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ABSTRACT 

Background: Selecting the best antidepressant for a patient with major depressive disorder (MDD) 

remains a challenge, and some have turned to genomic (and other ‘omic) data to identify an optimal 

therapy. In this work, we synthesized gene expression data for fluoxetine treatment in both human 

patients and rodent models, to better understand biological pathways affected by treatment, as well as 

those that may distinguish clinical or behavioral response. 

Methods: Following the PRISMA guidelines, we searched the Gene Expression Omnibus (GEO) for studies 

profiling humans or rodent models with treatment of the antidepressant fluoxetine, excluding those not 

done in the context of depression or anxiety, in an irrelevant tissue type, or with fewer than three samples 

per group.  Included studies were systematically reanalyzed by differential expression analysis and Gene 

Set Enrichment Analysis (GSEA). Individual pathway and gene statistics were synthesized across studies 

by three p-value combination methods, and then corrected for false discovery.  

Results: Of the 74 data sets that were screened, 20 were included: 18 in rodents, and two in tissue from 

human patients. Studies were highly heterogeneous in the comparisons of both treated vs. control 

samples and responders vs. non-responders, with 737 and 356 pathways, respectively, identified as 

significantly different between groups in at least one study. However, 19 pathways were identified as 

consistently different in responders vs. non-responders, including toll-like receptor (TLR) and other 

immune pathways. Signal transduction pathways were identified as consistently affected by fluoxetine 

treatment in depressed patients and rodent models. 

Discussion: These meta-analyses confirm known pathways and provide new hints toward antidepressant 

resistance, but more work is needed. Most included studies involved rodent models, and both patient 

studies had small cohorts. Additional large-cohort studies applying additional ‘omics technologies are 

necessary to understand the intricacies and heterogeneity of antidepressant response. 
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INTRODUCTION 

Despite decades of advances in the treatment of depression, approximately half of patients do not 

respond to their first prescribed antidepressant(1,2). Nonresponsive patients may spend years cycling 

through the available therapies before finding one that works; some will remain treatment-resistant, 

which is associated with higher risk of suicide(3). Advancements in precision medicine have led to modest 

improvements in treatment response; for example, one clinical trial demonstrated a 5% improvement in 

response vs. treatment as usual when the antidepressant was prescribed based on a genetic test involving 

59 alleles and variants across eight genes(4–6). Meanwhile, many novel or repurposed drugs are under 

investigation or in trials as alternative or adjunct therapies for depression; while this will provide 

additional options for those suffering from treatment-resistant depression (TRD), selecting from the 

increasing number of approved antidepressants will remain challenging(5). 

Selective serotonin reuptake inhibitors (SSRIs) are currently the most commonly prescribed 

antidepressant class, in large part due to relatively high tolerability and efficacy(7,8).  As the first SSRI to 

win regulatory approval in the United States, and one of the best tolerated, fluoxetine remains one of the 

most prescribed antidepressants, and many research studies have been conducted to understand its 

therapeutic efficacy and mechanism of action(9,10). Use of computational chemistry and “omics” 

methods have increased scientific knowledge in this and many other areas, providing leads for new drugs, 

better insights into their mechanisms of action, and potential signatures of response(5,11,12). However, 

these methods have not been the panaceas that some may have hoped, as heterogeneity between 

patients, interactions between multiple levels of biology, and environmental and other factors can be 

difficult to capture(2). So while progress has been made understanding the mechanism of action of 

antidepressants, exact causes of differences in response between patients remain enigmatic.  
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The use of systematic reviews in mental disorders and other fields has dramatically increased in recent 

years to synthesize the wealth of clinical data being generated(13–16). However, these guidelines have 

been applied less frequently in the use of gene expression data, including one non-PRISMA systematic 

review and meta-analysis of gene expression signatures corresponding to fluoxetine treatment in 

rodents(17–19). These studies generally focus on a specific tissue type in either humans or rodents, and 

translating between organisms remains difficult despite recent advances. Although over 15,000 

annotated human genes have orthologs in mice, their function is not always shared, which has 

pharmacological implications; in cancer for example, fewer than 8% of drugs successfully translate from 

animal models to clinical trials(20–22). Niculescu et al. have employed convergent functional genomics to 

identify consistent genes in independent studies of patients and rodent models for risk prediction in 

depression, schizophrenia, and other psychiatric disorders to find biomarkers of clinical value(23–25). 

Alternatively, meta-analyses considering biological pathways do not find specific biomarkers but allow us 

to focus on the shared biological effects between studies, which may be more consistent across 

organisms(26,27). In this systematic review and meta-analysis, we will apply this approach to summarize 

and potentially identify new biological pathways of antidepressant treatment and response.  

The objectives of this systematic review are to synthesize the evidence for gene expression modification 

by fluoxetine treatment, and whether gene expression levels distinguish clinical or behavioral response 

to treatment, across multiple tissue types in humans and rodent models. In this paper, we use “Response 

Signatures” to refer to gene expression distinguishing those with good vs. poor response to fluoxetine, 

while “Treatment Signatures” signifies differences between fluoxetine treatment vs. control. To our 

knowledge, this is the first systematic meta-analysis of gene expression data to investigate behavioral or 

clinical response to an antidepressant, as well as the first to integrate biological pathways across multiple 

organisms and tissue types. We apply a consistent analysis pipeline across all studies, so that we do not 

rely on varying definitions of statistical significance applied by different researchers. Results of the meta-
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analyses may be applied to improving the prediction and assessment of fluoxetine response shortly after 

treatment, and they may provide hints for combination therapies or new drug development for TRD. 

METHODS 

The Gene Expression Omnibus (GEO) was identified as the main database for this systematic review, due 

to its primary focus on gene expression data and the relative consistency of data deposits and 

formatting(28). PubMed was identified as a contingent database if the GEO search resulted in fewer than 

five studies that passed screening. As one of the most prescribed and studied antidepressants, fluoxetine 

was selected as the focus of this systematic review; we were more inclusive regarding organisms and 

tissue type, allowing us to identify both heterogeneity and potential consistencies. The GEO search was 

conducted on 4 April 2023, using the following keywords: (fluoxetine) OR (selective serotonin reuptake 

inhibitor) OR (ssri).  Results were filtered within GEO using Entry type = Series (to return full data sets 

rather than individual samples), Organism = homo sapiens, mus musculus, or rattus norvegicus, and Study 

type = Expression profiling by array or expression profiling by high throughput sequencing. The resulting 

data series were manually filtered by authors DC and CC based on the exclusion criteria: studies were 

excluded if they were not primarily focused on depression or anxiety, were not conducted in a relevant 

tissue type or genetic background (cancer cell lines, for example), did not involve fluoxetine treatment, or 

if there were fewer than three samples per group. Decisions were made based on review of the GEO series 

abstract and sample metadata. If unclear, any cited publication and supplementary materials were 

consulted for additional information. For synthesis, studies would be grouped based on the comparison: 

good vs. poor response, fluoxetine treatment vs. control, or fluoxetine treatment vs. control (within 

depressed patients and rodent models, and separately within unstressed rodents).  Studies would be 

synthesized both across and within organisms.  
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Data extraction, transformation, synthesis, and assessment were conducted using R version 4.2.3(29). 

Each individual analysis was completed by one author and checked by DC or CC. All analysis code and 

results are available for download (see Code Availability). Gene expression data were downloaded using 

the R library GEOquery, and then checked for completeness(30). Data sets that were not retrieved 

properly using GEOquery were downloaded directly from the GEO website and imported into R for 

analysis. Basic quality control was assessed by visualizing and comparing gene expression distributions, 

principal components analysis, and between-sample correlations. Clear outlier samples were removed 

prior to any subsequent analyses. Gene-level differential expression analysis was conducted using the R 

libraries DESeq2 for RNA sequencing data, or limma for microarray data(31,32). All differential expression 

analyses were conducted as group vs. group, with the main variables being treatment status or response 

(as appropriate). Other variables sought were tissue type, time point, and participant/rodent ID. For each 

comparison, the effect measures used in subsequent steps were the log2 fold change (log2FC), nominal 

p-value, and t-statistic.  When multiple tissue types were present in a study, separate analyses were 

conducted within each tissue.  Risk of bias was assessed by evaluating the provided characteristics of the 

study populations. 

