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ABSTRACT 27 

The fishing gear deployed by fishermen in seas and oceans throughout the world not 28 

only captures target species but also unintentionally ensnares non-target species, a 29 

phenomenon known as "by-catch". This unintended capture of marine life can represent 30 

significant challenges for the fishing industry, with adverse impacts on both the 31 

environment and species such as sea turtles, marine mammals, seabirds and 32 

elasmobranchs, which may be injured or even killed. To address this problem, the fishing 33 

industry has implemented regulations and mitigation measures. In this literature review, 34 

we have examined 389 articles published between 2010 and 2022 that assess the 35 

effectiveness of these measures. It has been demonstrated that the most effective 36 

measures are 'pingers' for marine mammals, 'TEDs' (Turtle Excluder Devices) for sea 37 

turtles, and 'BSLs' (Bird Scaring Lines), more commonly known as 'tori lines', for seabirds. 38 

The most complex case is that of elasmobranchs, and the most effective measure has 39 

yet to be discovered. This complexity arises from the ongoing targeted fishing of these 40 

species, resulting in less monitoring of their catches and, therefore, fewer surveys. 41 

Overall, we encourage the global implementation of these measures by the fishing 42 

industry in order to reduce by-catch in an attempt to ensure the future of many 43 

endangered species. 44 

Keywords: Incidental fishing · cetaceans · LEDs · marine turtles · marine birds · rays · sea 45 

turtles · sharks   46 
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1. INTRODUCTION 47 

Fishing poses a significant threat to marine vertebrates, including sea turtles, marine 48 

mammals, seabirds and elasmobranchs. This threat stems from the impact of the fishing 49 

industry on these species, both as a direct target and incidentally. The underlying cause 50 

of this issue is the extensive presence of fishing fleets on the various seas and oceans. In 51 

2020, the global fishing fleet was estimated to consist of approximately 4.1 million 52 

vessels, with Asia being the predominant continent, accounting for a total of 2.68 million 53 

vessels (FAO, 2022). These vessels utilize a range of fishing gear, depending on their 54 

target species. The most common gear types include gillnets, longlines, purse seines with 55 

and without purse lines, trawl nets and traps (FAO, 2022). 56 

This fishing gear has a substantial impact on oceans and their ecosystems, resulting in a 57 

series of adverse effects. These include an overexploitation of species, such as 58 

overfishing, which can lead to the decline and even collapse of populations, ultimately 59 

affecting marine biodiversity and ecosystems (Crowder et al. 2008). Certain fishing gear 60 

also destroys habitats, as occurs with that used for bottom trawling since it damages 61 

coral reefs, seagrass beds and seabeds (Crowder et al. 2008). Furthermore, the 62 

disruption of the food web caused by the decline of specific species as a result of 63 

overfishing can affect other species dependent on them as a food source, leading to a 64 

cascading effect known as the 'top-down' or 'bottom-up' effect (Crowder et al. 2008). 65 

Additionally, non-target or by-catch species are often captured alongside the intended 66 

target species when non-selective fishing methods are employed, and a wide variety of 67 

species is captured, including those not intended for capture or trade (Crowder et al. 68 

2008). This includes species that are commercially undesirable owing to their lower value 69 

or failure to comply with size or weight regulations, along with protected or endangered 70 
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species (which may have serious implications for their conservation) and non-71 

commercial species that are not of interest for trade (Agardy, 2000). In some cases, these 72 

non-target species are not only captured but also injured or even killed, and these 73 

species include marine mammals, sea turtles, seabirds and elasmobranchs (Crowder et 74 

al. 2008). 75 

Certain management measures with which to mitigate the impacts on these species have 76 

been implemented, including catch and net restrictions and the deployment of specific 77 

fishing technologies tailored to the groups affected (Lucas and Berggren, 2023). In the 78 

case of sea turtles, physical and visual techniques have been tested, such as the Turtle 79 

Excluder Device (TED) (Warden, 2011) and Light Emitting Diodes (LEDs), which could also 80 

be a good alternative as regards mitigating sea turtle by-catch. In the case of marine 81 

mammals, acoustic, physical, visual and echolocation measures have also been studied, 82 

and acoustic deterrent devices such as pingers have been used. However, some studies 83 

have demonstrated that certain species may become habituated to pingers over time 84 

(Moan and Bjørge, 2021). With regard to seabirds, olfactory, physical and visual 85 

measures are used to mitigate by-catch, with Bird Scaring Lines (BSLs), more commonly 86 

known as tori lines, being the visual measure that has been most widely used in longline 87 

fisheries (Domingo et al. 2017). In the case of elasmobranchs, all types of measures have 88 

been tried, i.e., acoustic, olfactory, physical, visual, echolocation and electrosensory. 89 

