
 1 

A Novel Support Vector Machine-Based One-Day, Single-Dose Prediction Model 

of Genotoxic Hepatocarcinogenicity in Rats 

 

Min Gi1,2, Shugo Suzuki2, Masayuki Kanki2, Masanao Yokohira3,4, Tetsuya Tsukamoto5, 

Masaki Fujioka2, Arpamas Vachiraarunwong1, Guiyu Qiu2, Runjie Guo1, Hideki 

Wanibuchi2,* 

 

1. Department of Environmental Risk Assessment, Graduate School of Medicine, 

Osaka Metropolitan University, Osaka 545-8585, Japan  

2. Department of Molecular Pathology, Graduate School of Medicine, Osaka 

Metropolitan University, Osaka 545-8585, Japan 

3. Department of Medical Education, Faculty of Medicine, Kagawa University, Miki-

cho, Kita-gun, Kagawa 761-0793, Japan. 

4. Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa 

University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908
https://doi.org/10.1101/2024.02.19.579908


 2 

5. Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health 

University, Toyoake, Aichi 470-1192, Japan.  

 

*Corresponding author 

Hideki Wanibuchi (wani@omu.ac.jp) 

 

ORCID 

Min Gi:   0000-0003-1642-8127 

Shugo Suzuki:  0000-0001-8938-9670 

Masaki Fujioka:  0000-0003-0048-2874  

Arpamas Vachiraarunwong: 0000-0002-0463-2289 

Hideki Wanibuchi:  0000-0001-9362-4290 

 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.579908


 3 

Abstract 

The development of a rapid and accurate model for determining the genotoxicity and 

carcinogenicity of chemicals is crucial for effective cancer risk assessment, and it also 

contributes to cancer prevention. This study aims to develop a one-day, single-dose model 

for identifying genotoxic hepatocarcinogens (GHCs) in rats. Microarray gene expression 

data from the livers of rats administered a single dose of 58 compounds, including 5 

GHCs, was obtained from the Open TG-GATEs database and used for the identification 

of marker genes and the construction of a predictive classifier to identify GHCs in rats. 

We identified 10 gene markers commonly responsive to all 5 GHCs and used them to 

construct a support vector machine-based predictive classifier. This classifier effectively 

distinguishes GHCs from other compounds, demonstrating 100% sensitivity and over 

96% specificity. To further assess the model's effectiveness and reliability, we conducted 

multi-institutional one-day single oral administration studies on rats. These studies 

examined 64 compounds, including 23 GHCs, with gene expression data of the marker 

genes obtained via quantitative PCR (qPCR) 24 hours after a single oral administration. 

Our results demonstrate that qPCR analysis is an effective alternative to microarray 
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analysis. The GHC predictive model showed high accuracy and reliability, achieving a 

sensitivity of 91% (21/23) and a specificity of 93% (38/41) across multiple validation 

studies in three institutions. In conclusion, the present one-day single oral administration 

model proves to be a reliable and highly sensitive tool for identifying GHCs and is 

anticipated to be a valuable tool in identifying and screening potential GHCs. 

 

Keywords 

Genotoxic hepatocarcinogen; genotoxicity and carcinogenicity prediction; SVM-based 

predictive classifier; a single-dose, one-day rat model; prediction marker gene.  
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Introduction 

Evaluation of genotoxicity and carcinogenicity is an essential part of the developmental 

process for pharmaceuticals, food additives, agricultural chemicals, and industrial 

chemicals. Various experimental models have been established for assessing the 

genotoxicity and carcinogenicity of chemicals. The 2-year rodent carcinogenicity 

bioassay has historically been the gold standard for predicting the carcinogenic hazard of 

chemicals to humans. However, 2-year studies require preliminary dose range finding 

studies and the overall time required to complete a 2-year study is generally 3-4 years, 

and the studies require significant quantities of the test material. These factors make 2-

year studies unsuitable for the evaluation of materials during early development stages. 

Two-year rodent studies are also very costly, labor-intensive, and time-consuming and 

require a large number of animals. This severely limits the ability to carry out large-scale 

evaluation of the carcinogenicity of multiple chemical compounds using 2-year studies. 

In addition, the relevance and necessity of conducting of 2-year carcinogenicity studies 

has been debated (Cohen 2010b; Ennever and Lave 2003). However, alternative testing 

methods, such as middle-term carcinogenicity tests (Ashby 1996; Cohen 2010a; Cohen 
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et al. 2001; Ito et al. 2003), often require special procedures or the use of genetically 

modified animals, which limits the number of facilities capable of conducting these tests 

(Eastmond et al. 2013). 

Genotoxicity is increasingly being recognized as a bona fide toxicological endpoint 

(Hsieh et al. 2019) and is a crucial factor in extrapolating carcinogenic risk from 

experimental animals to humans based on the mode of action, particularly for estimating 

risks associated with low-dose exposures (Cohen et al. 2019; Nohmi 2018; O'Brien et al. 

2006; SCHER 2009). While threshold extrapolation is accepted for non-genotoxic 

carcinogens, as they do not exhibit carcinogenic effects at low doses, linear non-threshold 

extrapolation is generally accepted for genotoxic carcinogens, suggesting some risk at 

any exposure level (EPA 2005). However, recent trends propose introducing a threshold 

concept for genotoxic carcinogens, especially those causing indirect genetic toxicity 

through mechanisms like chromosomal abnormalities, oxidative stress, and DNA 

synthesis inhibition (Hartwig et al. 2020; SCHER 2009). Consequently, it is generally 

accepted that direct genotoxic carcinogens should not be used as food additives, 

pesticides, or veterinary drugs, or used for pharmaceuticals, except for anti-cancer drugs 
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(Bolt 2008; Nohmi 2018; WHO and FAO 2021). 

Well-established genotoxicity assays include the bacterial reverse mutation test, in 

vitro and in vivo tests that measure chromosomal aberrations, and micronucleus 

formation (Beal et al. 2023; Kirkland et al. 2005). While these assays are high throughput, 

they lack organ specificity. In vivo transgenic rodent models are capable of determining 

organ-specific mutagenesis induced by carcinogens (Nohmi et al. 2000), but these 

methods are laborious, time-consuming, and expensive. Currently, using multiple 

genotoxicity tests to assess the genotoxicity of chemicals is generally adopted as no single 

test is capable of detecting all genotoxic mechanisms relevant to tumorigenesis (Beal et 

al. 2023; ICH 2008; Kirkland et al. 2007). 

Given the annual production of tens of thousands of new chemical compounds, 

establishing a comprehensive system that rapidly and accurately verifies both 

genotoxicity and carcinogenicity of chemicals is crucial. Gene expression data has proven 

to be valuable in predicting the carcinogenicity of chemicals (Corton et al. 2022; Ellinger-

Ziegelbauer et al. 2009; Furihata et al. 2016; Gant et al. 2023; Waters et al. 2010). Recent 

technological advancements have enabled the development of machine learning 
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algorithms, such as Support Vector Machine (SVM), Random Forest, and Decision Tree, 

for predicting carcinogenicity using gene expression data.  

The liver, being the most frequently targeted site for chemical carcinogens (Gold et 

al. 2001; Gold et al. 1991), has been the focus of many successful hepatocarcinogenicity 

prediction models using toxicogenomics data in rats (Corton et al. 2020; Ellinger-

Ziegelbauer et al. 2009; Furihata et al. 2016; Hill et al. 2020; Uehara et al. 2011). These 

models are particularly suitable at evaluating hepatocarcinogenicity and predicting non-

genotoxic hepatocarcinogens (NGHC) (Ellinger-Ziegelbauer et al. 2008; Fielden et al. 

2011; Kanki et al. 2016; Smith et al. 2020; Uehara et al. 2011; Yamada et al. 2016). 

However, the validation of these models for predicting genotoxic hepatocarcinogens 

(GHC) remains insufficient, partly due to the small number of GHCs tested (Ellinger-

Ziegelbauer et al. 2008; Smith et al. 2020; Uehara et al. 2011; Waters et al. 2010). 

Consequently, a reliable and practical prediction model for GHCs has not yet been 

reported in the published literature. Consequently, current hepatocarcinogenicity 

prediction models require improvement. Current models require a large number of marker 

genes, and this necessitates the use of microarray analysis. However, microarray analyses 
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leads to high costs and difficulties in validation at different institutions, limiting the 

number of compounds that can be tested. Addressing these challenges is crucial for 

advancing the development of effective and efficient GHC prediction models. 

The aim of the present study is to develop a one-day, single-dose model for 

predicting genotoxic hepatocarcinogenicity of test compounds in rats, utilizing gene 

expression data obtained via quantitative PCR (qPCR) 24 hours after a single oral 

administration of the test material. Initially, we identified a set of 10 gene markers to 

predict the hepatocarcinogenicity of GHCs and constructed a prediction model using the 

SVM algorithm. This model was validated with gene expression data derived from 

microarray analysis of rat livers treated with 58 compounds, including 5 known GHCs, 

sourced from the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation 

System (Open TG-GATEs) database. To assess the predictive accuracy of our model, and 

with the goal of reducing costs and analysis time, and improving reproducibility at 

different institutions, we conducted multi-institutional one-day single oral dose studies 

with rats. These studies examined 64 compounds, including 23 GHCs, analyzing the 

expression data of the marker genes using qPCR.  
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Materials and methods 

1. Classification of test compounds 

Compounds were classified into two categories based on their mutagenicity and 

hepatocarcinogenicity in rats: GHCs and other compounds. Compounds that tested 

positive in the Ames test and were carcinogenic to the livers of rats were defined as GHCs. 

The OTHER category included a variety of compounds, encompassing nongenotoxic 

hepatocarcinogens, nongenotoxic nonhepatocarcinogens (NGNHC) that are carcinogenic 

to organs other than the liver, genotoxic nonhepatocarcinogens (GNHC) that are 

carcinogenic to organs other than the liver, genotoxic noncarcinogens (GNC), and 

nongenotoxic noncarcinogens (NGNC). Information regarding the CAS numbers and 

suppliers of the chemicals tested in the validation studies is provided in Supplementary 

Table 1. 

Information regarding the carcinogenicity and mutagenicity of these compounds 

was obtained from the National Toxicology Program (https://ntp.niehs.nih.gov) and the 

ToxInfo.io databases (https://www.toxinfo.io). ToxInfo.io is a comprehensive toxicology 

and hazardous chemicals database, with multiple integrated databases including the 
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Carcinogenic Potency Database (CPDB), Chemical Carcinogenesis Research 

Information System (CCRIS), Integrated Risk Information System, and Genetic 

Toxicology Data Bank (GENE-TOX). 

 

2. Gene expression data for identification of marker genes and construction of a 

GHC classifier. 