Differential expression results for each comparison were summarized to the pathway level using the fgsea 

R library for Gene Set Enrichment Analysis (GSEA), using the Reactome and KEGG pathway gene sets 

accessed through the Consensus Pathway Database (CPDB)(33–37). The CPDB provides orthologous gene 

sets for human and mouse genomes, allowing for the synthesis of human and rodent models at the 

pathway level (for rat data sets, gene ID’s were converted to mouse ID’s by homology prior to GSEA). A 

ranked list of differential expression t-statistics from each comparison was input to fgsea, and relevant 

effect measures for each pathway were the normalized enrichment score (NES) providing the magnitude 

of gene expression enrichment in one group or the other, and nominal p-value.   
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Results across comparisons were synthesized using MetaDE(38). P-value combination methods were 

selected due to substantial heterogeneity between studies (organism, tissue type, and gene expression 

platform). Within organisms, p-values were synthesized at both the gene and pathway level, while across-

organism syntheses were only conducted at the pathway level. Fisher’s method was used to identify genes 

or pathways that were differentially expressed in any study, while Wilkinson’s method (Max-P) was used 

to identify genes or pathways that were consistently differentially expressed across studies(39–41). The 

resulting meta-analysis p-values were corrected for false discovery using the method of Benjamini and 

Hochberg to result in q-values(42). As an intermediate method, we also selected genes or pathways with 

nominal p<0.05 in greater than half of synthesized comparisons (Frequency of 50%, or Freq50). A 

depiction of these methods is provided in Figure 2A. Synthesis results were displayed using Venn diagrams 

to show how many genes/pathways were identified by each meta-analysis method, and bar graphs 

showing pathways identified by Max-P with q<0.05. 

Heterogeneity among study results was investigated using subgroup analysis within organisms or tissue 

types, as well as heatmaps of pathway NESs across studies. To estimate certainty of the meta-analyses, 

consistency of the direction of enrichment was estimated by simple vote-counting across comparisons: a 

pathway or gene was assigned +1 for each comparison where it was significantly enriched in responders 

with nominal p<0.05, or -1 if enriched in non-responders. These were summed across all comparisons, 

and numbers further from zero indicate greater consistency in results that are statistically significant 

within comparisons. For genes or pathways identified as consistently differentially expressed across 

studies, we generally expect them to agree in the direction of the effect (i.e. overexpressed in responders 

or non-responders). This is not assured, as differing and even opposite effects have been reported in some 

cases(43,44). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


8 
 

Sensitivity analyses were performed to assess the meta-analyses. Of nine response vs. non-response 

comparisons, eight involved mice while the other included human patients, so we looked at 

inclusion/exclusion of the patient data set. We further explored the effect of tissue type by removing the 

single comparison profiling blood in mice, resulting in seven comparisons in brain tissue only. Of the 13 

treated vs. untreated experiments in unstressed mouse models, 12 involved microarray profiling in male 

mice, while the other used RNA-Seq in female mice; we conducted sensitivity analysis to investigate the 

effects of inclusion/exclusion of this last study in meta-analysis. Finally, we compared meta-analysis 

results of treatment signatures when DS19 (containing 27 comparisons from various brain regions) was 

removed.  

RESULTS 

The initial keyword search resulted in 1958 entries, which was filtered to 84 data sets (known in GEO as 

“series”) using automatic filtering for Entry Type, Study Type, and Organism (Figure 1). Most of the 

automatically excluded entries were individual samples, which were not targets for this study and 

generally were included in one of the returned data sets. 10 “SuperSeries” were removed as duplicates, 

as they contained one or more individual series returned by the search. 74 data series were manually 

assessed for the exclusion criteria (Supplementary Table 1), resulting in 20 selected for inclusion(45–60) 

(Table 1, Figure 1).  Of the 20 included data sets, two profiled tissue from patients diagnosed with Major 

Depressive Disorder (MDD): one profiled gene expression in whole blood from adolescent females before 

and after eight weeks of continuous fluoxetine treatment(57), while the other profiled lymphoblastoid 

cell lines (LCLs) developed from 10 patients with known antidepressant response based on change in score 

by Hamilton Depression Rating Scale (HDRS). These LCLs were treated with fluoxetine or control in vitro 

for three weeks(47).  Six of the 10 patients were classified as responders, while the other four were 

classified as non-responders. 
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The remaining 18 studies profiled gene expression with fluoxetine treatment in rodent models (11 in mice, 

seven in rats). Stress models were applied in nine of these studies to achieve anxious and/or depressive 

behavior: five employed chronic mild stress(48,53,60–62), while the others used either chronic restraint 

stress(54), single housing(49), injection with corticosterone(46), or selective breeding for high anxiety(55). 

Five studies included a classification of response in the treated animals, which was assessed using a 

behavioral method such as the open-field test (OFT) for measurement of anxiety(45) or the forced swim 

test (FST) for despair(46). One study did not induce stress but did measure behavioral response: anxiety 

was measured by OFT after three weeks of fluoxetine or vehicle treatment, and response was defined 

based on the ratio of scores between the fluoxetine and vehicle groups(45). One mouse study profiled 

whole blood, but the majority collected samples from one or more brain regions for gene expression 

profiling: the most common was hippocampal tissue (particularly dentate gyrus, included in five 

studies(46,48,53,56,59)). One profiled fluoxetine effects across 27 brain regions in rats, identifying region-

specific differential expression signatures in both bulk and single-cell RNA-Seq data (we did not include 

single-cell data in this work) (Supplementary Table 2)(59).   

As is common with rodent models, males were utilized in 17 of the 18 studies, demonstrating a substantial 

risk of bias. One study profiled gene expression with fluoxetine and imipramine treatment in female mice, 

which had been shown to exhibit behavioral despair by FST and tail suspension test (TST) after reduction 

in Brd1 expression (this was not observed in male mice with reduced Brd1 expression)(58). Conversely, 

the two human studies were biased toward female inclusion, with one including adolescent females 

only(57), and the other including eight females and two males in the microarray analysis(47). For the six 

data sets synthesized for Response Signatures, all five mouse data sets included males, while the patient 

cohort was biased toward females. 
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Response Signatures 

Meta-analysis by Fisher’s method, the Max-P method, and the Freq50 method (Figure 2A) were applied 

on nine comparisons from six data series to synthesize gene expression signatures associated with clinical 

or behavioral response to fluoxetine (Figure 2B). Systematic re-analysis of individual comparisons resulted 

in widely varying numbers of differentially expressed genes and pathways after false discovery correction 

for multiple testing (Figure 2C). DS6a had the greatest number of significant genes at 85, while four 

comparisons showed no statistically significant differential expression among genes with q<0.05. 

Conversely, statistically significant pathway enrichment was observed for all studies except DS4. Nominal 

p-values were synthesized across all comparisons for each Reactome and KEGG pathway and then 

corrected for false discovery to result in q-values. After false discovery correction, meta-analysis identified 

356 pathways (over 30% of the pathways analyzed) enriched in at least one comparison (q<0.05 by Fisher’s 

method), 19 pathways enriched across comparisons (Max-P), and 28 pathways enriched in at least five 

comparisons (Freq50) (Figure 2D). Pathways involving metabolism of proteins or RNA, transcription, or 

the immune system were most likely to be enriched (Figure 2E). 

We then considered direction of enrichment through vote-counting across comparisons: a pathway was 

assigned +1 if significantly enriched in responders, or -1 if enriched in non-responders. The distribution of 

vote sums for all pathways is provided in Figure 2F. Pathways that were not identified as enriched by 

either meta-analysis method had distributions centered around zero, with 92% of pathways ranging from 

-1 to +1, indicating the expected low agreement. Those identified as significant by meta-analysis had a 

wider range, indicating more consistent enrichment in responders or non-responders. However, the 

greatest vote sum magnitude was -5 (of a possible 9 if all comparisons were significant in the same 

direction), indicating moderate certainty of results.  
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The Normalized Enrichment Scores (NES) by GSEA for pathways enriched by Fisher’s method are 

presented in Figure 2G. Strong heterogeneity is observed across comparisons, but some patterns can be 

detected: the two studies profiling expression in mouse blood or human lymphoid-derived cells cluster 

together, while the seven from brain tissue comprise the other cluster. A group of immune pathways show 

strong enrichment in resistant blood samples, but weak, opposite enrichment across brain samples from 

responding mice. Other clusters of pathways show heterogeneous patterns within the set of comparisons 

profiling brain tissue, and none are enriched in the same direction across all comparisons, as evidenced 

by the distribution of vote sums.  

Next, we focused on pathways that were identified as consistently enriched across comparisons with the 

Max-P method. Meta-analysis statistics for pathways with q<0.05 are presented in Figure 3A, and a 

network diagram showing similarity between these gene sets is presented in Figure 3B (a heatmap 

showing overlap between gene sets is provided in Supplementary Figure 1). Signal Transduction (a top-

level Reactome pathway consisting of over 2000 genes) was the most consistently enriched pathway with 

q<0.001 by Max-P and a vote sum of +3, indicating somewhat consistent enrichment in good responders. 

10 immune pathways were identified as consistently enriched, including five toll-like receptor (TLR) 

pathways and two MyD88 cascade pathways; these seven pathways are highly overlapping, sharing over 

95% of genes. Additionally, the NF-kappa B signaling pathway, C-type lectin receptors (CLRs), Downstream 

signaling of B Cell Receptor (BCR), and the top-level Immune System pathway were identified by meta-

analysis. These were slightly enriched in good responders by total vote, except for the CLRs pathway with 

a vote sum of -1 (significantly enriched in non-responders in patient-derived LCL’s).  