However, the knowledge regarding their effectiveness is limited, as in the case of 90 

employing tori lines to reduce shark by-catch (Seidu et al. 2022; Jiménez et al. 2019). 91 

In order to obtain a global overview, the principal objective of this study is to conduct a 92 

comprehensive review of the existing scientific literature focused on assessing the 93 
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effectiveness of specific mitigation measures as regards reducing the by-catch of 94 

endangered species groups, including sea turtles, marine mammals, seabirds and 95 

elasmobranchs. As secondary objectives, this study aims to: (i) identify the mitigation 96 

measures most commonly employed to minimize by-catch on a global scale; (ii) analyze 97 

the geographic distribution of by-catch in fisheries by country in order to evaluate 98 

variations, and (iii) provide an overview of the worldwide mitigation measurements that 99 

have proven to have the greatest effectiveness as regards reducing by-catch for each 100 

group. The overall objective of this research is to contribute with valuable insights into 101 

mitigating the effect of by-catch on endangered marine species and to shed light on 102 

measures that have proven to be the most successful, along with areas in which further 103 

research is required. 104 

2. MATERIALS AND METHODS 105 

2.1. Literature review 106 

This review was carried out using the Scopus, Web of Science and Google Scholar search 107 

engines to search for publications containing citation indices spanning from 2010 to 108 

2022. The keywords used were a combination of “bycatch” AND “fisheries” AND 109 

“mitigation” AND “measures” AND “sea turtles” or “marine mammals” or “seabirds” or 110 

“elasmobranchs”. These four groups of marine vertebrates were selected as the 111 

objective of this study. The data collected were classified according to the animal class, 112 

species name in English, scientific name, UICN category, the mitigation measure used, 113 

the percentage of reduction in by-catch achieved, and finally, the reference of each 114 

paper (Table 1 SI). 115 
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2.2. Species and areas 116 

We collected global data and information from scientific literature concerning the by-117 

catch of the four marine vertebrate groups, such as sea turtles, marine mammals, 118 

seabirds and elasmobranchs, by fisheries in the different seas and oceans worldwide. 119 

Species of sea turtles included in the review belonged to the Cheloniidae and 120 

Dermochelyidae families. These species are distributed in seas and oceans throughout 121 

the world (except those in the Arctic and Antarctic), with the exception of Kemp’s ridley 122 

turtle (Lepidochelys kempii), which is solely a resident of the Gulf of Mexico and the 123 

northeastern coast of North America (Wibbels and Bevan, 2019).  124 

Marine mammals such as odontocetes and mysticetes (families: Phocoenidae, 125 

Balaenopteridae, Delphinidae, Iniidae/Pontoporiidae), Sirenian and Pinniped (families: 126 

Dugongidae, Phocidae and Otariidae) were also included in the review. This group is, as 127 

a whole, widely distributed, as there are species that inhabit all the oceans in the world 128 

(including those in the Arctic and Antarctic), as in the case of the humpback whale 129 

(Megaptera novaeangliae) (Cooke, 2018). However, the majority of species are 130 

concentrated in the Atlantic, Pacific and Indian oceans, as is the case of the common 131 

dolphin (Delphinus delphis) (Braulik et al. 2021) and bottlenose dolphin (Tursiops 132 

truncatus) (Wells et al. 2019). 133 

The seabird species included in our review belong to families Diomedeidae, 134 

Procellariidae, Spheniscidae, Anatidae, Phalacrocoracidae, Laridae, Sulidae, 135 

Stercorariidae and Oceanitidae. These birds are distributed across all continents, oceans 136 

and seas worldwide. Notably, the Mediterranean Sea serves as a prominent breeding 137 

and feeding area for several endangered species, such as the Balearic shearwater 138 
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(Puffinus mauretanicus) (BirdLife International. 2018a) and the Yelkouan shearwater 139 

(Puffinus yelkouan) (BirdLife International. 2018b).  140 

The review also encompassed elasmobranchs, which include sharks and rays from 141 

diverse families including Sphyrnidae, Triakidae, Carcharhinidae, Myliobatidae, 142 

Squalidae, Rajidae, Somniosidae, Rhinobatidae, Brachaeluridae, Lamnidae, 143 

Torpedinidae, Scyliorhinidae, Alopiidae, Pseudocarcharidae, Dasyatidae, Mobulidae, 144 