Microarray gene expression data from the livers of Sprague-Dawley rats exposed to 58 

compounds were utilized for the identification of marker genes and the construction of a 

classifier to predict GHC in rats. This data was obtained from the Open TG-GATEs, a 

public toxicogenomic database developed in Japan (Igarashi et al. 2015). 

In the Open TG-GATEs database, each compound was evaluated at three dose levels 

along with a concurrent control in single oral administration studies. In these studies, rats 

were administered a compound and then sacrificed at 3, 6, 9, or 24 hours post-

administration. The highest dose level used was the maximum tolerated dose that was 

identified in a dosing study. The three dose levels were multiples of the square root of 10. 
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3. Identification of marker genes for a predictive classifier 

To identify marker genes capable of distinguishing GHC in rats, we analyzed microarray 

gene expression data of five GHCs deposited in the Open TG-GATEs database: 2-

Acetamidofluorene (AAF), N-Nitrosodiethylamine (NDEA), 2-Nitrofluorene (2-NF), 

Aflatoxin B1 (ATB), and N-Nitrosomorpholine (NMP) (Table 1). The low doses of these 

GHCs used in the 24-hour single oral administration toxicity studies were significantly 

higher – 82, 377, 351, 313, and 917 times, respectively – than their TD50 values reported 

in the Carcinogenic Potency Database (CPDB). Our analysis was concentrated on 

identifying common differentially expressed genes in response to these doses. 

The methodology for analyzing the microarray gene expression data was as 

described previously (Kanki et al. 2016). In brief, three CEL files per dosing group, 

generated with an Affymetrix Rat Genome 230 2.0 array (Affymetrix, Santa Clara, CA, 

USA), were obtained from the Open TG-GATEs. The Microarray Analysis Suite 5.0 

(MAS; Affymetrix) was employed to quantify each probe set signal. Raw signal data was 

normalized using the median value of all probe sets (per chip normalization). GeneSpring 

GX software (Version 12.6; Agilent Technologies, Inc., Santa Clara, CA, USA) was 
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utilized for normalization and statistical analysis. Differentially expressed genes were 

identified using Welch’s t-test (p<0.05) and a criterion of 2-fold change in expression 

compared to controls. 

 

4. Ingenuity pathway analysis 

The gene network analysis for the selected 10 marker genes was conducted using 

Ingenuity Pathway Analysis Software (Version 01-22-01; Ingenuity Systems, Qiagen, 

CA, USA). This analysis aligned the marker genes with established genetic pathways and 

networks, aiming to illustrate their potential biological roles and interactions relevant to 

genotoxic hepatocarcinogenicity. 

 

5. Construction of a GHC classifier using microarray gene expression data from 

the Open TG-GATEs 

A predictive classifier for GHC was constructed using the SVM algorithm, a type of 

supervised machine learning algorithm. This was integrated into the GeneSpring GX 

software. In the SVM analysis, we applied a linear kernel type and used leave-one-out 
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cross-validation. The expression data of the 10 marker genes, obtained from the Open 

TG-GATEs database, were used for both constructing and testing the classifier. A 

compound predicted as a GHC by the classifier was deemed positive, while those 

predicted as OTHER were deemed negative. 

To construct the predictive classifier, training was conducted using known GHC and 

OTHER compounds. For the positive training dataset, we selected microarray expression 

data of the marker genes at low doses of 3 GHCs: 2-AAF, NDEA, and 2-NF. For the 

negative training dataset, we used microarray expression data of marker genes at low 

doses of 14 OTHER compounds: 3 NGHCs - Thioacetamide (TAA), Hexachlorobenzene 

(HCB), and Wy-14643 (WY); 2 GNHCs - Cyclophosphamide (CPA) and Nitrofurantoin 

(NFT); 3 NGNHCs - Butylated hydroxyanisole (BHA), Methimazole (MTZ), and 

Sulfasalazine (SS); and 6 NGNCs - Allyl Alcohol (AA), Cyclosporine A (CA), 

Furosemide (FUR), Promethazine (PMZ), Sulindac (SUL), and Tetracycline (TC). 
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6. In silico validation of the GHC predictive classifier using microarray gene 

expression data from the Open TG-GATEs 

To validate the GHC predictive classifier, we used marker gene expression data for 5 

GHCs and 53 OTHER compounds from the Open TG-GATEs database (Table 2). 

For the positive test set (GHC dataset), we used marker gene expression data from 

middle and high doses of 2-AAF, NDEA, and 2-NF, and data from low, middle, and high 

doses of AFB1 and NMP. 

For the negative test set (OTHER compounds dataset), marker gene expression data 

from middle and high doses of the 14 OTHER compounds used in the construction of the 

GHC predictive classifier were used. In addition, data from low, middle, and high doses 

of 39 OTHER compounds were used: 8 NGHCs - Carbon Tetrachloride (CCL4), 

Clofibrate (CFB), Coumarin (CMA), Ethinylestradiol (EE), Gemfibrozil (GFZ), 

Methapyrilene (MP), Monocine (MCT), and Phenobarbital (PB); 2 GNHCs - N-methyl-

N-nitrosourea (MNU) and Phenacetin (PCT); 4 NGNHCs - Indomethacin (IM), 

Omeprazole (OPZ), Phenylbutazone (PhB), and Propylthiouracil (PTU); 2 GNCs - 

Azathioprine (AZP) and Tannic Acid (TAN); 23 NGNCs - Aspirin (ASA), Caffeine 
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(CAF), Chloramphenicol (CMP), Chlorpheniramine (CHL), Chlorpropamide (CPP), 

Cimetidine (CIM), Diazepam (DZP), Disulfiram (DSF), Ethionamide (ETH), Ibuprofen 

(IBU), Lornoxicam (LNX), Meloxicam (MLX), Methyldopa (MDP), Perhexiline (PH), 

Phenytoin (PHE), Propranolol (PPL), Rifampicin (RIF), Rotenone (ROT), Theophylline 

(TEO) (Mateo et al.), Tolbutamide (TLB), Triamterene (TRI), Trimethadione (TMD) and 

Vitamin A (VA). 

For the in silico validation of the constructed GHC predictive classifier, the 

sensitivity and specificity of the predicted compounds were calculated. Prediction results 

of training data at the low doses were not included in the calculation of the sensitivity and 

specificity. For the middle and high doses, all of the prediction results from above 

compounds (5 GHCs and 53 OTHER compounds) were applied to calculate the 

sensitivity and specificity. 

 

7. The first set of validation studies (Validation Study 1): Evaluation of 5 GHCs 

in one-day single dose oral administration studies 
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7-1 Test compounds 

To validate the GHC predictive classifier and assess whether the marker gene expression 

data obtained via qPCR could be an alternative to microarray analysis data, we selected 

5 GHCs not previously evaluated in the Open TG-GATEs for validation. These GHCs 

were 2-Aminoanthraquinone (2-AA), 2-Nitropropane (2-NP), 2,4-Diaminotoluene (2,4-

DAT), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-3-

methylimidazo[4,5-f]quinoline (Table 3). 

 

7-2 Animals 

Animal experiments were conducted in Osaka Metropolitan University (referred to 

as Institution O). Five-week-old male SD rats were obtained from Charles River 

Laboratories Japan, Inc. (Hino, Siga, Japan). The rats were housed in polycarbonate cages 

(5 rats per cage) with wood chips for bedding. The experimental animal room was 

maintained at a temperature of 22 ± 3°C, relative humidity of 55 ± 5%, and a 12-h 

light/dark cycle. The rats underwent a 7-day acclimatization period and were 6 weeks old 

at the beginning of the study. 
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7-3 Experimental protocol 

The experimental protocol was reviewed and approved by the Ethics Review Committee 

for Animal Experimentation and conducted in accordance with the Guidelines for Proper 

Conduct of Animal Experiments (Science Council of Japan, 2006). CE2 basal pellet diet 

(Clea Japan, Inc., Tokyo, Japan.) and tap water were available ad libitum throughout the 

study. 

Groups of 5 rats were administered test compounds or vehicle (for the control group) 

by oral gavage. The test compounds were dissolved or suspended in 0.5% methylcellulose 

(vehicle) at target doses with an administration volume of 5 ml/kg bw. Prior to 

administration, the body weight of each rat was measured. 

In the first experiment of Validation Study 1, doses for 2-AA, 2-NP, and 2,4-DAT 

were determined based their oral acute toxicity in rats. Doses were set at 1/30; 1/10, and 

1/3 of the oral lethal dose (LD50). Doses were based on the assumption that the desired 

dose for the 24-hour single dose administration study is the maximum tolerated dose. Oral 

LD50 values for these GHCs were obtained from https://pubchem.ncbi.nlm.nih.gov/. For 
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MeIQx and IQ, whose oral LD50 values were not available, the middle dose was set at 

10 times their respective carcinogenic doses (NTP 2002; Takayama et al. 1984). 

Subsequently, the low and high doses were set at 1/3 and 3 times the middle dose. 

Vehicle-treated groups were included as a negative control. 

In the second experiment of Validation Study 1, the LD50 dose of 2-AA was 

evaluated because in the first experiment it was predicted as negative at doses up to 1/3 

of the LD50, and no apparent toxicities were observed. Vehicle-treated groups were 

included as a negative control. 

Twenty-four hours after treatment, rats were euthanized via transection of the 

abdominal aorta under deep anesthesia induced by inhalation of an overdose of isoflurane 

(Abbott Japan Co., LTD., Tokyo, Japan), using a Small Animal Anesthetizer (MK-

A110D, Muromachi Kikai Co., LTD., Tokyo, Japan) coupled with an Anesthetic Gas 

Scavenging System (MK-T 100E, Muromachi Kikai Co., LTD., Tokyo, Japan). The 

animals were not fasted before euthanasia. At necropsy, fresh liver tissue from the left 

lateral lobe was submerged in RNAlater™ Stabilization Solution (Thermo Fisher 

Scientific Baltics UAB, Vilnius, Lithuania) and stored at 4°C for one day, then stored at 
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-80°C until RNA isolation. Three sections of liver tissue (one each from the left lateral 

lobe, right middle lobe, and caudate lobe) were fixed in phosphate-buffered formalin, 

embedded in paraffin, and processed for hematoxylin and eosin staining. The remaining 

liver tissues were snap frozen in liquid nitrogen and stored at -80°C. 