Pathways related to metabolism of proteins or RNA were most consistently enriched in poor responders, 

including the substantially overlapping pathways related to 40S and 60S ribosomal subunits (both with 

vote sums of -3), L13a-mediated translational silencing of Ceruloplasmin expression (-3), and Nonsense 

Mediated Decay independent of the Exon Junction Complex (-4). These were enriched in non-responders 
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in both comparisons involving blood-derived tissue, as well as some comparisons in brain tissue. 

Additionally, Extension of Telomeres (q=0.02, with negligible overlap with the other enriched pathways 

shown in Figure 3B) was enriched by Max-P with a vote sum of -1. 

Meta-analysis was conducted for differential expression at both the gene and pathway level for the eight 

comparisons within mice. More pathways were identified as consistently differentially expressed by Max-

P (27 with only mouse studies vs. 19 including the patient cohort), although many of the uniquely 

identified pathways also involved TLR cascades (Supplementary Figure 2).  Individual gene meta-analysis 

proved less consistent, with only 40 genes identified as differentially expressed in any comparison by 

Fisher’s method, four differentially expressed in over half of the comparisons, and none identified as 

consistent by the Max-P method (Figure 3C).  A meta-volcano plot of these results is presented in Figure 

3D. Fosl2 is both highly enriched by Fisher’s method (q<0.001) and consistently overexpressed in good 

responders (vote sum of +5). Notch4 (+4), Golm1 (-4), and Adamts (-4) are the other genes that are most 

consistently differentially expressed across comparisons in mice. 

We conducted two sensitivity analyses successively removing individual comparisons from the meta-

analysis. The previously presented meta-analysis across mouse studies demonstrated the effects of 

removing the single patient data set; we then conducted a second analysis synthesizing the seven mouse 

comparisons in brain tissues only. Overlap between pathways identified by Fisher’s and Max-P methods 

can be seen in Supplementary Figure 2. As individual data sets were removed, pathways identified by 

Fisher’s method decreased, as this method identifies whether a pathway is enriched in any of the studies. 

By Max-P, only two pathways were identified in the full set but not in the subsets, while ten additional 

pathways were identified when the patient comparison was removed (as previously discussed). Meta-

analysis of the seven brain comparisons did not identify any additional pathways by Max-P: thus, we can 

conclude that the Max-P meta-analysis of responders vs. non-responders was only slightly sensitive to the 

inclusion of gene expression profiling in blood samples, as all pathways identified as consistently enriched 
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in responders or non-responders in brain were also enriched in blood (although not necessarily in the 

same direction). 

Finally, we compared results from two studies that profiled gene expression in responders and non-

responders that had not previously received fluoxetine to identify potential predictive signatures: one in 

patient-derived LCL’s and the other in mouse cortex samples (mouse response was inferred based on 

overall response measured for multiple mice from each strain)(45).  13 pathways were identified as 

enriched by GSEA with q<0.05 in both comparisons, and all were enriched in good responders (Figure 3E). 

These included pathways related to metabolism and mitochondrial translation, in addition to gene 

signatures of Alzheimer’s disease and Parkinson’s disease. 

Treatment Signatures 

The same meta-analyses were applied on 55 comparisons of treated vs. control samples from 20 data sets, 

to synthesize gene expression changes due to treatment (Figure 4A). First, each data set was 

systematically reanalyzed, again providing widely varying results (Figure 4B): after false discovery 

correction, the number of differentially expressed genes ranged from zero (in 19 comparisons) to 8663, 

and the number of significantly enriched pathways ranged from zero (in 7 comparisons) to 971.  Fisher’s 

meta-analysis identified 737 pathways as enriched in at least one comparison; of these, 31 were enriched 

with nominal p<0.05 in more than half of the comparisons, and 10 were identified as consistently enriched 

by the Max-P method (Figure 4C).  

The pathways identified as enriched in any of the 55 comparisons (65% of all pathways analyzed) are 

represented by all pathway categories, but most frequently components of Neuronal System or the KEGG 

database (Figure 4D). Heterogeneous enrichment patterns are again observed across studies (Figure 4E). 

Tissue type again played a role, as three of the four comparisons from blood clustered tightly together, 
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and most comparisons from hippocampus and cortex clustered together. Comparisons from the same 

study frequently clustered together as well, evidenced by the data set ID’s. 

Overall, pathways identified only by Fisher’s method have a wider distribution of vote sums (but still highly 

concentrated between +6 and -6, of a possible 55 for perfect agreement) than those that are not 

significantly enriched, while those identified by Max-P are skewed toward the left indicating 

downregulation by treatment (Figure 4F). The 10 pathways enriched by Max-P (Figure 4G) mainly come 

from the Signal Transduction category of Reactome or the KEGG Database. GABAergic synapse is most 

consistently decreased by treatment with a vote sum of -24 (q=0.006). G alpha (i) signaling events are 

identified as most enriched by q-value and somewhat consistently decreased by treatment (q=0.001, -11). 

There was not substantial overlap between genes within enriched pathways (Figure 4H and 

Supplementary Figure 3).  

Subset meta-analysis was conducted for 13 comparisons from 10 data sets profiling fluoxetine treatment 

of stressed mice, rats, or human MDD patients. 731 pathways were identified as enriched in at least one 

comparison, and 101 were identified as consistently enriched by Max-P (Figure 5A). Greater enrichment 

is observed in immune pathways in this subset analysis as compared with the full analysis (Figure 5B). 

Generally low agreement between studies is observed, with vote sums ranging from -2 to +2 for 98.7% of 

pathways not identified as enriched by meta-analysis (Figure 5C).  21% of pathways identified by both 

Fisher’s and the Max-P method had vote sums outside this range. 

Of the pathways identified by Max-P, we highlighted those with absolute vote sums of 3 or greater in 

Figure 5D, with gene set similarity presented in Figure 5E (all 101 pathways are presented in 

Supplementary Figure 4). Most significantly enriched are two NTRK signaling pathways, both with q<0.001 

and vote sums of +4 and +6 respectively (of 13 possible), indicating moderate certainty. Other signal 

transduction pathways show a decrease with treatment, including Intracellular signaling by second 
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messengers (q<0.001, vote sum of -3) and PIP3 activates AKT signaling (q=0.001, -5).  The top-level 

Neuronal System gene set is significantly upregulated with treatment (q=0.005, +6); conversely, the 

component Long-term Potentiation pathway is downregulated (q=0.003, -4). A network graph showing 

overlap between all pathways identified by Max-P indicates groups of connected pathways from the KEGG 

Database and Reactome Signal Transduction, in addition to smaller groups of other pathways (Figure 5E).  

A summary of all within-species meta-analysis results (bottom level of Figure 4A) is presented in 

Supplementary Figure 5. Profiling treatment effects in stressed mice identified the greatest number of 

differentially expressed genes, with 11,541 identified by Fisher’s method and 1729 identified as 

consistently differentially expressed by Max-P (Figure 5F).  Genes identified by both Fisher’s method and 

Max-P had a wider distribution of vote sums, with 39.8% with absolute value of 3 or greater (Figure 5G). 

Seven genes were significantly affected by treatment in the same direction across all seven comparisons: 

Bdnf, Zfp703, Raogap1, Rcan1, Dock10, St8sia4, and Lrrn3 (Figure 5H). Of these, Brain-derived 

neurotrophic factor (Bdnf) was identified as most significantly affected by Max-P (q<<0.001). 

Overall, low agreement is observed between the meta-analysis of stressed rodents or MDD patients and 

the meta-analysis of unstressed rodents. No pathways overlap by Max-P, although 425 pathways 

overlapped by Fisher’s method (Supplementary Figure 6). We conducted a sensitivity analysis removing 

DS19 (profiling across 27 brain regions), as this was over half of the comparisons included in the synthesis, 

some of which were reported as minimally affected by fluoxetine(59). We expected our Max-P results to 

be sensitive to comparisons in less-affected brain regions--conversely, we saw that fewer pathways were 

consistently enriched upon removal of this study (Supplementary Figure 7). Considering the gene level, 

149 genes were consistently differentially expressed in the original meta-analysis, vs. none when DS19 

was removed. Thus, we can conclude that meta-analysis of treatment effects was sensitive to DS19. As 

seen in Figure 4E, comparisons across the 27 tissue types in DS19 showed largely consistent patterns, 

likely contributing to the observed result. 
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Finally, we conducted separate analyses and meta-analyses within responder and non-responder groups 

across studies that provided response information, to identify gene expression changes that may indicate 

response to treatment. The Max-P method identified 22 pathways that were consistently changed across 

both groups, 86 pathways that were specific to responders, and 29 that were specific to non-responders 

(Figure 6A). Of the pathways that consistently changed with treatment in responders, we focused on the 

17 that were consistently unchanged in non-responders (Figure 6B, q>0.05 in non-responders by Max-P 

and Fisher’s method). This included eight pathways from the KEGG database, five signal transduction 

pathways, two immune pathways, and two others. However, vote sums ranged from -3 to +3, indicating 

weak certainty of evidence. Conversely, only the estrogen signaling pathway was consistently changed in 

non-responders but consistently unchanged in responders based on the same criteria. 