Glaucostegidae and Pentanchidae. Many of the species within this group are commonly 145 

found in coastal areas and inhabit the oceanic zone delimited by both tropics (Cancer 146 

and Capricorn). However, there are exceptions, such as the Greenland shark (Somniosus 147 

microcephalus), which inhabits the Arctic Circle (Kulka et al. 2020). 148 

Overall, most of the sea turtle, marine mammal, seabird and elasmobranch species 149 

included in the study are classified by the UICN Red List of Threatened Species (UICN, 150 

2023) as being Least concern (LC), Near threatened (NT), Vulnerable (VU), Endangered 151 

(EN), Critically Endangered (CR) and Data Deficient (DD) (Methods, Table 2 SI). 152 

2.3. Statistical analysis 153 

In order to verify the nature of the data obtained and compiled (Table 1 SI), the normality 154 

and homoscedasticity of the data were analyzed by employing R commander (version 155 

2.7-0) using the Shapiro-Wilk test and Bartlett test, respectively. The data did not meet 156 

these criteria in any of the cases, and we therefore employed a non-parametric Kruskal-157 

Wallis’s test. This test was used to examine whether there was a relationship (at the 158 

global level) between the percentage of reduction in by-catch and fishing areas, along 159 

with the percentage of reduction in by-catch per species group. In both cases, statistical 160 

significance was considered when p < 0.01. In order to carry out an individual analysis of 161 
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the relationship between the efficiency of mitigation measures among the fisheries 162 

involved by group, a Goodness-of-Fit G-test was carried out by employing the R Studio 163 

program (version 4.0.2), using an R Script (Mangiafico, 2015) and the “DescTools” (Andri 164 

et al. 2021) and “RVAideMemoire” packages (Hervé, 2023). 165 

3. RESULTS AND DISCUSSION 166 

3.1. Overview of published literature 167 

Of a total of 389 studies, 316 were excluded on the basis of specific criteria (Figure 1 SI). 168 

A total of 73 papers were eventually selected in order to analyze by-catch by year and 169 

fishery area. These are shown in Table 1 SI as follows: sea turtles in green, marine 170 

mammals in blue, seabirds in orange and elasmobranchs in purple. However, when 171 

attempting to assess the number of trials of fishing gear, it was possible to find only 31 172 

studies that provided information on the number of trials (8140). Furthermore, studies 173 

related to proofs of concept or carried out in laboratories were not taken into account. 174 

The number of papers published each year that were found thanks to the literature 175 

search are shown in (Table 3 SI), with a maximum of 9 in 2018 and 2020. In contrast, only 176 

3 studies were found in 2022 and 2 in 2010.  177 

The number of studies assessing by-catch by continent is shown in Figure 2 SI. The 178 

continent for which most studies had been conducted was America, with 28 studies, 179 

followed by Europe with 22. Within America, the United States carried out the largest 180 

number of studies, with 7 in total. In Europe, studies were conducted by 14 different 181 

countries, unlike that which occurred with Oceania, where all the studies were carried 182 

out in Australia. This figure also shows that there is a lack of studies in developing nations 183 

or locations in which small-scale fisheries (SSFs) are widespread, as is the case of Africa, 184 
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where only 8 studies have been conducted. With regard to the number of trials carried 185 

out with each type of fishing gear, gillnets dominated the count with a total of 7636 trials, 186 

distantly followed by set net with 273 trials (Figure 3 SI). 187 

3.2. Worldwide mitigation measures 188 

Several mitigation measures with which to minimize the by-catch of these megafauna 189 

species have been tested in different fisheries around the world. A summary of the 190 

mitigation measures, categorized by the sensory system involved for each group, is 191 

provided in Table 1. In the case of sea turtles, the most commonly used olfactory 192 

measure involved using an alternative bait type. With regard to visual measures, LED 193 

lights emerged as a promising alternative, while in the case of physical measures, various 194 

escape options such as TEDs were frequently employed. In the case of odoncetes, 195 

mysticetes and other marine mammals such as the harbour seal (Phoca vitulina) and the 196 

Californian sea lion (Zalophus californianus), the measures most frequently used were 197 

pingers, a type of Acoustic Deterrent Devices (ADDs). With regard to seabirds, the 198 

mitigation measure that predominated was the tori line, a type of seabird scaring device 199 

(Gilman et al. 2021) consisting of a line towed from a high point at the aft of a vessel, 200 

from which several streamers are attached to scare seabirds and prevent their access to 201 

the critical area where baited hooks sink (Domingo et al. 2017). The main mitigation 202 

measure used for elasmobranchs was electrosensory devices. However, there was no 203 

single predominant measure, with SMART hooks (Grant et al. 2018; O’Connell et al. 204 