Microarray analysis was conducted on three liver samples each from the control and 

high-dose groups of each test compound in the first experiment (450 mg/kg for 2-AA; 

240 mg/kg for 2-NP; 45 mg/kg for DAT; 480 mg/kg for MeIQx; and 360 mg/kg for IQ) 

using Affymetrix Rat Genome 230 2.0 arrays (Affymetrix, Santa Clara, CA, USA) as 

described previously (Kanki et al. 2016). The microarray gene expression data was 

analyzed as described above, using the Microarray Analysis Suite 5.0 and GeneSpring 

GX software. In addition, mRNA expression analysis of the 10 marker genes was 

conducted on all liver samples from both the first and the second experiments using qPCR 

(Table 3). 
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7-4 mRNA Expression Analysis in Rat Livers 

Total RNA was extracted from the liver tissues preserved in RNAlater using the RNeasy 

mini kit (QIAGEN) following the manufacturer's instructions. For qPCR, cDNA 

synthesis was performed using 1 µg of RNA with an Invitrogen™ SuperScript VI 

VILO™ Master Mix (Thermo Fisher Scientific Inc., MA, USA). Sequence-specific 

primers and probes for each gene were procured from Roche Applied Science, Mannheim, 

Germany (Supplementary Table 2). 

Expression assays were conducted in a 20 µl reaction mixture containing 1 µl cDNA, 

1.2 µl of a mixture of forward and reverse primers and probe (0.2 µM each), and 10 µl 

TaqMan Fast Universal PCR Master Mix. These assays were performed using an Applied 

Biosystems™ 7500 Fast Real-Time PCR System. The Eukaryotic 18S rRNA Endogenous 

Control (VIC™/MGB probe, primer limited) was used as an internal control (Thermo 

Fisher Scientific Inc., MA, USA). Expression analysis was performed in triplicate for 

each sample. 

The gene expression values for each sample were calculated using the equation 2^-

∆Ct (∆Ct = Ct average marker gene - Ct average 18S). The relative gene expression ratios 
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between treated and control samples were then converted into log base 2 and the average 

of the log base 2 values in each dose group was applied to the GHC predictive classifier. 

 

8. The second set of validation studies (Validation Study 2): Multi-Institution 

validation studies using marker gene expression data of 60 compounds 

obtained from qPCR analyses in one-day single dose oral administration 

studies 

 

8-1 Test compounds 

A total of 60 compounds, comprising 19 GHCs and 41 OTHER compounds, were 

included in Validation Study 2 (Table 4). The 19 GHCs consisted of 2-NP, 3-Methyl-4-

dimethylaminoazobenzene (3'-MeDAB), 4,4'-Methylene-bis(2-chloro-aniline) (MOCA), 

4,4'-Thiodianiline (TDA), Acid Red 26 (AR-26), Auramine-O (AO), N-

Dimetylnitorosamine (DMN), N-Nitrosodiethanolamine (NDEAL), NDEA, N-

Dimetylnitorosamine (NDMA), N-Nitrosoethylmethylamine (NEMA), N-

nitrosopyrrolidine (NPYR), Nitrosodibutylamine (NDBA), o-Aminoazotoluene (AAT), 
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Retororsine (RTS), Tris-(1,3-dichloro-2-propyl)phosphate (TDCPP), Dichloroacetic 

Acid (DCA), Hydrazinium sulfate (HS), 4,4'-Oxydianiline (4,4’-ODA), and Vinyl 

Bromide (VB). 

The 41 OTHER compounds consisted of 7 NGHCs - CCL4, CMA, EE, GFZ, HCB, 

MCT, and PB; 5 NGNHCs – BHA, IM, MTZ, PhB, and SS; 19 NGNCs – AA, ASA, 

CAF, CMP, CHL, CPP, DZP, DSF, ETH, FUR, MDP, PHE, PMZ, ROT, SUL, TC, TEO, 

TLB, and TRI; 9 GNHCs – CPA, 2,4-Dinitrotruene (2,4-DNT), NFT, N-

Nitrosoheptamethyleneimine (NHMI), N-Nitrosopiperidine (NPIP), PCT, Benzidine 

(BZ), Ethylene thiourea (ETU), and Hydrazine (HZ); 1 GNC – Isoniazid (INH). 

 

8-2 Animals 

Five-week-old male SD rats were obtained from Charles River Laboratories Japan, Inc. 

(Hino, Siga, Japan). Rats underwent a 7-day acclimatization period and were 6 weeks old 

at the beginning of the study. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.579908


 24 

8-3 Experimental protocol 

Animal experiments were conducted at three institutions: Institution O, Kagawa 

University (referred to as Institution K), and DIMS Medical Science Institute, Inc. 

(Ichinomiya, Japan): DIMS Medical Science Institute conducted the animal experiments 

for Fujita Health University (referred to as Institution F). All three institutions followed 

the same protocols described above for the animal study. The experimental protocol was 

reviewed and approved by the Ethics Review Committee for Animal Experimentation at 

each respective institution and conducted in accordance with the Guidelines for Proper 

Conduct of Animal Experiments as laid out by the Science Council of Japan in 2006. 

RNA extraction and gene expression assays were performed following the same 

protocols described in the Validation Study 1 at three institutions: Institution O, 

Institution K, and Institution F, using an Applied Biosystems™ 7500 Fast Real-Time 

PCR System at Institution O, an Applied Biosystems™ StepOnePlus™ Real-Time PCR 

System at Institution K, and an Applied Biosystems™ 7900HT Fast Real-Time PCR 

System at Institution F. 
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Results 

Establishment of the one-day, single dose GHC prediction model  

As shown in the Fig. 1, establishment of the GHC prediction model consisted of 5 steps: 

(1) Identifying 10 marker genes that were commonly altered in response to low doses of 

5 GHCs using the microarray gene expression data from the Open TG-GATEs database. 

(2) Construction of the GHC predictive classifier using microarray expression data of 

marker genes from the low dose of the 3 GHCs, 2-AAF, NDEA, and 2-NF, as positive 

training data sets and microarray expression data of marker genes from low doses of the 

14 OTHER compounds (listed in section 5) as negative training datasets. (3) In silico 

validation of the GHC predictive classifier. Microarray expression data of marker genes 

from the middle and high doses of the 3 GHCs used in step 2 (2-AAF, NDEA, and 2-NF) 

and microarray expression data from the low, middle, and high doses of 2 other GHCs, 

AFB1 and NMP, were used as GHC positive compounds. Microarray expression data of 

marker genes from the middle and high doses of the 14 OTHER compounds used in step 

2 and low, middle, and high doses of 39 OTHER compounds were used as GHC negative 

compounds. (4) Determination of the usefulness of marker gene expression data 
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measured by qPCR instead of microarray analysis (Validation Study 1): Evaluation of the 

marker gene expression of 5 GHCs by qPCR and microarray analysis and comparing the 

accuracy of prediction of the microarray analysis data and the qPCR data. (5) Multi-

institutional validation: The predictive performance of the model was evaluated in multi-

institutional one-day single oral administration studies (Validation Study 2). A total of 60 

compounds including 19 GHCs were evaluated at 3 institutions. The validation used gene 

expression data of the marker genes, obtained through qPCR from these single oral 

administration studies. 

 

Identification of marker genes for GHC predictive classifier 

As shown in the Fig. 2A, ten genes were identified, nine were upregulated and one 

was downregulated, that were commonly differentially expressed in the livers of rats 

treated with the 5 GHCs.  

To explore potential interactions among these ten genes, we conducted a network 

analysis using IPA software. These ten genes were considered focus genes and served as 

"seeds" for generating networks. As shown in Fig. 2B, IPA generated a single network 
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labeled [Cancer, Cellular Growth and Proliferation, Organismal Injury and 

Abnormalities]. Notably, five of these ten genes, apoptosis enhancing nuclease (Vogel et 

al.), cyclin-dependent kinase inhibitor 1A (Cdkn1a), pleckstrin homology-like domain, 

family A, member 3 (Phlda3), nudix (nucleoside diphosphate linked moiety X)-type motif 

5 (Nudt5), and myeloblastosis oncogene-like 1 (Mybl1), are regulated directly by the 

tumor suppressor protein p53 (Fig. 2B). The remaining five genes are 

MAPK/MAK/MRK overlapping kinase (Mok), glutaredoxin 3 (Glrx3), (succinyl-CoA: 

glutarate-CoA transferase (SUGCT), ATPase H+ transporting V1 subunit F (Atp6v1f), 

and CYFIP related Rac1 interactor A (CYRIA). The increased expression of the five p53-

regulated genes one day after oral administration of the test compounds is considered a 

response to the genotoxic effects of GHCs, and alterations in the other five genes have 

been reported in various cancers, as will be discussed below. 

In addition to the ten genes identified in this study, 25 molecules were integrated into 

the network from the QIAGEN Knowledge Base (Supplementary Table 3). The network 

[Cancer, Cellular Growth and Proliferation, Organismal Injury and Abnormalities] 

suggests that our ten marker genes do not act independently; instead, they interact with 
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other cancer-related genes that may be GHC-specific. Therefore, we selected these ten 

genes as marker genes for constructing a classifier to predict GHCs. 

 

Construction of the GHC predictive classifier: Using Microarray Gene Expression 

Data from Training Set Compounds in the Open TG-GATEs 

After using 3 GHCs and 14 OTHER compounds (listed in section 5) to train the GHC 

predictive classifier, the classifier was used to predict the genotoxic hepatic 

carcinogenicity of the training compounds. Low doses of the 3 GHCs were correctly 

predicted as positive, and all low doses of the 14 Other compounds in the training set 

were correctly predicted as negative. For the low doses of the training compounds, both 

sensitivity and specificity were 100% (3/3 and 14/14, respectively: these results are 

included in Table 2). 
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In silico validation of the GHC classifier using microarray gene expression from the 

Open TG-GATEs 

The results of the GHC predictive classifier, based on the training datasets, are shown in 

Table 2. The prediction results from the positive (low doses of 3 GHCs) and negative 

(low doses of 14 OTHER compounds) training sets were not included in the calculation 

of the sensitivity and specificity of the GHC predictive classifier. As indicated in Table 

2, for the low doses of the tested compounds, both GHCs (AFB1 and NMP) were 

correctly classified as positive and all 39 OTHER compounds were correctly classified 

as negative, resulting in a sensitivity of 100% (2/2) and a specificity of 100% (39/39). For 

the middle doses of the tested compounds (5 GHCs and 53 OTHER compounds), both 

sensitivity and specificity were 100% (5/5 and 53/53, respectively). However, for the high 

doses of tested compounds (5 GHCs and 53 OTHER compounds), while the sensitivity 

remained at 100% (5/5), the specificity slightly decreased to 96% (51/53). The false 

positives at high doses were attributed to TAA, a NGHC, and MNU, a GNHC in rats. 

These results indicate the high sensitivity and specificity of the 10-gene-based GHC 
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predictive classifier, across a dosing range from 1/10 of the MTD to the MTD, in single 

oral administration study. 