DISCUSSION 

Across nine independent comparisons of fluoxetine responders vs. non-responders from six gene 

expression data sets, 19 pathways were identified as consistently enriched by the Max-P meta-analysis 

method. This was surprising, as these studies profiled different tissue types and employed varying stress 

models in mice--in addition to one which did not induce stress, and another using samples from MDD 

patients. This also demonstrated the ability of pathway methods vs. individual gene meta-analysis in 

identifying consistency: among the eight comparisons in mice, zero genes were identified with consistent 

differences between responders and non-responders by Max-P, and only four were identified as 

differentially expressed in greater than half of comparisons. Less surprisingly, over three hundred 

pathways were identified as enriched in at least one comparison by Fisher’s method, demonstrating the 

expected heterogeneity in behavioral response markers between studies. Some of this heterogeneity can 

be explained by tissue type, as comparisons from similar tissues clustered nearest each other (Figure 2G). 

Thus, we also conducted separate meta-analysis excluding studies profiling expression in blood, but we 
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saw only a slight effect on the meta-analysis result by Max-P, indicating that pathways enriched in brain 

tissue were generally enriched in blood as well, but sometimes in the opposite direction. 

Immune pathways were well represented among the 19 pathways that were consistently different 

between responders and non-responders across organisms and tissue types. Many studies have 

implicated immune and inflammatory processes in the development of depression and antidepressant 

response(63–70). For example, Wittenberg et al. demonstrated that anti-IL-6 and anti-IL-12/23 antibodies 

improve depressive symptoms in patients with inflammatory or oncological disorders(71). Of the immune 

pathways identified, TLR-related pathways were the most enriched in our meta-analysis. TLRs are present 

in microglia and other glial cells, and their activation leads to the release of cytokines and other 

inflammatory responses. Rodents exposed to stress or glucocorticoid administration have been shown to 

exhibit increased levels of TLR2 and TLR4, while blockade of TLR2 and TLR4 has been shown to prevent 

neuroinflammatory response(70,72–75). Additionally, one study included in our meta-analysis reported 

the involvement of inflammation via the TLR pathway in depression pathogenesis and investigated the 

use of acupuncture in relieving this inflammation(54). The consistent enrichment of the NF-κB signaling 

pathway upon meta-analysis is connected to this pattern, as activity of this pathway has been shown in 

rodents to mediate depressive-like behavior and increase release of pro-inflammatory cytokines in the 

microglia(76). 

However, the direction of immune enrichment across the meta-analyzed studies was not consistent: while 

immune pathways were strongly upregulated in resistant samples in the two studies profiling gene 

expression in blood (including one study in human patients), these pathways were weakly upregulated in 

responding mice in studies profiling brain tissues. A recent systematic review has noted that inflammatory 

markers are only weakly correlated between peripheral and cerebrospinal fluid(77). Carillo-Roa et al. 

identified 85 differentially expressed genes (q<0.05) in the blood of responders vs. non-responders in mice 

treated with paroxetine, but similar differential expression was not observed in mouse prefrontal cortex; 
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importantly, they demonstrated that these 85 genes could correctly predict response with 81% accuracy 

in humans treated with duloxetine or escitalopram, demonstrating that transcripts found in blood may be 

an accessible, objective diagnostic marker even if expression patterns are not shared in brain(78). 

Additionally, Le-Niculescu et al. have identified biomarkers for mood disorders that are present in both 

brain and blood, providing additional evidence for the value of these markers(23). 

Protein and RNA metabolism pathways were among the most consistently enriched in samples resistant 

to fluoxetine treatment across organisms and tissue types. Specifically, two pathways involving the 40S 

and 60S ribosomal subunits were enriched; a few studies have previously identified ribosomal proteins 

and pathways as implicated in response to antidepressants(79,80). Additionally, Zhou et al. have reported 

evidence that ribosomes regulate gene expression involved in immune response(81). 

Tissue heterogeneity again played a role when considering gene expression changes due to fluoxetine 

treatment, with blood-derived tissues showing distinct overall effects from those in the brain (Figure 4E). 

However, considering the 55 widely varying comparisons of fluoxetine treatment vs. control, ten 

pathways were identified as consistently differentially expressed with the Max-P method (Figure 4G). Of 

these, the GABAergic synapse was most downregulated by fluoxetine. GABAergic neurons have been 

implicated in depression and antidepressant response, and positive modulators of the GABAA receptor 

have been approved by the FDA for postpartum depression(82–85). Additionally, we identified BDNF as 

most consistently upregulated with treatment in stressed mice (q<<0.001 by Max-P, upregulated with 

p<0.05 in all seven studies); Tanaka et al. observed that BDNF inhibits the GABAA
 synaptic response in rat 

hippocampus(86). Evidence from rodent studies has also suggested bidirectional connections between 

BDNF expression and inflammation, as inflammation via lipopolysaccharide treatment was shown to 

increase BDNF secretion in the microglia, while application of BDNF in spinal cord injury has been shown 

to decrease microglial density(87–89). Other studies have demonstrated similar connections, indicating 
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that elevation of BDNF by fluoxetine may participate in amelioration of depression symptoms by both 

GABAergic and anti-inflammatory effects(90–92). 

When considering only stressed models, many more pathways (101) were identified as consistently 

affected by fluoxetine treatment (Figure 5A). Further separation into treatment effects of responders and 

non-responders demonstrated a greater number of pathways consistently affected by treatment in 

responders than non-responders (Figure 6A). Effects were again observed in signal transduction and 

immune pathways, while pathways related to cancer and addiction were also identified. Antidepressants 

have recently been demonstrated to inhibit liver and lung cancer through the mTOR pathway, although 

other evidence has indicated associations between antidepressant use and increased cancer 

incidence(93–95). 

While the PRISMA guidelines are more commonly applied for systematic review of clinical studies, we felt 

that they provided a strong framework for this work. Systematic identification and re-analysis of each data 

set allowed us to calculate consistent metrics for differential expression, rather than relying on lists of 

statistics provided by individual study authors. We used broad inclusion criteria for organism and tissue 

to determine whether consistent changes were observable across heterogeneous studies; the use of 

Fisher’s meta-analysis method, subgroup analyses, and sensitivity analyses then let us explore the 

expected heterogeneity. Reporting bias is challenging to assess in gene expression analysis, where 

thousands of statistics are generated for each study. Yousefi et al. have assessed risk of reporting bias 

when classification algorithms are applied to gene expression data(96), but we are not aware of methods 

to detect reporting bias of the gene expression data itself; this will be a valuable tool as systematic reviews 

of gene expression studies become more prevalent.  

This study did include multiple limitations that should be addressed to better understand antidepressant 

effectiveness. Only two studies provided gene expression data for responders and non-responders prior 
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to treatment, so it is not possible to derive strong inferences for predictive markers of fluoxetine response; 

even large-scale patient studies have struggled to identify general predictive markers to this point(18,97). 

Only two patient cohorts were included in our meta-analyses: while other studies have been conducted 

in patients, they tend to focus on a small number of biomarkers or otherwise do not submit full expression 

data to GEO(18). Most data sets profiled in our meta-analyses contained sample sizes of five or fewer per 

group, although some samples were pooled across multiple rodents. Additionally, this systematic review 

was not prospectively registered, and the reviewers did not work independently (all exclusion decisions 

are documented in Supplementary Table 1).  

The included studies showed substantial bias based on sex, with 17 of 18 rodent studies profiling males, 

while the two patient studies included majority or exclusively female participants. Results of Max-P meta-

analysis provide some evidence for conserved response and treatment signatures, but it is not possible to 

identify sex-dependent biological signatures with these data.  Previous work has shown both consistency 

and divergence between males and females regarding clinical response, molecular signatures, and 

adverse effects from antidepressants, and this remains an important area of study(43,98–101). 

Considering the meta-analysis methods, reliance on the Max-P method means that we are particularly 

sensitive to a single aberrant study resulting in high p-values due to data quality or an unconsidered factor, 

which may not have been apparent during screening. For this reason, all code and results are provided in 

our registered repository for further inspection and analysis, including individual data set analyses, as well 

as other meta-analyses by Fisher’s method (which is more sensitive to studies that may have extremely 

low p-values) and the Freq-50 method (which may be most robust but does not test a specific hypothesis).  

Our meta-analyses have emphasized some known pathways in antidepressant response and unearthed a 

few new routes of potential investigation, but a true understanding of antidepressant response will 

require additional large-cohort studies focusing on transcriptomic data. However, recent studies of 
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antidepressant response in over 100 patients have resulted in few, if any, individual biomarkers of 

response, supporting the consensus that there is not a single genetic signature of response, but a variety 

of contributing ‘omic and environmental factors(18,97). Emerging technologies and approaches have 

begun to allow us to understand genomics and transcriptomics at a deeper level, including single-cell 

profiling, alternative splicing, and epigenetic factors(59,102–104). And as technology improves our ability 

to quantify protein and metabolite levels, it will be valuable to incorporate these data, as this will bring 

us even closer to the true biology underpinning these complex disorders. 

