and CO2 rather than from the structural constituents of the 357 

specimen. It is important to diagnose and assess what the model is learning to rule out any 358 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.19.579508doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.579508
http://creativecommons.org/licenses/by-nc-nd/4.0/


bias and avoid overfitting. In spectroscopy data, variation between samples (i.e., baseline 359 

offset, variation on CO2 levels during different days when measuring) was robust enough for 360 

the model to accurately classify age and sex.  361 

When determining the feasibility of using different tsetse tissues for analysis, the abdomen 362 

showed inconsistent spectra compared to the head and thorax, which might be caused by the 363 

presence of blood from previous meals and incomplete desiccation. However, the 364 

information from tsetse abdomens could still be used to identify blood meal sources, as 365 

demonstrated by the application of MIRS with Anopheles mosquitoes [24] 366 

In summary, our results provide proof-of-principle for how MIRS can detect cuticular signals 367 

linked to ageing in tsetse. Future validation of this technique using field samples is needed, 368 

where environmental cues (naturally minimised in housed insect colonies) impact ageing 369 

rates. The next step will be to test the MIRS toolbox against wild tsetse collected from 370 

endemic areas, and preferably a region currently implementing vector control strategies. The 371 

machine learning models we describe here need to be further refined using more insectary-372 

reared flies alongside a small complementary set of field samples (age-graded when trapped) 373 

to be able to confirm the efficacy and accuracy of this technology in the field [12]. 374 

Conclusions 375 

Our data strongly support the use of MIRS for high-accuracy age grading of both male and 376 

female Glossina spp. reared under insectary conditions. The protocol’s robustness, minimal 377 

maintenance, cost-effectiveness, and speed make it an ideal technique for vector surveillance 378 

programmes in resource-limited settings, and implementation will strengthen ongoing 379 

control efforts to control transmission of African trypanosomiasis. 380 
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