 

Validation Study 1: using 5 GHCs in one-day single dose oral administration 

studies 

We assessed the effectiveness of the GHC predictive classifier using 5 GHCs not included 

in the Open TG-GATEs database. To reduce costs and analysis time, we also explored 

the potential of using qPCR as a replacement for microarray analysis in determining the 

expression data of marker genes. 

Our analysis showed a significant correlation between the expression levels of ten 

marker genes measured by microarray and qPCR analyses at 1/3 of the LD50 dose 

(Supplementary Fig. 1). The prediction results for these 5 GHCs are summarized in Table 

3. In the first experiment of Validation Study 1, four of the five GHC (2-Nitropropane (2-

NP), 2,4-Diaminotoluene (2,4-DAT), MeIQx, and IQ) were correctly classified as 

positive at 1/3 of the LD50 dose using both microarray and qPCR data of the 10 marker 

genes. However, 2-AA was incorrectly predicted as negative at 1/3 of the LD50 dose 
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using either microarray data or qPCR expression data of the 10 marker genes. Notably, 

in the second experiment, where only qPCR analysis was conducted, 2-AA was correctly 

classified as positive at the LD50 dose. 

At 1/10 of the LD50 dose, three out of the five GHCs (2-NP, MeIQx, and IQ) were 

correctly classified as positive. However, at the lower dose of 1/30 of the LD50 dose none 

of the GHCs were classified as positive using qPCR data. The sensitivity was 0% (0/5), 

60% (3/5), and 80% (4/5) at 1/33, 1/10, and 1/3 of the LD50 dose, respectively.  

These findings indicate that qPCR analysis for marker gene expression is a viable 

alternative to microarray analysis. Furthermore, given that our GHC predictive classifier 

reached the highest sensitivity at 1/3 of the LD50 dose for the tested GHCs using qPCR 

expression data, this dose has been chosen as the starting point for subsequent validation 

studies. Doses will be escalated to the LD50 dose for any GHCs that are incorrectly 

classified as negative at lower doses. 
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Validation Study 2: A multi-institutional validation study using qPCR gene 

expression data from 60 compounds in one-day single dose oral administration 

studies 

To demonstrate the effectiveness and reliability of the GHC predictive classifier using 

qPCR data of 10 marker genes, we conducted an evaluation of a total of 60 compounds, 

comprising 19 GHCs and 41 OTHER compounds, in a series of one-day, single dose oral 

administration studies at three institutions - O, K, and F. Each independent study included 

groups treated with 2-NP and the vehicle solution as positive and negative controls, 

respectively. Based on the qPCR results of Validation Study 1 in which 2 out of 3 GHCs 

were correctly classified as positive when administered at 1/3 of the LD50 dose (as noted 

above, doses of MelQx and IQ were not determined by LD50), we adopted this dose as 

the initial dose for each compound in the initial series of studies. When 1/3 of the LD50 

dose was more than 2000 mg/kg bw, the administered dose was 2000 mg/kg bw, the 

maximum limitation for acute oral toxicity studies according to the OECD Guidelines for 

the Testing of Chemicals (Test No. 420: Acute Oral Toxicity - Fixed Dose Procedure). 
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The sensitivity of the GHC predictive classifier for the 19 GHCs at 1/3 of the LD50 

dose up to a maximum of 2000 mg/kg was 79% (15/19) (Table 4). Four GHCs were 

incorrectly classified as negative at this dose: DCA, VB, 4,4'-ODA, and HS. To determine 

whether the misclassifications of the 4 GHCs at 1/3 of the LD50 dose were due to the low 

dosage, we re-evaluated their carcinogenicity at higher doses. As summarized in Table 4, 

DCA was negative at 1/2 of the LD50 dose, but was correctly predicted as positive at 2/3 

of the LD50 dose. HS was correctly classified as positive at both 1/2 and 2/3 of the LD50 

doses. The marker gene expression for DCA and HS showed a dose-dependent increase 

between the 1/2 and 2/3 LD50 doses. VB and 4,4'-ODA were incorrectly classified as 

negative at both the 1/2 and 2/3 LD50 doses. Due to the lack of a dose-dependent response 

in marker gene expression at these doses for VB and 4,4'-ODA, we did not evaluate these 

compounds at higher doses. 

The specificity of the GHC predictive classifier for the 41 OTHER compounds at 1/3 

of the LD50 dose was 93% (38/41). Three OTHER compounds were incorrectly classified 

as positive at the 1/3 LD50 dose: MCT (a NGHC), ETH (a NGNC), and NHMI (a GNHC).  
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We verified the predictive results for three GNHCs (BZ, ETU, and HZ). These 

GNHCs were consistently classified as negative at doses of 1/3, 1/2, and 2/3 of the LD50 

at 3 institutions, demonstrating high reproducibility of the GHC predictive classifier. The 

positive control, 2-NP, was reliably predicted as positive in all 11 independent studies 

conducted at the 3 institutions. 

When considering multiple dosing levels, the combined sensitivity of the GHC 

predictive classifier for the 60 compounds in Validation study 2 increased to 89% (17/19), 

while the specificity remained stable at 93% (38/41) (Table 4). This increase suggests 

that sensitivity is enhanced when data from several doses are analyzed. 

Furthermore, as summarized in Table 5, the combined sensitivity of the GHC 

predictive classifier for the 64 compounds—based on marker gene expression data 

obtained from qPCR analyses in Validation Studies 1 and 2—was 91% (21/23). The 

specificity was 93% (38/41), and the accuracy reached 92% (59/64). These results 

demonstrate the reliability and effectiveness of the GHC predictive classifier across a 

range of doses for various compounds. 
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Comparison of prediction results between qPCR and microarray gene expression 

data 

A total of 40 compounds, comprising 6 GHCs and 34 Other compounds, were evaluated 

using marker gene expression data from qPCR expression data obtained at Institutions O, 

K, and F (Table 4), microarray gene expression obtained at Institution O (Table 3: 2-NP, 

2,4-DAT, MeIQx, IQ, and 2-AA), and microarray gene expression data obtained from 

Open TG-GATEs. The prediction results for all six GHCs (2-NP, 2,4-DAT, MeIQx, IQ, 

2-AA, and NDEA) and 32 of 34 OTHER compounds obtained from qPCR gene 

expression data were consistent with the microarray gene expression data (Supplementary 

Table 4). 

Among the 34 OTHER compounds, 32 showed consistent prediction results between 

qPCR and microarray analysis. However, discrepancies were observed for MCT and ETH, 

which were inaccurately predicted as positive using the qPCR data, whereas they were 

correctly classified as negative in the microarray analysis. This inconsistency was 

unexpected, especially since the doses used in the qPCR analysis were within the range 

of the doses used in the microarray analysis. 
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Overall, these results demonstrate that the expression data of the 10 marker genes 

derived from qPCR are highly consistent with microarray analysis data for 38 out of the 

40 tested compounds, with 37 of these 38 compounds correctly classified, underlining the 

accuracy, efficacy, and robustness of the GHC predictive classifier when utilizing qPCR 

data. 
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Discussion 

Since exposure to chemical carcinogens is a significant risk factor for human cancers, 

reducing exposure to these substances can greatly contribute to cancer prevention. In the 

present study, we developed a novel support vector machine-based one-day, single-dose 

prediction model of GHCs in rats. We also demonstrated that expression data from 10 

marker genes obtained via qPCR can be directly used for classification, replacing 

microarray analysis. Our model has shown high accuracy and reliability, with a sensitivity 

of 91% and specificity of 93% across a series of validation studies using 64 compounds 

in three institutions. Our prediction model is effective for rapid detection of GHCs, aiding 

in prioritizing compounds for further testing and informing strategies to reduce exposure 

to GHCs. Therefore, it has significant implications for predicting the safety of chemicals 

and pharmaceuticals. 

The typical workflow of our one-day single oral dose prediction model is illustrated 

in Figure 3. Stage 1 (Two days for animal studies): On Day 1, administer a single oral 

dose of the test chemical to rats (5 rats per group). On Day 2, 24 hours after treatment, 

collect and store liver tissues for RNA analysis. Stage 2 (Two days for RNA extraction 
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and qPCR analyses): Extract RNA from collected liver tissues and conduct RT-qPCR 

analyses. Stage 3 (One day for data analysis): Analyze qPCR expression data and perform 

prediction classification analysis. Our model offers several advantages, enabling high-

throughput and high accuracy: (1) It is short-term, cost-effective, and labor-efficient. (2) 

Fewer rats are required, reducing animal use. (3) Only a small amount of the test chemical 

is needed. (4) qPCR-based gene expression analysis is convenient and less complex 

compared to microarray analysis, ensuring data reliability and reproducibility across 

laboratories. (5) It supports the 3R principles (Replacement, Reduction, and Refinement) 

in animal research. 

Regarding false negative predictions: 4,4'-ODA and VB, being GHCs in rats, were 

incorrectly classified as negative in our GHC prediction model (Table 4). Some possible 

explanations for this discrepancy include: (1) Limitations in marker gene selection: These 

compounds may induce carcinogenic pathways or gene expressions not covered by the 

current set of marker genes. (2) Route of exposure: The impact of the route of exposure 

on compound metabolism and genotoxic effects is significant. Inhalation exposure to VB, 

for instance, induced hepatocellular carcinoma and angiosarcoma in rat livers (Benya et 
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al. 1982). Limited information on the carcinogenic effects of VB via oral administration 

suggests that its hepatocarcinogenicity might depend on the administration route. (3) 

Dosage: The sensitivity of our predictive model can be affected if the dosage used is 

below the effective dose needed to induce detectable changes in marker gene expression. 

However, 4,4'-ODA and VB were classified as negative at up to 1/3, 1/2, and 2/3 of their 

LD50 (Table 4), with no dose-response changes in marker gene expression, suggesting 

that our current set of marker genes may not be sufficiently sensitive to the specific 

genotoxic hepatocarcinogenic effects of these two compounds. Since the mechanism of 

action for GHCs is complex, a GHC might exert its carcinogenic effects through complex, 

multifactorial mechanisms that are not easily distinguished by a single predictive model. 

We are conducting ongoing studies to identify a complementary set of marker genes to 

refine the accuracy of GHC prediction. 

Regarding the false positive prediction of NHMI: NHMI is genotoxic and induced 

squamous cell carcinoma (SCC) in the lungs of rats but was not carcinogenic to the liver 

(Reznik-Schüller and Gregg 1981). However, it was incorrectly classified as positive in 

the current study. Since the liver plays a crucial role in the metabolism of chemicals, gene 
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expression alterations induced by chemicals can be complex and might not be accurately 

distinguished by a single prediction model. Utilizing a combination of complementary 

sets of marker genes could enhance the accuracy of prediction, as discussed above in the 

context of false negative predictions. 