Acknowledgements 

The authors gratefully acknowledge John Nurnberger Jr., M.D., Ph.D. (Indiana University School of 

Medicine); C. Andrew Class, M.D. (Ascension St. Vincent); and Marcos Oliveira, Ph.D. (Butler University) 

for helpful suggestions and conversations. This work was supported by the American Association of 

Colleges of Pharmacy (AACP New Investigator Award to CAC), the Butler University Holcomb Awards 

Committee, and departmental funds. Funders were not directly involved in the execution of this project. 

Competing Interests 

The authors declare no conflict of interest. 

Code Availability 

All analyses completed in this work are included at https://github.com/DavidGCooper/FLX-MetaDE with 

DOI 10.5281/zenodo.10668845(105). 

REFERENCES 
1. Rush AJ. STAR*D: What Have We Learned? AJP. 2007 Feb;164(2):201–4.  

2. Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, et al. Treatment resistant depression: A 
multi-scale, systems biology approach. Neuroscience & Biobehavioral Reviews. 2018 Jan 1;84:272–
88.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://github.com/DavidGCooper/FLX-MetaDE
https://zenodo.org/doi/10.5281/zenodo.10668845
https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


22 
 

3. Bergfeld IO, Mantione M, Figee M, Schuurman PR, Lok A, Denys D. Treatment-resistant depression 
and suicidality. Journal of Affective Disorders. 2018 Aug 1;235:362–7.  

4. Greden JF, Parikh SV, Rothschild AJ, Thase ME, Dunlop BW, DeBattista C, et al. Impact of 
pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: A large, 
patient- and rater-blinded, randomized, controlled study. Journal of Psychiatric Research. 2019 Apr 
1;111:59–67.  

5. Borbély É, Simon M, Fuchs E, Wiborg O, Czéh B, Helyes Z. Novel drug developmental strategies for 
treatment-resistant depression. British Journal of Pharmacology. 2022;179(6):1146–86.  

6. Farah WH, Alsawas M, Mainou M, Alahdab F, Farah MH, Ahmed AT, et al. Non-pharmacological 
treatment of depression: a systematic review and evidence map. BMJ Evidence-Based Medicine. 2016 
Dec 1;21(6):214–21.  

7. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy 
and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive 
disorder: a systematic review and network meta-analysis. The Lancet. 2018 Apr 7;391(10128):1357–
66.  

8. Liu Z, Zhang Y, Franzin L, Cormier JN, Chan W, Xu H, et al. Trends and variations in breast and 
colorectal cancer incidence from 1995 to 2011: A comparative study between Texas Cancer Registry 
and National Cancer Institute’s Surveillance, Epidemiology and End Results data. International Journal 
of Oncology. 2015 Apr;46(4):1819–26.  

9. Kryst J, Majcher-Maślanka I, Chocyk A. Effects of chronic fluoxetine treatment on anxiety- and 
depressive-like behaviors in adolescent rodents - systematic review and meta-analysis. Pharmacol Rep. 
2022 Oct;74(5):920–46.  

10. Benfield P, Heel RC, Lewis SP. Fluoxetine. Drugs. 1986 Dec 1;32(6):481–508.  

11. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act 
by directly binding to TRKB neurotrophin receptors. Cell. 2021 Mar 4;184(5):1299-1313.e19.  

12. Mariani N, Cattane N, Pariante C, Cattaneo A. Gene expression studies in Depression development 
and treatment: an overview of the underlying molecular mechanisms and biological processes to 
identify biomarkers. Transl Psychiatry. 2021 Jun 8;11(1):1–23.  

13. Hoffmann F, Allers K, Rombey T, Helbach J, Hoffmann A, Mathes T, et al. Nearly 80 systematic 
reviews were published each day: Observational study on trends in epidemiology and reporting over 
the years 2000-2019. Journal of Clinical Epidemiology. 2021 Oct 1;138:1–11.  

14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 
statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71.  

15. Noetel M, Sanders T, Gallardo-Gómez D, Taylor P, Cruz B del P, Hoek D van den, et al. Effect of 
exercise for depression: systematic review and network meta-analysis of randomised controlled trials. 
BMJ. 2024 Feb 14;384:e075847.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


23 
 

16. Meehan AJ, Lewis SJ, Fazel S, Fusar-Poli P, Steyerberg EW, Stahl D, et al. Clinical prediction models 
in psychiatry: a systematic review of two decades of progress and challenges. Mol Psychiatry. 2022 
Jun;27(6):2700–8.  

17. Kontou P, Pavlopoulou A, Braliou G, Bogiatzi S, Dimou N, Bangalore S, et al. Identification of gene 
expression profiles in myocardial infarction: a systematic review and meta-analysis. BMC Medical 
Genomics. 2018 Nov 27;11(1):109.  

18. Pisanu C, Severino G, De Toma I, Dierssen M, Fusar-Poli P, Gennarelli M, et al. Transcriptional 
biomarkers of response to pharmacological treatments in severe mental disorders: A systematic review. 
European Neuropsychopharmacology. 2022 Feb 1;55:112–57.  

19. Ibrahim EC, Gorgievski V, Ortiz-Teba P, Belzeaux R, Turecki G, Sibille E, et al. Transcriptomic 
Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. 
International Journal of Molecular Sciences. 2022 Jan;23(21):13543.  

20. Breschi A, Gingeras TR, Guigó R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 
2017 Jul;18(7):425–40.  

21. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. 
Am J Transl Res. 2014 Jan 15;6(2):114–8.  

22. Gharib WH, Robinson-Rechavi M. When orthologs diverge between human and mouse. Briefings in 
Bioinformatics. 2011 Sep;12(5):436.  

23. Le-Niculescu H, Roseberry K, Gill SS, Levey DF, Phalen PL, Mullen J, et al. Precision medicine for 
mood disorders: objective assessment, risk prediction, pharmacogenomics, and repurposed drugs. Mol 
Psychiatry. 2021 Jul;26(7):2776–804.  

24. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional 
genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol 
Psychiatry. 2012 Sep;17(9):887–905.  

25. Niculescu AB, Le-Niculescu H, Levey DF, Phalen PL, Dainton HL, Roseberry K, et al. Precision 
medicine for suicidality: from universality to subtypes and personalization. Mol Psychiatry. 2017 
Sep;22(9):1250–73.  

26. Shen K, Tseng GC. Meta-analysis for pathway enrichment analysis when combining multiple genomic 
studies. Bioinformatics. 2010 May 15;26(10):1316–23.  

27. Manoli T, Gretz N, Gröne HJ, Kenzelmann M, Eils R, Brors B. Group testing for pathway analysis 
improves comparability of different microarray datasets. Bioinformatics. 2006 Oct 15;22(20):2500–6.  

28. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive 
for functional genomics data sets—update. Nucleic Acids Research. 2013 Jan 1;41(D1):D991–5.  

29. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: 
R Foundation for Statistical Computing; 2023. Available from: https://www.R-project.org/ 

30. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and 
BioConductor. Bioinformatics. 2007 Jul 15;23(14):1846–7.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


24 
 

31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 
with DESeq2. Genome Biology [Internet]. 2014 [cited 2016 Feb 19];15(12). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/ 

32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47.  

33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 
enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. 
Proceedings of the National Academy of Sciences. 2005 Oct;102(43):15545–50.  

34. Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative 
statistic calculation. bioRxiv [Internet]. 2016; Available from: 
http://biorxiv.org/content/early/2016/06/20/060012 

35. Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network 
level with ConsensusPathDB. Nat Protoc. 2016 Oct;11(10):1889–907.  

36. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway 
Knowledgebase. Nucleic Acids Research. 2018 Jan;46(Database issue):D649–55.  

37. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, 
pathways, diseases and drugs. Nucleic Acids Research. 2017 Jan;45(D1):D353–61.  

38. Wang X, Kang DD, Shen K, Song C, Lu S, Chang LC, et al. An R package suite for microarray meta-
analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. 
Bioinformatics. 2012 Oct 1;28(19):2534–6.  

39. Toro-Domínguez D, Villatoro-García JA, Martorell-Marugán J, Román-Montoya Y, Alarcón-
Riquelme ME, Carmona-Sáez P. A survey of gene expression meta-analysis: methods and applications. 
Briefings in Bioinformatics. 2021 Mar 1;22(2):1694–705.  

40. Wilkinson B. A statistical consideration in psychological research. Psychological Bulletin. 
1951;48(2):156–8.  

41. Mosteller F, Fisher RA. Questions and answers. American Statistical Association bulletin. 1948;2:30–
1.  

42. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach 
to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 
1995;57(1):289–300.  

43. Seney ML, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. Opposite Molecular Signatures of 
Depression in Men and Women. Biological Psychiatry. 2018 Jul 1;84(1):18–27.  