2014), rare earth (Porsmoguer et al. 2015; Westlake et al. 2018), ferrite magnets 205 

(Richards et al. 2018) and Electropositive Metal (EPM) Alloy (Godin et al. 2013; 206 

Hutchinson et al. 2012) all being employed. However, it seems that tori lines have 207 
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obtained good results for some of the species in this group (Jiménez, Forselledo, et al. 208 

2019). 209 

3.3. Mitigation measures by group 210 

Overall, it was found that, globally, there were significant differences among the 211 

percentage of reduction in by-catch per fishery area (χ=36.33, df=19, p<0.01, n=20, 212 

Kruskal-Wallis’s test) (Figure 1) and in the percentage of success in by-catch per group 213 

(χ=14.67, df=3, p<0.01, n=4, Kruskal-Wallis’s test) (Figure 2A). 214 

However, no significant differences were found as regards the percentage of reduction 215 

in by-catch resulting from different mitigation types (χ=10.17, df=4, p=0.04, n=6, Kruskal-216 

Wallis’s test) (Figure 2B). 217 

3.3.1. Sea turtles 218 

In the case of sea turtles, there was no significant difference among the percentage of 219 

reduction in by-catch according to the fishery area (G=9.15, X-squared df=10, p=0.52, 220 

n=11, G-test). Notably, the US Mid-Atlantic bottom trawl gear (Warden, 2011) and the 221 

industrial trawling fishery of Gabon (Casale et al. 2017) attained the highest values of 222 

reduction in by-catch per individual (mean ± SD, 0.97 ± NA and 1.0 ± NA, respectively). 223 

Similarly, no significant differences were observed among sea turtle species (G=7.46, X-224 

squared df=4, p=0.11, n=24, G-test). However, the species with the highest percentages 225 

of reduction in by-catch reduction were the loggerhead turtle (Caretta caretta) (n=112) 226 

and the olive ridley turtle (Lepidochelys olivacea) (n=114) (97% and 100%, respectively). 227 

This was achieved using physical measures, specifically TEDs (Figure 1). 228 
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3.3.1.1. Olfactory 229 

One olfactory measure was investigated by testing the use of alternative bait types to 230 

mitigate incidental sea turtle by-catch in longline fisheries. The best results were attained 231 

by replacing squid bait with mackerel bait (Figure 3A), reducing by-catch by 88% and 85% 232 

for all turtles species (Coelho et al. 2012). In addition, by combining the effects of the 233 

mackerel by exchanging the traditional J-style hooks for two circle hooks (one non-offset 234 

and one with 10° offset), it was possible to obtain a 50-59% reduction in the by-catch 235 

(n=223) (Coelho et al. 2015).  236 

3.3.1.2. Physical  237 

Tori lines were used in a Uruguayan pelagic longline fishery to reduce the by-catch. A 238 

reduction of 18.1% was obtained for the loggerhead turtle (n=83), while one of 73.3% 239 

was obtained for the leatherback turtle (Dermochelys coriacea) (n=15) (Jiménez et al. 240 

2019) (Figure 3A). 241 

TEDs have also been tested in numerous trawl fisheries, as occurred in the US Mid-242 

Atlantic, with a reduction in by-catch of 97% for the loggerhead turtle (n=112) (Warden, 243 

2011). A reduction in by-catch of 100% was documented for Indian fisheries (Raghu et 244 

al. 2016), and a similar reduction of 100% was achieved for four sea turtle species 245 

(n=131) in Gabonese fisheries (Casale et al. 2017) (Figure 1). 246 

3.3.1.3. Visual 247 

Of all the possible visual mitigations methods for sea turtles, those that have been 248 

studied most are LED lights. However, there are also others, such as chemical lightsticks, 249 

physical models (predator cut-outs) and buoyless nets (Figure 3A). 250 
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The implementation of 500 nm green LEDs in an Indonesian small-scale coastal gillnet 251 

fishery led to a reduction in multi-species sea turtle by-catch of 61.4% (n=10), and 252 

specifically 59.5% of green turtle (Chelonia mydas) (n=14) (Gautama et al. 2022). This 253 

same measure was also used in a Mexican gillnet fishery, obtaining a reduction of 50% 254 

for the loggerhead turtle (n=17) (Senko et al., 2022) and 59% (n=85), 63.9% (n=125) and 255 