The cause of the discrepancy in the prediction results for MCT and ETH between 

the Open TG-GATEs microarray data and the qPCR expression data remains unclear. 

MCT, a non-genotoxic hepatocarcinogen, was predicted as negative at doses of 3, 10, and 

30 mg/kg using microarray data from Open TG-GATEs (Table 2). However, in 

Validation Study 2 with qPCR mRNA expression data, MCT was predicted as positive at 

a dose of 20 mg/kg (Table 4). Similarly, ETH, which is non-genotoxic and non-

carcinogenic, was predicted as negative at doses of 100, 300, and 1000 mg/kg using the 

Open TG-GATEs microarray data (Table 2), but was predicted as positive at a dose of 

440 mg/kg in Validation Study 2 using qPCR mRNA expression data (Table 4). This 

inconsistency might be due to the differing sensitivities and specificities of qPCR and 

microarray techniques. However, it's notable that the prediction results for 38 out of 40 

compounds, which were classified using both Open TG-GATEs microarray data and our 
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microarray and qPCR data, were consistent. Additional research is required to resolve 

these discrepancies and improve the accuracy of the predictive model. 

As summarized in Figure 2 and described below, the 10 marker genes are aberrantly 

expressed in various human cancers. In particular, p53-regulated genes (Aen, Cdkn1a, 

Phlda3, Nudt5, and Mybl1) are aberrantly expressed in various human cancers, including 

liver cancers. Additionally, overexpression of two genes (Glrx3 and ATP6V1F) are 

involved in unfavorable prognosis in human liver cancers (Hu et al. 2023; Uhlen et al. 

2017a; Uhlen et al. 2017b). This suggests that our prediction model is mechanism-based 

and relevant to human cancers. Such relevance enhances the potential value of our model 

in identifying hazards in humans. 

Regarding the functions of the 10 marker genes: Aen is a downstream mediator of 

p53. It is implicated in the initiation of apoptosis following DNA damage (Kawase et al. 

2008). Decreased expression of Aen has been observed in human liver cancers, 

suggesting its involvement in liver carcinogenesis (Hamza et al. 2015; Pinato et al. 2018). 

Cdkn1a is a p53-regulated tumor suppressor gene. It acts as a cyclin-dependent kinase 

inhibitor and plays a crucial role in p53-mediated cell cycle arrest in response to DNA 
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damage (Engeland 2022; Kreis et al. 2019). Decreased Cdkn1a expression has been 

frequently observed in various cancers, including liver cancer (Hui et al. 1998; Ozturk et 

al. 2009). PHLDA3 is a p53-regulated tumor suppressor gene. It is known to promote 

apoptosis and suppress cell proliferation by negatively impacting the AKT signaling 

pathway, and its expression is induced by p53 in response to DNA damage (Chen and 

Ohki 2020). Loss of PHLDA3 is involved in various cancers (Chen and Ohki 2020; Saito 

et al. 2022). NUDT5 is a p53-regulated MutT-type DNA repair enzyme. It is important 

in cellular defense against oxidative DNA damage. It catalyzes the degradation of 8-

oxoguanine, a DNA lesion resulting from oxidative modification of guanine, thereby 

inhibiting mutagenesis and maintaining genomic stability (Burnum et al. 2012; Hori et al. 

2010; Ito et al. 2005). Mybl1 is a p53-regulated member of the MYB transcription factor 

family. It is essential for cell growth and differentiation (Rivlin et al. 2014; Yoon et al. 

2002). Overexpression of Mybl1 has been linked to increased growth, angiogenesis, and 

metastasis in liver cancer (Xie et al. 2020; Zhu et al. 2022). Glrx3 is an oxidoreductase 

enzyme. It protects cells from DNA damage-inducing agents by activating ATR-

dependent signaling pathways (Pandya et al. 2019). Overexpression of Glrx3 is observed 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.579908doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.579908


 43 

in various human cancers (Li et al. 2018; Lu et al. 2013), including liver cancer 

(Mollbrink et al. 2014). Notably, overexpression of Glrx3 is associated with an 

unfavorable prognosis in liver cancer, suggesting its potential as a prognostic marker 

(Uhlen et al. 2017a). ATP6V1F is a component of the multisubunit enzyme V-ATPase. 

It is involved in acidifying eukaryotic intracellular organelles, a process critical for 

various cellular functions, including protein sorting, zymogen activation, and receptor-

mediated endocytosis. Recent findings indicate that ATP6V1F contributes to the 

progression of liver cancer by promoting cell migration and invasion, and by inhibiting 

apoptosis in cancer cells (Hu et al. 2023). Notably, overexpression of ATP6V1F is 

associated with an unfavorable prognosis in liver cancer, suggesting its potential as a 

prognostic marker (Hu et al. 2023; Uhlen et al. 2017b). MOK belongs to the MAP kinase 

superfamily. It acts as a tumor suppressor gene in intestinal tumorigenesis (Chen et al. 

2013). It is involved in the regulation of cell proliferation and differentiation of intestinal 

epithelial cells (Chen et al. 2013). CYRIA acts as a crucial RAC1-binding regulator, 

influencing the dynamics of lamellipodia and macropinocytic uptake (Machesky 2023). 

It plays an important role in moderating migration of cancer cells by controlling 
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macropinosome formation and the regulation of integrin internalization (Le et al. 2021). 

SUGCT is a mitochondrial enzyme involved in synthesizing glutaryl-CoAis. It is the only 

gene among the ten marker genes that shows decreased expression in response to GHCs. 

Knockout of SUGCT results in diet-linked, age-related microbiome imbalances in mice, 

leading to a diabetes-like metabolic syndrome phenotype that includes hepatic steatosis 

(Niska-Blakie et al. 2020). However, the role of SUGCT in cancer remains unclear. 

In conclusion, our study has successfully developed a novel, reliable, highly 

sensitive, and specific prediction model for assessing the genotoxic 

hepatocarcinogenicity of chemicals just 24 hours after a single dose oral administration 

of the test material. This model is anticipated to be a valuable tool in the early stages of 

cancer risk assessment, significantly enhancing the efficiency of identifying and 

screening potential GHCs. Further investigations involving a broader range of chemicals 

will aid in further validating the current model's effectiveness. Moreover, integrating this 

GHC prediction model with other carcinogenicity prediction models could provide a 

comprehensive approach for assessing the carcinogenicity of compounds. Such a strategy 

not only increases the accuracy and reliability of carcinogenic assessments but also 
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support ethical scientific practices by potentially reducing and refining the use of animals 

in experimental risk assessments. 
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Figure legends. 

Fig. 1 Workflow of the establishment of the one-day, single dose GHC prediction 

model. 

Fig. 2 Properties and network analysis of marker genes used for GHC prediction in 

rat livers. (A) The properties of the ten marker genes used in construction of the GHC 

predictive classifier. (B) The network [Cancer, Cellular Growth and Proliferation, 

Organismal Injury and Abnormalities] generated by IPA analysis. The solid line circled 

genes represent the ten marker genes identified in the present study. An additional 25 

molecules with predicted alternate expression are integrated into the network based on 

Ingenuity Pathways Knowledge Base. 

Fig. 3 The typical workflow of one-day single dose prediction model (Created with 

BioRender. com.). 
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Identification of 10 marker genes that were commonly differentially expressed in the 
livers of rats treated with low doses of 5 GHCs, determined using microarray gene 
expression data from the Open TG-GATEs database

Using microarray expression data of marker genes from the Open TG-GATEs database
 Positive training data sets: low dose of 3 GHCs 
  Negative training data sets: low dose of 14 OTHER compounds

Using microarray expression data of marker genes from the Open TG-GATEs database
Test data sets:
• Middle and high doses of the 3 GHCs used in Step 2
• Low, middle, and high doses of an additional 2 GHCs
• Middle and high doses of the 14 OTHER compounds used in Step 2
• Low, middle, and high doses of an additional 39 OTHER compounds

1. Test compounds: 5 GHCs 
2. Determine the effectiveness of marker gene expression data measured by qPCR 

compared to microarray analysis

Step 1: Identification marker genes 

Step 2: Construction of the GHC predictive classifier 

Step 3: In silico validation of the GHC predictive classifier

Step 4: Validation of the GHC predictive classifier - Validation Study 1

1. Validation studies were conducted at three Institutions
2. Conduct one-day single dose administration studies 
3. Test compounds: a total of 60 compounds, comprising 19 GHCs and 41 OTHER 

compounds, including one GHC from Step 4 that served as a positive control in Step 5.
4. Determine the effectiveness of GHC prediction using gene expression data of the 

marker genes measured by qPCR

Step 5: Validation of the GHC predictive classifier - Validation Study 2

Fig. 1 
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Symbol Gene Name Type
(Location)

Expression
(vs control)

Major functions in 
carcinogenesis

Prognostic 
potential 

in liver cancer
Aen Apoptosis enhancing nuclease Enzyme

(Nucleus)
Upregulated p53-regulated apoptosis

Cdkn1a Cyclin dependent kinase inhibitor 
1A

Kinase
(Cytoplasm/Nucleus)

Upregulated p53-regulated cell cycle arrest

Phlda3 Pleckstrin homology like domain 
family A member 3

Phosphatidylinositol-3-
phosphate binding
(Cytoplasm/Membrane)

Upregulated p53-regulated apoptosis and 
cell proliferation suppression

Nudt5 Nudix hydrolase 5 Phosphatase
(Cytoplasm)

Upregulated p53-regulated DNA repair

Mybl1 MYB proto-oncogene like 1 Transcription regulator
(Nucleus)

Upregulated p53-regulated cell proliferation 
and differentiation

Glrx3 Glutaredoxin 3 Enzyme
(Cytoplasm)

Upregulated Protecting cells from 
DNA damage-inducing agents

Unfavorable

Atp6v1f ATPase H+ transporting V1 
subunit F

Enzyme
(Cytoplasm)

Upregulated Cell migration and invasion Unfavorable

Mok MOK protein kinase Kinase
(Cytoplasm/Nucleus)

Upregulated Regulation of cell proliferation 
and differentiation

CYRIA CYFIP related Rac1 interactor A Small GTPase binding
(Membrane)

Upregulated Migration and 
macropinocytic uptake

Sugct Succinyl-CoA:glutarate-CoA 
transferase

Enzyme
(Mitochondrion)

Downregulated Unknown

A

Fig. 2 

Properties of ten marker genes used for constuction of the GHC predictive classifer