44. Bylund DB, Reed AL. Childhood and adolescent depression: why do children and adults respond 
differently to antidepressant drugs? Neurochem Int. 2007 Oct;51(5):246–53.  

45. Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, et al. Evaluating genetic 
markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. 
Psychopharmacology. 2012 May 1;221(2):297–315.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


25 
 

46. Samuels BA, Leonardo ED, Dranovsky A, Williams A, Wong E, Nesbitt AMI, et al. Global state 
measures of the dentate gyrus gene expression system predict antidepressant-sensitive behaviors. PLoS 
One. 2014;9(1):e85136.  

47. Breitfeld J, Scholl C, Steffens M, Brandenburg K, Probst-Schendzielorz K, Efimkina O, et al. 
Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with 
depression characterized in response to antidepressant drug therapy. Transl Psychiatry. 2016 Nov 
15;6(11):e950.  

48. Hervé M, Bergon A, Le Guisquet AM, Leman S, Consoloni JL, Fernandez-Nunez N, et al. 
Translational Identification of Transcriptional Signatures of Major Depression and Antidepressant 
Response. Front Mol Neurosci. 2017 Aug 8;10:248.  

49. Sargin D, Chottekalapanda RU, Perit KE, Yao V, Chu D, Sparks DW, et al. Mapping the physiological 
and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. 
Mol Psychiatry. 2020 May;25(5):1112–29.  

50. Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N. Identification of 
the Cortical Neurons that Mediate Antidepressant Responses. Cell. 2012 May 25;149(5):1152–63.  

51. Sarkar A, Chachra P, Kennedy P, Pena CJ, Desouza LA, Nestler EJ, et al. Hippocampal HDAC4 
Contributes to Postnatal Fluoxetine-Evoked Depression-Like Behavior. Neuropsychopharmacol. 2014 
Aug;39(9):2221–32.  

52. Korostynski M, Piechota M, Dzbek J, Mlynarski W, Szklarczyk K, Ziolkowska B, et al. Novel drug-
regulated transcriptional networks in brain reveal pharmacological properties of psychotropic drugs. 
BMC Genomics. 2013 Sep 8;14(1):606.  

53. Patrício P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, et al. Differential 
and Converging Molecular Mechanisms of Antidepressants’ Action in the Hippocampal Dentate 
Gyrus. Neuropsychopharmacol. 2015 Jan;40(2):338–49.  

54. Wang Y, Jiang H, Meng H, Lu J, Li J, Zhang X, et al. Genome-wide transcriptome analysis of 
hippocampus in rats indicated that TLR/NLR signaling pathway was involved in the pathogenisis of 
depressive disorder induced by chronic restraint stress. Brain Res Bull. 2017 Sep;134:195–204.  

55. Malik VA, Zajicek F, Mittmann LA, Klaus J, Unterseer S, Rajkumar S, et al. GDF15 promotes 
simultaneous astrocyte remodeling and tight junction strengthening at the blood-brain barrier. J 
Neurosci Res. 2020 Jul;98(7):1433–56.  

56. Hagihara H, Ohira K, Miyakawa T. Transcriptomic evidence for immaturity induced by antidepressant 
fluoxetine in the hippocampus and prefrontal cortex. Neuropsychopharmacology Reports. 
2019;39(2):78–89.  

57. Torres T, Boloc D, Rodríguez N, Blázquez A, Plana MT, Varela E, et al. Response to fluoxetine in 
children and adolescents: a weighted gene co-expression network analysis of peripheral blood. Am J 
Transl Res. 2020 May 15;12(5):2028–40.  

58. Rajkumar AP, Qvist P, Donskov JG, Lazarus R, Pallesen J, Nava N, et al. Reduced Brd1 expression 
leads to reversible depression-like behaviors and gene-expression changes in female mice. Transl 
Psychiatry. 2020 Jul 17;10(1):1–14.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


26 
 

59. Rayan NA, Kumar V, Aow J, Rastegar N, Lim MGL, O’Toole N, et al. Integrative multi-omics 
landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism 
and region-specific chromatin remodelling. Mol Psychiatry. 2022 Nov;27(11):4510–25.  

60. Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, et al. Evolutionarily 
conserved gene expression patterns for affective disorders revealed using cross-species brain 
transcriptomic analyses in humans, rats and zebrafish. Sci Rep. 2022 Dec 2;12:20836.  

61. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. 
Neurobiol Stress. 2016 Aug 24;6:78–93.  

62. Wang QS, Yan K, Li KD, Gao LN, Wang X, Liu H, et al. Targeting hippocampal phospholipid and 
tryptophan metabolism for antidepressant-like effects of albiflorin. Phytomedicine. 2021 Nov 
1;92:153735.  

63. Beurel E, Toups M, Nemeroff CB. The Bidirectional Relationship of Depression and Inflammation: 
Double Trouble. Neuron. 2020 Jul 22;107(2):234–56.  

64. Maes M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol. 
1999;461:25–46.  

65. Miller AH, Maletic V, Raison CL. Inflammation and Its Discontents: The Role of Cytokines in the 
Pathophysiology of Major Depression. Biol Psychiatry. 2009 May 1;65(9):732–41.  

66. Mamdani F, Berlim MT, Beaulieu MM, Labbe A, Merette C, Turecki G. Gene expression biomarkers 
of response to citalopram treatment in major depressive disorder. Transl Psychiatry. 2011 Jun;1(6):e13.  

67. Guilloux JP, Bassi S, Ding Y, Walsh C, Turecki G, Tseng G, et al. Testing the Predictive Value of 
Peripheral Gene Expression for Nonremission Following Citalopram Treatment for Major Depression. 
Neuropsychopharmacology. 2015 Feb;40(3):701–10.  

68. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A Randomized 
Controlled Trial of the Tumor Necrosis Factor-alpha Antagonist Infliximab in Treatment Resistant 
Depression: Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry. 2013 Jan;70(1):31–41.  

69. Fuh SC, Fiori LM, Turecki G, Nagy C, Li Y. Multi-omic modeling of antidepressant response 
implicates dynamic immune and inflammatory changes in individuals who respond to treatment. PLoS 
One. 2023 May 15;18(5):e0285123.  

70. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology 
of depression. Nat Rev Neurosci. 2016 Aug;17(8):497–511.  

71. Wittenberg GM, Stylianou A, Zhang Y, Sun Y, Gupta A, Jagannatha PS, et al. Effects of 
immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-
controlled clinical trials in inflammatory disorders. Mol Psychiatry. 2020;25(6):1275–85.  

72. Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP. Peripheral innate immune 
challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, 
and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology. 2012 Sep 
1;37(9):1491–505.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


27 
 

73. Frank MG, Thompson BM, Watkins LR, Maier SF. Glucocorticoids mediate stress-induced priming of 
microglial pro-inflammatory responses. Brain, Behavior, and Immunity. 2012 Feb 1;26(2):337–45.  

74. Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the 
neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, 
Behavior, and Immunity. 2010 Jan 1;24(1):19–30.  

75. Weber MD, Frank MG, Sobesky JL, Watkins LR, Maier SF. Blocking Toll-like receptor 2 and 4 
signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a 
subsequent immune challenge. Brain Behav Immun. 2013 Aug;32:10.1016/j.bbi.2013.03.004.  

76. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. Nuclear factor-κB is a critical mediator of 
stress-impaired neurogenesis and depressive behavior. Proceedings of the National Academy of 
Sciences. 2010 Feb 9;107(6):2669–74.  

77. Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, et al. The association between 
inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol 
Psychiatry. 2023 Apr;28(4):1502–15.  

78. Carrillo-Roa T, Labermaier C, Weber P, Herzog DP, Lareau C, Santarelli S, et al. Common genes 
associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor 
sensitivity. PLOS Biology. 2017 Dec 28;15(12):e2002690.  

79. Powell TR, Murphy T, de Jong S, Lee SH, Tansey KE, Hodgson K, et al. The genome-wide expression 
effects of escitalopram and its relationship to neurogenesis, hippocampal volume, and antidepressant 
response. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2017;174(4):427–
34.  

80. Marchetti L, Lauria M, Caberlotto L, Musazzi L, Popoli M, Mathé AA, et al. Gene expression signature 
of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal 
separation. European Neuropsychopharmacology. 2020 Feb 1;31:69–85.  

81. Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. Journal 
of Molecular Cell Biology. 2015 Apr 1;7(2):92–104.  

82. Luscher B, Maguire JL, Rudolph U, Sibille E. GABAA receptors as targets for treating affective and 
cognitive symptoms of depression. Trends Pharmacol Sci. 2023 Sep;44(9):586–600.  

83. Funayama Y, Li H, Ishimori E, Kawatake-Kuno A, Inaba H, Yamagata H, et al. Antidepressant 
Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the 
Anterior Cingulate Cortex. Biological Psychiatry Global Open Science. 2023 Jan 1;3(1):87–98.  

84. Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate 
Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019 Apr 3;102(1):75–90.  