B

Prediction Legend
more extreme

more confidence
Predicted activation

Predicted Relationships

Glow indicates activity 
when opposite of 
measurement

Leads to inhibition
Leads to activation

Effect not predicted

Finding inconsistent with 
state of downstream 
molecule

Upregulated

Predicted inhibition

Downregulated

less

less



Advantages
• Short-term, cost-effective, and labor-efficient
• Reducing animal use
• Small amount of the test chemical is used
• qPCR-based gene expression analysis: high effectiveness, reliability, and reproducibility
• Supports the 3R principles in animal research

Stage 1 
(Two days for animal studies)

Day 1: a single oral dose administration 
Day 2: collect and store liver tissues 

(24 hours after administration)

Test chemical 

Day 1 Day 2

Stage 2 
(Two days for RNA extraction and RT-qPCR analysis)

RNA extraction RT-qPCR analyses

Stage 3 
(One day for predictive classification)

Expression data 
of marker genes 

Predictive 
classification

GHC
OTHER

Fig. 3 



Table 1 TD50 and Doses of GHCs used in single dose toxicity studies documented in the OPEN TG-GATEs database 
   Doses (mg/kg bw) b  

GHC TD50 (mg/kg bw) a Low Middle High 

2-Acetamidofluorene (2-AAF) 1.22 100* (82 c) 300 (246) 1000 (820) 

N-Nitrosodiethylamine (NDEA) 0.0265 10* (377) 30 (1132) 100 (3774) 

2-Nitrofluorene (2-NF) 0.285 100* (351) 300 (1053) 1000 (3509) 

Aflatoxin B1 (AFB1) 0.0032 1* (313) 3 (938) 10 (5938) 

N-nitrosomorpholine (NMP) 0.109 100* (917) 300 (2752) 600 (5505) 
Abbreviation: GHC: genotoxic hepatocarcinogen. 
a TD50 refers to the daily dose in mg/kg/bw/day administered for life to induce tumors in half of the test animals that would have remained tumor-free at 
zero dose: Reported in the Carcinogenic Potency Data Base (CPDB). 
b Doses used in the single dose toxicity studies in the OPEN TG-GATEs. 
c Values in parentheses represent multiples of the dose relative to the TD50. 
* Marker genes were identified as those that consistently showed differential expression in response to low doses of all the five GHCs. 



Table 2 Results of the GHC predictive classifier using microarray gene expression data of 58 
compounds obtained from Open TG-GATEs 

   Doses a 
  Abbreviation Low Middle High 
GHC      

 2-Acetamidofluorene  2-AAF P b, c P P 
 N-Nitrosodiethylamine NDEA P b P P 
 2-Nitrofluorene 2-NF P b P P 
 Aflatoxin B1 AFB1 P P P 
 N-Nitrosomorpholine  NMP P P P 
  Sensitivity f 2/2  

(100%) 
5/5 
 (100%) 

5/5  
(100%) 

OTHER e      
NGHC Thioacetamide TAA N b, d N P 
 Hexachlorobenzene HCB N b N N 
 Wy-14643 WY N b N N 
 Carbon Tetrachloride CCL4 N N N 
 Clofibrate  CFB N N N 
 Coumarin CMA N N N 
 Ethinylestradiol  EE N N N 
 Gemfibrozil GFZ N N N 
 Methapyrilene MP N N N 
 Monocrotaline MCT N N N 
 Phenobarbital PB N N N 

GNHC Cyclophosphamide CPA N b N N 
 Nitrofurantoin NFT N b N N 
 N-methyl-N-nitrosourea MNU N N P 
 Phenacetin PCT N N N 

NGNHC Butylated Hydroxyanisole BHA N b N N 
 Methimazole MTZ N b N N 
 Sulfasalazine SS N b N N 
 Indomethacin IM N N N 
 Omeprazole OPZ N N N 
 Phenylbutazone PhB N N N 
 Propylthiouracil PTU N N N 
GNC Azathioprine  AZP N N N 
 Tannic acid TAN N N N 

NGNC Allyl alcohol AA N b N N 
 Cyclosporine A CA N b N N 
 Furosemide  FUR N b N N 
 Promethazine PMZ N b N N 
 Sulindac SUL N b N N 
 Tetracycline TC N b N N 
 Aspirin ASA N N N 
 Caffeine CAF N N N 
 Chloramphenicol CMP N N N 
 Chlorpheniramine CHL N N N 
 Chlorpropamide CPP N N N 
 Cimetidine CIM N N N 
 Diazepam DZP N N N 
 Disulfiram DSF N N N 
 Ethionamide ETH N N N 
 Ibuprofen IBU N N N 
 Lornoxicam LNX N N N 
 Meloxicam MLX N N N 



Table 2 Results of the GHC predictive classifier using microarray gene expression data of 58 
compounds obtained from Open TG-GATEs (continued) 

a Doses used in the single dose toxicity studies in the OPEN TG-GATEs. 
b Data used for constructing the predictive classifier were excluded from the sensitivity calculation. 
c P indicates classification as positive, signifying a genotoxic hepatocarcinogen (GHC). P highlighted in 
pink denotes correct classification. P highlighted in green denotes incorrect classification (false 
positive). 
d N indicates classification as negative, signifying an OTHER compound. 
e OTHER consists of NGHC: nongenotoxic hepatocarcinogens; NGNHC: nongenotoxic 
nonhepatocarcinogen (carcinogenic to organs other than the liver); NGNC: Nongenotoxic and 
noncarcinogen; GNHC; genotoxic nonhepatocarcinogen (carcinogenic to organs other than the liver); 
and GNC: genotoxic noncarcinogen. 
f Sensitivity: percentage of GHCs that are correctly classified as positive. 
g Specificity: percentage of OTHER compounds that are correctly classified as negative. 
 

   Doses a 
  Abbreviation Low Middle High 

NGNC Methyldopa MDP N N N 
 Perhexiline PH N N N 
 Phenytoin PHE N N N 
 Propranolol PPL N N N 
 Rifampicin RIF N N N 
 Rotenone ROT N N N 
 Theophylline TEO N N N 
 Tolbutamide TLB N N N 
 Triamterene TRI N N N 
 Trimethadione TMD N N N 
 Vitamin A VA N N N 
  Specificity g 39/39 

(100%) 
53/53 
(100%) 

51/53  
(96%) 



Table 3 Doses and prediction results of Validation Study 1 
  Doses 

  Low  
(1/30 of LD50) 

Middle  
(1/10 of LD50) 

 High  
(1/3 of LD50) 

 LD50 a 

  qPCR qPCR   qPCR Microarray analysis   qPCR 

2-Aminoanthraquinone  2-AA b N d N  N N  P 

2-Nitropropane 2-NP b N P e  P P  NE f 

2,4-Diaminotoluene 2,4-DAT b N N  P P  NE 

2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline  MeIQx c N P  P P  NE 
2-Amino-3-methylimidazo[4,5-f]quinoline  IQ c N P   P P   NE 
a Lethal dose 50 (LD50) values for oral administration in rats are 1500 mg/kg bw for 2-AA, 720 mg/kg bw for 2-NP, and 135 mg/kg bw for 2,4-DAT. LD50 values 
MeIQx and IQ are not available. 
b Low, middle, and high doses for 2-AA, 2-NP, and 2,4-DAT were set at approximately 1/30; 1/10, and 1/3 of their respective LD50 values. The doses were as follows:  
2-AA: 50, 150, and 450 mg/kg bw; 2-NP: 24, 72, and 240 mg/kg bw; 2,4-DAT: 4.5, 13.5, and 45 mg/kg bw. 
c Middle dose for MeIQx and IQ was set at 10 times of their respective carcinogenic doses. The low and high doses were determined as 1/3 and 3 times the middle 
dose. The doses were as follows: MeIQx: 50, 160, and 480 mg/kg bw; IQ: 40, 120, and 360 mg/kg bw. 
d N indicates classification as negative, signifying an OTHER compound. N highlighted in green denotes incorrect classification (false negative). 
e P indicates classification as positive, signifying a genotoxic hepatocarcinogen (GHC). P highlighted in pink denotes correct classification. 
f NE: not examined. 



Table 4 Prediction results of Validation Study 2 using marker gene expression data obtained by qPCR analysis 

 Chemical Abbreviation 
Dose 

(mg/kg 
bw) a 

  
Individual 
prediction 

result b 
Institution c 

Overall 
prediction 

result d 
GHC          2-Nitropropane 2-NP 240 *  P e O, K, F  P 

 3-Methyl-4-dimethylaminoazobenzene 3'-MeDAB 500 *  P K P 
 4,4'-Methylene-bis(2-chloro-aniline)  MOCA 380 *  P K P 
 4,4'-Thiodianiline TDA 300 *  P O P 
 Acid Red 26 AR-26 2000 #  P O P 
 Auramine-O AO 500 *  P F P 
 N-Dimetylnitorosamine DMN 10 *  P O P 
 N-Nitrosodiethanolamine NDEAL 2000 #  P F P 
 N-Nitrosodiethylamine NDEA 70 *  P F P 
 N-Nitrosoethylmethylamine NEMA 30 *  P F P 
 N-nitrosopyrrolidine NPYR 300 *  P K P 
 Nitrosodibutylamine NDBA 400 *  P K P 
 o-Aminoazotoluene AAT 500 *  P O P 
 Retororsine RTS 10 *  P K P 
 Tris-(1,3-dichloro-2-propyl)phosphate TDCPP 620 *  P K P 
 Dichloroacetic Acid DCA 940 *  N f O P 
 1410 **  N K 
 1880 ***  P K 
 Hydrazinium Sulfate HS 200 *  N O P 
 300 **  P F 
 400 ***  P F 
 4,4'-Oxydianiline 4,4'-ODA 240 *  N K N 
 360 **  N O 
 480 ***  N O 
 Vinyl Bromide  VB 170 *  N O N 
 250 **  N F 
 330 ***  N F 
       Sensitivity h 17/19  

(89%) 
         



Table 4 Prediction results of Validation Study 2 using marker gene expression data obtained by qPCR analysis (continued) 

 Chemical Abbreviation 
Dose 

(mg/kg 
bw) a 

  
Individual 
prediction 

result b 
Institution c 

Overall 
prediction 

result d 
OTHER g         

NGHC Carbon Tetrachloride CCL4 780 * 
 

N O N  
Coumarin CMA 100 * 

 
N O N  

Ethinylestradiol EE 320 * 
 

N O N  
Gemfibrozil GFZ 470 * 

 
N O N  

Hexachlorobenzene HCB 2000 # 
 

N O N  
Monocrotaline MCT 20 * 

 
P F P  

Phenobarbital PB 50 * 
 

N F N 
NGNHC Butylated hydroxyanisole BHA 670 * 

 
N K N  

Indomethacin IM 1 * 
 

N F N  
Methimazole MTZ 750 * 

 
N K N  

Phenylbutazone  PhB 80 * 
 

N F N  
Sulfasalazine SS 2000 # 

 
N K N 

NGNC Allyl alcohol AA 20 * 
 

N K N  
Aspirin ASA 70 * 

 
N O N  

Caffeine CAF 60 * 
 

N K N  
Chloramphenicol CMP 830 * 

 
N K N  

Chlorpheniramine CHL 40 * 
 

N F N  
Chlorpropamide CPP 720 * 

 
N F N  

Diazepam DZP 80 * 
 

N O N  
Disulfiram DSF 170 * 

 
N O N  

Ethionamide ETH 440 * 
 

P K P  
Furosemide  FUR 870 * 

 
N F N  

Methyldopa MDP 1670 * 
 

N F N  
Phenytoin PHE 550 * 

 
N O N  

Promethazine PMZ 190 * 
 

N K N  
Rotenone ROT 20 * 

 
N O N  

Sulindac SUL 90 * 
 

N K N  
Tetracycline TC 270 * 

 
N K N  

Theophylline TEO 80 * 
 

N K N  
Tolbutamide TLB 830 * 

 
N O N  

Triamterene TRI 130 * 
 

N O N 



Table 4 Prediction results of Validation Study 2 using marker gene expression data obtained by qPCR analysis (continued) 

 Chemical Abbreviation 
Dose 

(mg/kg 
bw) a 

  
Individual 
prediction 

result b 
Institution c 

Overall 
prediction 

result d 
GNHC Cyclophosphamide CPA 30 * 

 
N F N  

2,4-Dinitrotruene 2,4-DNT 100 * 
 

N K N  
Nitrofurantoin NFT 200 * 

 
N F N  

N-Nitrosoheptamethyleneimine NHMI 90 * 
 

P F P  
N-Nitrosopiperidine  NPIP 70 * 

 
N O N  

Phenacetin PCT 550 * 
 

N F N  
Benzidine BZ 100 * 

 
N F N  

150 ** 
 

N O  
210 *** 

 
N O  

Ethylene thiourea ETU 610 * 
 

N F N  
920 ** 

 
N K  

1220 *** 
 

N K  
Hydrazine  HZ 20 * 

 
N F N  

30 ** 
 

N O  
40 *** 

 
N O 

GNC Isoniazid INH 420 *  N O N 

              Specificity i 38/41  
(93%) 

a Doses used in the single dose toxicity studies conducted in the 2nd set of validation studies (Validation Study 2). * 1/3 of the LD50; ** 1/2 of the LD50; and *** 2/3 
of the LD50. # A dose of 2000 mg/kg bw is the maximum limitation for acute oral toxicity study according to the OECD Guidelines for the Testing of Chemicals (Test 
No. 420: Acute Oral Toxicity - Fixed Dose Procedure). This limit was used when 1/3 of the LD50 exceeded 2000 mg/kg bw. 
b Prediction results from each individual study at specific doses. 
c Institution where qPCR analyses were conducted. O: Osaka Metropolitan University; F: Fujita Health University; K: Kagawa University. 
d Overall prediction based on the outcomes at all evaluated doses, with particular emphasis on the highest dose. 
e P indicates classification as positive, signifying a genotoxic hepatocarcinogen (GHC). P highlighted in pink denotes correct classification. P highlighted in green 
denotes incorrect classification (false positive). 
f N indicates classification as negative, signifying an OTHER compound. N highlighted in pink denotes correct classification. N highlighted in green denotes incorrect 
classification (false negative). 
g OTHER consists of NGHC: nongenotoxic hepatocarcinogens; NGNHC: nongenotoxic nonhepatocarcinogen (carcinogenic to organs other than the liver); NGNC: 
Nongenotoxic and noncarcinogen; GNHC; genotoxic nonhepatocarcinogen (carcinogenic to organs other than the liver); and GNC: genotoxic noncarcinogen. 
h Sensitivity: percentage of GHCs that are correctly classified as positive. 
i Specificity: percentage of OTHER compounds that are correctly classified as negative. 



Table 5 Summary of prediction results of the Validation studies 1 and 2 using marker gene expression 
data obtained by qPCR analysis 

 No. of  

compounds tested 

No of  

compounds correctly classified 
 

GHC a 23 c 21 Sensitivity: 91% 

OTHER b 41 38 Specificity: 93% 

Total 64 59 Accuracy: 92% 
a GHC: genotoxic hepatocarcinogen. 
b OTHER consists of NGHC: nongenotoxic hepatocarcinogens; NGNHC: nongenotoxic nonhepatocarcinogen 
(carcinogenic to organs other than the liver); NGNC: Nongenotoxic and noncarcinogen; GNHC; genotoxic 
nonhepatocarcinogen (carcinogenic to organs other than the liver); and GNC: genotoxic noncarcinogen. 
c In Validation Study 1 five GHCs were evaluated and in Validation Study 2 nineteen GHCs were evaluated. As 2-NP 
was assessed in both studies (serving as a positive control in Validation Study 2), the total number of unique GHCs 
evaluated was 23. 
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Supplementary Fig. 1  
Relative expression levels of ten marker genes showed a significant correlation between 
microarray analysis and qPCR analysis of 5 GHCs administered at a dose of 1/3 of the LD50 
dose. The X-axis represents the log2 (ratios to controls) values derived from microarray 
analysis; the Y-axis represents the log2 (ratios to controls) values from qPCR analysis. Each 
diamond-shaped point represents one of the ten marker genes.
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Supplementary Table 1 

CAS numbers and suppliers of the chemicals tested in Validations Study 1 and Validation Study 2 

Chemicals Abbreviation CAS RN Provider Classification a 

2-Amino-3-methylimidazo[4,5-f]quinoline  IQ 76180-96-6 Nard Institute Ltd. GHC 

2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline  MeIQx 77500-04-0 Nard Institute Ltd. GHC 

2-Aminoanthraquinone  2-AA 117-79-3 Tokyo Chemical Industry Co., Ltd. GHC 

2-Nitropropane 2-NP 920-40-1 Tokyo Chemical Industry Co., Ltd. GHC 

2,4-Diaminotoluene 2,4-DAT 95-80-7 Tokyo Chemical Industry Co., Ltd. GHC 

2,4-Dinitrotruene 2,4-DNT 121-14-2 Tokyo Chemical Industry Co., Ltd. GNHC 

3-Methyl-4-dimethylaminoazobenzene 3'-MeDAB 55-80-1 Tokyo Chemical Industry Co., Ltd. GHC 

4,4'-Methylene-bis(2-chloro-aniline) MOCA 101-14-4 Tokyo Chemical Industry Co., Ltd. GHC 

4,4'-Oxydianiline 4,4'-ODA 101-80-4 Fujifilm Wako Pure Chemical Corp. GHC 

4,4'-Thiodianiline TDA 139-65-1 Fujifilm Wako Pure Chemical Corp. GHC 

Acid Red 26 AR-26 3761-53-3 Tokyo Chemical Industry Co., Ltd. GHC 

Allyl alchol AA 107-18-6 Tokyo Chemical Industry Co., Ltd. NGNC 

Aspirin ASA 50-78-2 Sigma-Aldrich Co., LLC. NGNC 

Auramine-O AO 2465-27-2 Tokyo Chemical Industry Co., Ltd. GHC 

Benzidine BZ 92-87-5 Sigma-Aldrich Co., LLC. GNHC 

Butylated hydroxyanisole BHA 25013-16-5 Abcam Plc. NGNHC 

Caffeine CAF 58-08-2 Fujifilm Wako Pure Chemical Corp. NGNC 

Carbon Tetrachloride CCL4 56-23-5 Fujifilm Wako Pure Chemical Corp. NGHC 

Chloramphenicol CMP 56-75-7 Fujifilm Wako Pure Chemical Corp. NGNC 

Chlorpheniramine CHL 113-92-8 Tokyo Chemical Industry Co., Ltd. NGNC 

Chlorpropamide CPP 94-20-2 Fujifilm Wako Pure Chemical Corp. NGNC 

Coumarin CMA 91-64-5 Tokyo Chemical Industry Co., Ltd. NGHC 

Cyclophosphamide CPA 50-18-0 Fujifilm Wako Pure Chemical Corp. GNHC 

Diazepam DZP 439-14-5 Fujifilm Wako Pure Chemical Corp. NGNC 

Dichloroacetic Acid DCA 79-43-6 Tokyo Chemical Industry Co., Ltd. GHC 

Disulfiram DSF 97-77-8 Sigma-Aldrich Co LLC NGNC 

Ethinylestradiol EE 57-63-6 Tokyo Chemical Industry Co., Ltd. NGHC 

Ethionamide ETH 536-33-4 Tokyo Chemical Industry Co., Ltd. NGNC 

Ethylene thiourea ETU 96-45-7 Tokyo Chemical Industry Co., Ltd. GNHC 

Furosemide  FUR 54-31-9 Tokyo Chemical Industry Co., Ltd. NGNC 

Gemfibrozil GFZ 25812-30-0 Tokyo Chemical Industry Co., Ltd. NGHC 

Hexachlorobenzene HCB 118-74-1 Tokyo Chemical Industry Co., Ltd. NGHC 

Hydrazine  HZ 302-01-2 Tokyo Chemical Industry Co., Ltd. GNHC 



Supplementary Table 1 

CAS numbers and suppliers of the chemicals tested in Validations Study 1 and Validation Study 2 (continued) 

Chemicals Abbreviation CAS RN Provider Classification a 

Hydrazinium Sulfate HS 10034-93-2 Fujifilm Wako Pure Chemical Corp. GHC 

Indomethacin IM 53-86-1 Fujifilm Wako Pure Chemical Corp. NGNHC 

Isoniazid INH 54-85-3 Tokyo Chemical Industry Co., Ltd. NGNC 

Methimazole MTZ 60-56-0 Abcam Plc. NGNHC 

Methyldopa MDP 555-30-6 Tokyo Chemical Industry Co., Ltd. NGNC 

Monocrotaline MCT 315-22-0 Fujifilm Wako Pure Chemical Corp. NGHC 

N-Dimetylnitorosamine DMN 62-75-9 Tokyo Chemical Industry Co., Ltd. GHC 

N-Nitrosodiethanolamine NDEAL 1116-54-7 Tokyo Chemical Industry Co., Ltd. GHC 

N-Nitrosodiethylamine NDEA 55-18-5 Tokyo Chemical Industry Co., Ltd. GHC 

N-Nitrosoethylmethylamine NEMA 10595-95-6 Santa Cruz Biotechnology GHC 

N-Nitrosoheptamethyleneimine NHMI 20917-49-1 Tokyo Chemical Industry Co., Ltd. GNHC 