85. Mullard A. FDA approves first oral drug for postpartum depression, but rejects it for major depressive 
disorder. Nature Reviews Drug Discovery. 2023 Aug 11;22(10):774–774.  

86. Tanaka T, Saito H, Matsuki N. Inhibition of GABAA Synaptic Responses by Brain-Derived 
Neurotrophic Factor (BDNF) in Rat Hippocampus. J Neurosci. 1997 May 1;17(9):2959–66.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


28 
 

87. Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, et al. Activation of microglial 
cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an 
adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and 
proliferation of microglia. Journal of Neuroinflammation. 2013 Jan 30;10(1):780.  

88. Joosten E a. J, Houweling DA. Local acute application of BDNF in the lesioned spinal cord anti-
inflammatory and anti-oxidant effects. NeuroReport. 2004 May 19;15(7):1163.  

89. Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: 
Pathogenic partners in crime? World J Psychiatry. 2022 Jan 19;12(1):77–97.  

90. Schulte-Herbrüggen O, Nassenstein C, Lommatzsch M, Quarcoo D, Renz H, Braun A. Tumor necrosis 
factor-α and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. 
Journal of Neuroimmunology. 2005 Mar 1;160(1):204–9.  

91. Dugan AM, Parrott JM, Redus L, Hensler JG, O’Connor JC. Low-Level Stress Induces Production of 
Neuroprotective Factors in Wild-Type but Not BDNF+/- Mice: Interleukin-10 and Kynurenic Acid. 
International Journal of Neuropsychopharmacology. 2016 Mar 1;19(3):pyv089.  

92. Xu D, Lian D, Wu J, Liu Y, Zhu M, Sun J, et al. Brain-derived neurotrophic factor reduces 
inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. 
Journal of Neuroinflammation. 2017 Aug 4;14(1):156.  

93. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, et al. Inducing and exploiting 
vulnerabilities for the treatment of liver cancer. Nature. 2019 Oct;574(7777):268–72.  

94. Shao S, Zhuang X, Zhang L, Qiao T. Antidepressants Fluoxetine Mediates Endoplasmic Reticulum 
Stress and Autophagy of Non–Small Cell Lung Cancer Cells Through the ATF4-AKT-mTOR 
Signaling Pathway. Frontiers in Pharmacology [Internet]. 2022 [cited 2024 Feb 16];13. Available from: 
https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.904701 

95. Steingart AB, Cotterchio M. Do antidepressants cause, promote, or inhibit cancers? J Clin Epidemiol. 
1995 Nov;48(11):1407–12.  

96. Yousefi MR, Hua J, Sima C, Dougherty ER. Reporting bias when using real data sets to analyze 
classification performance. Bioinformatics. 2010 Jan 1;26(1):68–76.  

97. Nøhr AK, Lindow M, Forsingdal A, Demharter S, Nielsen T, Buller R, et al. A large-scale genome-
wide gene expression analysis in peripheral blood identifies very few differentially expressed genes 
related to antidepressant treatment and response in patients with major depressive disorder. 
Neuropsychopharmacol. 2021 Jun;46(7):1324–32.  

98. Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, et al. Gender 
Differences in Treatment Response to Sertraline Versus Imipramine in Chronic Depression. AJP. 2000 
Sep;157(9):1445–52.  

99. Babaaeyan H, Sakhaie N, Sadegzadeh F, Saadati H, Niapour A. Cardiac and hepatic side effects of 
fluoxetine in male and female adolescent rats. Fundam Clin Pharmacol. 2023 Nov 8;  

100. Sramek JJ, Cutler NR. The impact of gender on antidepressants. Curr Top Behav Neurosci. 
2011;8:231–49.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


29 
 

101. Mitic M, Brkic Z, Lukic I, Adzic M. Convergence of glycogen synthase kinase 3β and GR signaling 
in response to fluoxetine treatment in chronically stressed female and male rats. Behav Brain Res. 2017 
Aug 30;333:295–303.  

102. Belzeaux R, Lin R, Ju C, Chay MA, Fiori LM, Lutz PE, et al. Transcriptomic and epigenomic 
biomarkers of antidepressant response. Journal of Affective Disorders. 2018 Jun 1;233:36–44.  

103. François BL, Zhang L, Mahajan GJ, Stockmeier CA, Friedman E, Albert PR. A Novel Alternative 
Splicing Mechanism That Enhances Human 5-HT1A Receptor RNA Stability Is Altered in Major 
Depression. J Neurosci. 2018 Sep 19;38(38):8200–10.  

104. Piechota M, Golda S, Ficek J, Jantas D, Przewlocki R, Korostynski M. Regulation of alternative 
gene transcription in the striatum in response to antidepressant drugs. Neuropharmacology. 2015 Dec 
1;99:328–36.  

105. Cooper DG, Class CA. DavidGCooper/FLX-MetaDE: FLX-MetaDE [Internet]. Zenodo; 2024 
[cited 2024 Feb 16]. Available from: https://zenodo.org/records/10668846 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


30 
 

FIGURE CAPTIONS 

Figure 1. PRISMA flow diagram of systematic search and screening for gene expression studies assessing fluoxetine treatment. 

Figure 2. (A) Demonstration of meta-analysis methods used in this study to synthesize pathway analyses and differential 
expression analyses. Heatmap on left shows GSEA nominal p-values for four example pathways in five comparisons. Checkboxes 
indicate which meta-analysis method(s) would identify that pathway as significantly enriched. (B) Individual comparisons used in 
meta-analysis for gene expression signatures of behavioral or clinical response. (C) Number of genes differentially expressed (left) 
and pathways enriched (right) in each of the nine comparisons of samples from responders vs. non-responders (q < 0.05). “Up” 
indicates greater expression in responders. (D) Pathways identified as significantly enriched (q < 0.05) across the nine 
comparisons by the three meta-analysis methods. (E) Percentage of pathways significantly enriched in responders or non-
responders from each of the Reactome categories (“Top Level”) or KEGG Database. x-axis indicates percentage of pathways from 
a certain category identified as enriched. (F) Density plot showing distribution of Vote Sums across pathways, colored by meta-
analysis result. Positive scores indicate enrichment in responders, negative in non-responders (G) Heatmap of Normalized 
Enrichment Score (NES) across comparisons for pathways identified as enriched in any comparison (Fisher’s q < 0.05). Positive 
NES indicates enrichment in responders. 

Figure 3. (A) q-value by Max-P and Vote Sums for pathways identified as enriched across the nine comparisons of responders vs. 
non-responders (q < 0.05 by Max-P).  (B) Network diagram showing similarity between pathways, with labels provided in 3A. 
Pathways sharing more genes are plotted closer together. (C) Meta-analysis results for genewise differential expression in eight 
mouse comparisons. No genes were identified as consistently differentially expressed by Max-P. (D) Volcano plot of mouse 
differential expression meta-analysis results. (E) 13 pathways enriched in responders vs. non-responders in two comparisons of 
samples not treated with fluoxetine (q < 0.05 in each). 

Figure 4. (A) Individual comparisons used in meta-analysis for gene expression signatures of fluoxetine treatment effects. (B) 
Number of genes differentially expressed (left) and pathways enriched (right) in each of the nine comparisons of samples from 
fluoxetine treated vs. control samples (q < 0.05). “Up” indicates increased expression with fluoxetine. (C) Pathways identified as 
significantly enriched (q < 0.05) across the 55 comparisons by the three meta-analysis methods. (D) Percentage of pathways 
significantly affected by fluoxetine treatment from each of the Reactome categories (“Top Level”) or KEGG Database. (E) Heatmap 
of Normalized Enrichment Score (NES) across comparisons for pathways identified as enriched in any comparison (Fisher’s q < 
0.05). Positive NES indicates increased expression with fluoxetine treatment. (F) Density plot showing distribution of Vote Sums 
across pathways, colored by meta-analysis result. (G) q-value by Max-P, and Vote Sums for pathways identified as significant 
across the 55 comparisons of treated vs. untreated (q < 0.05 by Max-P).  (H) Network diagram showing similarity between 
pathways, with labels provided in 4G. Pathways sharing more genes are plotted closer together. 

Figure 5. (A) Pathways identified as significantly enriched (q < 0.05) across the 13 comparisons of treatment effects in MDD 
patients or stressed rodent models. (B) Percentage of pathways significantly affected by fluoxetine treatment in MDD patients or 
stressed rodent models from each of the Reactome categories (“Top Level”) or KEGG Database. (C) Density plot showing 
distribution of Vote Sums across pathways, colored by meta-analysis result. Positive scores indicate increased expression with 
fluoxetine. (D)  q-value by Max-P and Vote Sums for pathways identified as significant across the 13 comparisons in MDD patients 
or stressed rodents (q < 0.05 by Max-P), subset to include only those with absolute Vote Sum ≥ 3. (E) Network diagram showing 
similarity between pathways, with labels provided in 5D. (F) Genes identified as differentially expressed (q < 0.05) across the 
seven comparisons of treatment effects in stressed mice. (G) Density plot showing distribution of Vote Sums across genes, colored 
by meta-analysis result. (H) Volcano plot of meta-analysis results for differential expression of fluoxetine vs. control in stressed 
mice. Genes with absolute vote sum of 7 are labeled. 

Figure 6. (A) Comparison of pathway enrichment by treatment for responders and non-responders, by Max-P. Dotted lines 
indicate q = 0.05, and counts of pathways within each quadrant are provided. (B) q-value by Max-P and Vote Sums for pathways 
identified as significant across the eight comparisons of treatment vs. control in responders (q < 0.05 by Max-P), but consistently 
not significant across eight comparisons of treatment vs. control for non-responders (q > 0.05 by both Max-P and Fisher’s 
method). 

 

Supplementary Figure 1. Overlap of genes included in pathways identified as significant across the nine comparisons of 
responders vs. non-responders (q < 0.05 by Max-P). (Top) All included genes. (Bottom) Subset of genes appearing in at least two 
of the pathways. 
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Supplementary Figure 2. Overlap of pathways identified for responders vs. non-responders for all nine comparisons, with two 
sensitivity analyses (meta-analysis with human comparison removed, and meta-analysis with blood comparisons removed). Vote 
sums are indicated in parentheses. 

Supplementary Figure 3. Overlap of genes included in pathways identified as significant across all comparisons of fluoxetine 
treated vs. untreated samples (q < 0.05 by Max-P). 

Supplementary Figure 4. q-value by Max-P and Vote Sums for all pathways identified as significant across the 13 comparisons in 
MDD patients or stressed rodents (q < 0.05 by Max-P). 

Supplementary Figure 5. Number of genes (“DE”) or pathways (“GSEA”) identified as statistically significant in each meta-analysis, 
with q < 0.05. Same data are presented in linear (top) and log10 scale (bottom). 

Supplementary Figure 6. Number of pathways identified as statistically significant for the full meta-analysis of treated vs. 
untreated samples, as well as subset analyses of stressed rodents or depressed patients, and unstressed rodents. Results of 
Fisher’s meta-analysis (top) and Max-P (bottom). 

Supplementary Figure 7. Sensitivity analysis removing DS19 (profiling of 27 brain regions by Rayan et al.(59)). Gene (left) and 
pathway-level (right) analyses are presented. Dashed lines indicate q=0.05, diagonal line indicates y=x. Number in each quadrant 
indicates number of genes or pathways in that quadrant. Results of Fisher’s meta-analysis (top) and Max-P (bottom). 
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ID Comparisons
GEO Series 
Accession Number Citation Platform Organism Tissue(s) Samples

Stress Method / 
Diagnosis Fluoxetine Treatment 

Drug Response 
Determination

(a-d) Cortex
(a) Response
(b) Treatment
(c) Non-responders
(d) Responders

(a, c, e, g) Dorsal Dentate Gyrus Dorsal dentate gyrus, 
(b, d, f, h) Ventral Dentate Gyrus Ventral dentate gyrus
(a-b) Reponse
(c-d) Treatment
(e-f) Non-responders
(g-h) Responders

(a-d) Lymphoblastoid Cell Lines
(a) Response
(b) Treatment
(c) Non-responders
(d) Responders

(a, c, e, g, i) Anterior Cingulate 
Cortex

Anterior cingulate 
cortex,

(b, d, f, h, j) Dentate Gyrus Dentate gyrus
(a-b) Reponse
(c-d) Stressed Treatment
(e-f) Unstressed Treatment
(g-h) Non-responders
(i-j) Responders

(a-e) Blood
(a) Reponse
(b) Stressed Treatment
(c) Unstressed Treatment
(d) Non-responders
(e) Responders

(a, c, e, g) S100a10 Whole Cell
(b, d, f, h) S100a10 TRAP
(a-b) Reponse
(c-d) Treatment
(e-f) Non-responders
(g-h) Responders

(-) S100a10 Cells
(-) Treatment

(-) Glt25d2 Cells
(-) Treatment

(-) Hippocampus
(-) Treatment

(a-d) Striatum
(a) Treatment 1 hour
(b) Treatment 2 hours
(c) Treatment 4 hours
(d) Treatment 8 hours

(-) Dentate Gyrus
(-) Treatment

(-) Brain
(-) Treatment

(-) Glioma
(-) Treatment

(-) Hippocampus
(-) Treatment

(-) Prefrontal Cortex
(-) Treatment

(-) Dentate Gyrus
(-) Treatment

(-) Blood
(-) Treatment

(-) Amygdala
(-) Treatment

(a-aa) 27 Brain Regions
    See Supplementary Table 2
(a-aa) Treatment

(-) Hippocampus
(-) Treatment

Table 1. 20 data sets included in synthesis. Letters in parentheses in "Comparisons" column are used as reference in subsequent figures.

Hagihara et al. 56

Torres et al. 57

Rajkumar et al. 58

Rayan et al. 59

Demin et al. 60

Sarkar et al. 51

Korostynski et al. 52

Patrício et al. 53

Wang et al .54

Malik et al. 55

N/A

4-weeks 5 mg/kg/day None

Benton et al .45

Samuels et al. 46

Breitfeld et al .47

Hervé et al. 48

Hervé et al. 48

Sargin et al. 49

Schmidt et al. 50

Schmidt et al. 50

N/A 6-weeks 18 mg/kg/day None

None

3-weeks 15 mg/kg/day None

None

None

4-weeks 10 mg/kg/day None

None

None

None

15-18 days 167 mg/L in 
drinking water

None

DS20 GSE205325 RNA-Seq Rattus 
norvegicus

Hippocampus 21 (3/group) 12-weeks chronic 
unpredictable stress

DS19 GSE194289 RNA-Seq Rattus 
norvegicus

27 brain regions 212 (~4/group)

DS18 GSE150431 RNA-Seq  Mus musculus Amygdala 48 (8/group) N/A 2 days, 5 mg/kg/day

DS17 GSE128387 Microarray Homo sapiens Whole blood 32 (15-17/group) Major Depressive 
Disorder

8-weeks, dosage not 
specified

N/A 3-weeks 15 mg/kg/day

DS16 GSE118669 Microarray Mus musculus Dentate gyrus 16 (8/group) N/A

DS15 GSE118668 Microarray Mus musculus Prefrontal cortex 16 (8/group)Hagihara et al. 56

DS14 GSE109445 RNA-Seq Rattus 
norvegicus

Hippocampus 12 (3/group) 5-weeks chronic 
unpredictable stress

1-week 10 mg/kg/day None

DS13 GSE89873 Microarray Rattus 
norvegicus

C6 glioma cells 
(model of astrocytes)

28 (4 or 6/group) N/A 2-hours 25 µM

6-weeks 
unpredictable 
chronic mild stress

2-weeks 10 mg/kg/day

DS12 GSE86392 RNA-Seq Rattus 
norvegicus

Hippocampus, Frontal 
cortex, Pituitary gland

12 (3/group: 
1/tissue)

4-weeks of chronic 
restraint stress

DS11 GSE56028 Microarray Rattus 
norvegicus

Dentate gyrus 21 (3/group)

DS10 GSE48951 Microarray Mus musculus Striatum 60 (12/group) N/A 1-dose 20 mg/kg None

DS9 GSE42940 Microarray Rattus 
norvegicus

Hippocampus 8 (4/group) N/A 3-weeks 10 mg/kg/day

N/A 15-18 days 167 mg/L in 
drinking water

None

DS8 GSE35763 Microarray Mus musculus Glt25d2 cortical cells 6 (3/group) N/A

DS7 GSE35761 Microarray Mus musculus S100a10 cortical cells 6 (3/group)

DS6 GSE202172 RNA-Seq Mus musculus S100a10 cortical cells 32 (4/group) 7-weeks single-
housing 

3-weeks 167 mg/L in 
drinking water

Homecage time spent in 
shelter zone

5-weeks 120 mg/L in 
drinking water

Coat state measurement

DS5 GSE84184 Microarray Mus musculus Whole blood 32 (8/group) 7-weeks 
unpredictable 
chronic mild stress

5-weeks 120 mg/L in 
drinking water

DS4 GSE84183 Microarray Mus musculus 64 (8/group) 7-weeks 
unpredictable 
chronic mild stress

Coat state measurement

DS3 GSE83386 Microarray Homo sapiens Lymphoblastoid cell 
lines

20 (10/group) Major Depressive 
Disorder

3-weeks 0.5 µg/mL Hamilton Depression 
Rating Scale

N/A 3-weeks 18 mg/kg/day Open-field test

DS2 GSE43261 Microarray Mus musculus 38 (4 or 8/group) Corticosterone >1-week 160 mg/L in 
drinking water

DS1 GSE28644 Microarray Mus musculus Cortex 60 (30/group)

Novelty suppressed 
feeding, Forced swim test
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Zoomed in on genes that appear in at least 2 gene sets

Supplementary Figure 1
.CC-BY 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.02.19.581045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581045
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 7

Gene Level 
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