N-Nitrosopiperidine  NPIP 100-75-4 AccuStandard, Inc. GNHC 

N-nitrosopyrrolidine NPYR 930-55-2 Sigma-Aldrich Co., LLC. GHC 

Nitrofurantoin NFT 67-20-9 Tokyo Chemical Industry Co., Ltd. GNHC 

Nitrosodibutylamine NDBA 924-16-3 Tokyo Chemical Industry Co., Ltd. GHC 

o-Aminoazotoluene AAT 97-56-3 Tokyo Chemical Industry Co., Ltd. GHC 

Phenacetin PCT 62-44-2 Tokyo Chemical Industry Co., Ltd. GNHC 

Phenobarbital PB 50-06-6 Fujifilm Wako Pure Chemical Corp. NGHC 

Phenylbutazone  PhB 50-33-9 Abcam Plc. NGNHC 

Phenytoin PHE 57-41-0 Fujifilm Wako Pure Chemical Corp. NGNC 

Promethazine PMZ 60-87-7 Fujifilm Wako Pure Chemical Corp. NGNC 

Retororsine RTS 480-54-6 Sigma-Aldrich Co., LLC. GHC 

Rotenone ROT 83-79-4 Fujifilm Wako Pure Chemical Corp. NGNC 

Sulfasalazine SS 599-79-1 Sigma-Aldrich Co, LLC. NGNHC 

Sulindac SUL 38194-50-2 Fujifilm Wako Pure Chemical Corp. NGNC 

Tetracycline TC 60-54-8 Sigma-Aldrich Co., LLC NGNC 

Theophylline TEO 58-55-9 Fujifilm Wako Pure Chemical Corp. NGNC 

Tolbutamide TLB 64-77-7 Fujifilm Wako Pure Chemical Corp. NGNC 

Triamterene TRI 396-01-0 Tokyo Chemical Industry Co., Ltd. NGNC 

Tris-(1,3-dichloro-2-propyl)phosphate TDCPP 13674-87-8 Fujifilm Wako Pure Chemical Corp. GHC 

Vinyl Bromide  VB 593-60-2 Tokyo Chemical Industry Co., Ltd. GHC 
a Classification: GHC: genotoxic hepatocarcinogen; NGHC: nongenotoxic hepatocarcinogens; GNHC; genotoxic 
nonhepatocarcinogen (carcinogenic to organs other than the liver); NGNHC: nongenotoxic nonhepatocarcinogen (carcinogenic to 
organs other than the liver); GNC: genotoxic noncarcinogen; NGNC: Nongenotoxic and noncarcinogen.    



Supplementary Table 2 
Primers and probes used in the qPCR 

Marker gene  Probe* Forward (5'-3') Reverse (5'-3') 

Aen #112 ggcctgccctcatacttaaa agcggtaagaaagctctgga 
Cdkn1a #21 gatccacagcgatatcgagac acatcaccaggatcggacat 
Phlda3 #10 accacgaggcataccatttt caaccaaccaaagtggacag 
Nudt5 #78 ggctacaaaggtgacattgct gcagtttgacaagcctggat 
Mybl1 (1385132_at) #46 ggtatgtgtgaagtcagtttcca ttttctgaagatgccaagca 
MOK (also known as Rage) #66 ccagtcacaactggtcattctc cagactagtcggcccctgt 
Glrx3 #53 ccacagtgtgtacagatgaacg aacagcttcggcttccag 
Sugct (also known as RGD1308114) #60 atggcctcgttatggagatg tgcctctgacatcttgaacttg 
Atp6v1f #105 tgaaatcgaagacactttcagg gctccttggacgggatct 
CYRIA (also known as Fam49a ) #56 cacacttcttcctggattttga aggatgctctcggaatcttg 

*Universal ProbeLibrary Probes, Roche Applied Science, Mannheim, Germany. 



Supplementary Table 3 

Molecules in the QIAGEN Knowledge Base network [Cancer, Cellular Growth and Proliferation, Organismal Injury and Abnormalities] 
Symbol Entrez Gene Name Location Family 

Aen* apoptosis enhancing nuclease Nucleus enzyme 
Akt1 AKT serine/threonine kinase 1 Cytoplasm kinase 
App amyloid beta precursor protein Plasma Membrane other 
Atp6V1F* ATPase H+ transporting V1 subunit F Cytoplasm enzyme 
Cdkn1A* cyclin dependent kinase inhibitor 1A Cytoplasm/Nucleus kinase 
Cntd1 cyclin N-terminal domain containing 1 Nucleus other 
Ctbp1-Dt CTBP1 divergent transcript Other other 
Cycs cytochrome c, somatic Cytoplasm enzyme 
Cyria* CYFIP related Rac1 interactor A Membrane Small GTPase binding 
Ep400:Tp53 Tetramer:Cdkn1A Gene 

 
Nucleus complex 

Gfod3P Gfo/Idh/MocA-like oxidoreductase domain containing 3, 
pseudogene 

Other other 

Glrx3* glutaredoxin 3 Cytoplasm enzyme 
Ifng interferon gamma Extracellular Space cytokine 
Leucovorin 

 
Other chemical - endogenous 

mammalian 
Linc00475 long intergenic non-protein coding RNA 475 Other other 
Linc01612 long intergenic non-protein coding RNA 1612 Other other 
Mok* MOK protein kinase Plasma Membrane kinase 
Mybl1* MYB proto-oncogene like 1 Nucleus transcription regulator 
Myc MYC proto-oncogene, bHLH transcription factor Nucleus transcription regulator 
Nfkb (Complex) 

 
Nucleus complex 

Npm 
 

Other group 
Nudt5* nudix hydrolase 5 Cytoplasm phosphatase 
Phlda3* pleckstrin homology like domain family A member 3 Cytoplasm/Membrane Phosphatidylinositol-3-

phosphate binding  
Pierce1 piercer of microtubule wall 1 Nucleus other 
Rpl39L ribosomal protein L39-like Cytoplasm other 
Snhg20 small nucleolar RNA host gene 20 Other other 
Sugct* succinyl-CoA:glutarate-CoA transferase Mitochondrion enzyme 



Supplementary Table 3 
Molecules in the QIAGEN Knowledge Base network [Cancer, Cellular Growth and Proliferation, Organismal Injury and Abnormalities] (continued) 

Symbol Entrez Gene Name Location Family 
Tetrahydrocurcumin 

 
Other chemical - endogenous 

mammalian 
Tfap2C 
Homodimer:Myc:Kdm5B:Cdkn1A 

 
Nucleus complex 

Tnfsf11 TNF superfamily member 11 Extracellular Space cytokine 
Tp53 tumor protein p53 Nucleus transcription regulator 
Tp53 Tetramer:Cdkn1A Gene 

 
Nucleus complex 

Tp53 Tetramer:Znf385A:Cdkn1A 
 

Nucleus complex 
Tre-Ttc2-1/2 

 
Other group 

Zbed5 zinc finger BED-type containing 5 Nucleus transcription regulator 
* Marker genes used as a predictive classfier. 



Supplementary Table 4 

Comparison of prediction results using microarray gene expression data from Open TG-GATEs and qPCR gene expression data from Tables 3 and 4 

 

Chemicals CAS RN Doses used in 
microarray 

analysis 
(mg/kg bw) 

Doses used in qPCR 
analysis  

(mg/kg bw) 

Prediction results 
based on marker gene 

expression data 
obtained from 

microarray analysis 

Prediction results 
based on marker 
gene expression 

data obtained from 
qPCR 

Consistent or 
inconsistent 

GHC a         2-AA 117-79-3  450  450 N N Consistent 
 2-NP 920-40-1 240 240 P P Consistent 
 2,4-DAT 95-80-7 45 45 P P Consistent 
 MeIQx 77500-04-0 480 480 P P Consistent 
 IQ 76180-96-6 360 360 P P Consistent 
 NDEA 55-18-5 100 70 P P Consistent 

OTHER b        
NGHC CCL4 56-23-5 300 780 N N Consistent  

Coumarin 91-64-5 150 100 N N Consistent  
EE 57-63-6 10 320 N N Consistent  
GFZ 25812-30-0 300 470 N N Consistent  
HCB 118-74-1 2000 2000 N N Consistent  
MCT 315-22-0 30 20 N P Inconsistent  
PB 50-06-6 300 50 N N Consistent 

NGNHC BHA 25013-16-5 2000 670 N N Consistent  
IM 53-86-1 50 1 N N Consistent  
MTZ 60-56-0 100 750 N N Consistent  
PhB 50-33-9 200 80 N N Consistent  
SS 599-79-1 1000 2000 N N Consistent 

NGNC AA 107-18-6 30 20 N N Consistent  
ASA 50-78-2 2000 70 N N Consistent 

 CAF 58-08-2 100 60 N N Consistent 
 CMP 56-75-7 1000 830 N N Consistent 
 CHL 113-92-8 30 40 N N Consistent 
 CPP 94-20-2 300 720 N N Consistent 
 DZP 439-14-5 250 80 N N Consistent 



Supplementary Table 4 
Comparison of prediction results using microarray gene expression data from Open TG-GATEs and qPCR gene expression data from Tables 3 and 4 
(continued) 

  

Chemicals CAS RN Doses used in 
microarray 

analysis 
(mg/kg bw) 

Doses used in qPCR 
analysis  

(mg/kg bw) 

Prediction results 
based on marker gene 

expression data 
obtained from 

microarray analysis 

Prediction results 
based on marker 
gene expression 

data obtained from 
qPCR 

Consistent or 
inconsistent 

NGNC DSF 97-77-8 600 170 N N Consistent  
ETH 536-33-4 1000 440 N P Inconsistent  
FUR 54-31-9 300 870 N N Consistent  
MDP 555-30-6 600 1670 N N Consistent  
PHE 57-41-0 2000 550 N N Consistent  
PMZ 60-87-7 200 190 N N Consistent  
ROT 83-79-4 50 20 N N Consistent  
SUL 38194-50-2 150 90 N N Consistent  
TC 60-54-8 1000 270 N N Consistent  
TEO 58-55-9 200 80 N N Consistent  
TLB 64-77-7 1000 830 N N Consistent  
TRI 396-01-0 150 130 N N Consistent 

GNHC CPA 50-18-0 150 30 N N Consistent  
NFT 67-20-9 100 200 N N Consistent 

  PCT 62-44-2 2000 550 N N Consistent 
a GHC: Genotoxic hepatocarcinogen. 
b OTHER consists of NGHC: nongenotoxic hepatocarcinogens; NGNHC: nongenotoxic nonhepatocarcinogen (carcinogenic to organs other than the liver); NGNC: 
Nongenotoxic and noncarcinogen; GNHC; genotoxic nonhepatocarcinogen (carcinogenic to organs other than the liver). 