48.8% (n=41) for green turtles (Wang et al. 2010; Ortiz et al. 2016; Kakai, 2019). Chemical 256 

lightsticks, meanwhile, obtained a reduction of 40% for the green turtle (n=85) (Wang et 257 

al. 2010). The implementation of 100-400 nm LED lights in a small-scale gillnet fishery 258 

led to a decrease in green turtle by-catch of 93% (n=13) (Darquea et al. 2020). In Italian 259 

and Mexican fisheries, the use of LEDs led to a reduction in loggerhead turtle by-catch 260 

of 100% (n=18) (Lucchetti et al. 2019; Virgili et al. 2018), and a reduction in green turtle 261 

by-catch of 39.7% (n=209) when using UV net illumination (Wang et al. 2013). Although 262 

TEDs have attained the best results, more trials on LEDs should be included, as they seem 263 

to be a good alternative by which to reduce the by-catch of these species.  264 

3.3.2. Marine mammals 265 

In the case of marine mammals, there were no significant differences among the 266 

percentages of reduction in by-catch according to fishery areas (G=5.00, X-squared df=5, 267 

p=0.41, n=6, G-test). Notably, the highest values of by-catch reduction per individual 268 

were attained by the small set net Japanese fishery (Amano et al. 2017) and Norwegian 269 

commercial fisheries (Moan and Bjørge, 2021) (mean ± SD, 10.0 ± NA and 13.0 ± 9.8, 270 

respectively). Similarly, no significant differences were found among marine mammal 271 

species (G=0.57, X-squared df=9, p=0.99, n=11, G-test). However, the narrow-ridged 272 

finless porpoise (Neophocaena asiaeorientalis) (n=10) and harbour porpoise (Phocoena 273 

phocoena) (n=20) were the species with the highest percentage of reduction in by-catch 274 
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(100% and 96.9%, respectively) when using acoustic measures, specifically pingers 275 

(Figure 1). 276 

3.3.2.1. Acoustic 277 

Sensory technologies, specifically acoustic reflectors and pingers, were designed in the 278 

late 1970s and 1980s to deter marine mammals in gillnet fisheries (Dawson, 1991).  279 

The AQUAmark 100 pinger, which operates at between 20 and 160kHz, achieved a 280 

reduction in narrow-ridged finless porpoise by-catch of 100% (n=10) (Amano et al. 2017) 281 

(Figure 1). The long-term effectiveness of the Dukane Netmark 1000 Pinger, which 282 

operates at 12-100 kHz harmonics, was assessed in a gillnet fishery (Carretta and Barlow, 283 

2011). However, only the by-catch of two species decreased, specifically the common 284 

dolphin by 47.4% and the Northern elephant seal (Mirounga angustirostris) by 80.8% 285 

(n=164). When used in a driftnet fishery, the same pinger achieved reductions of 286 

between 18.2% and 100%, depending on the species (Mangel et al. 2013). 287 

The evaluation of two pingers in gillnet fisheries, i.e., the Banana pinger by Fishtek 288 

Marine Industries (operating at 50-120 kHz, 154 dB) and the Dolphin pinger by Future 289 

Oceans (operating at 70 kHz, 132 dB), attained positive results, with reductions of 290 

96.90% and 33.50% (Moan and Bjørge, 2021) (Figure 1). Furthermore, the 291 

implementation of these devices did not have a major negative impact on their daily 292 

fishing operations and contributed to the reduction in marine mammal by-catch.  293 

3.3.2.2. Physical 294 

Berninsone et al. (2020) replaced gillnets with longlines in order to minimize the by-catch 295 

of franciscana (Pontoporia blainvillei), which it is considered the most threatened 296 

cetacean in the South Western Atlantic (Negri et al. 2012; Bordino and Albareda, 2004). 297 
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This study decreased the by-catch of this species by 90% (n=85) (Figure 3B), thus showing 298 

that this method is an excellent alternative. However, only one study was carried out, 299 

which makes it difficult to generalize its effectiveness to other areas. 300 

3.3.2.3. Visual 301 

Unlike that which occurs with sea turtles, visual mitigation measures are not commonly 302 

used to prevent marine mammal by-catch. Tori lines and Bird Line Weighting (BLW) have 303 

been tested in Uruguayan pelagic longline fisheries with no significant results (Jiménez 304 

et al. 2019). In order to evaluate the real effect of these measures on marine mammals, 305 

further research is consequently necessary. 306 

3.3.2.4. Echolocation reflection 307 

Mysticetes and odontocetes use echolocation, which helps them to determine the 308 

location of objects in the sea. A mitigation measure consisting of adding acrylic glass 309 

spheres to a gillnet has consequently been developed in order to reduce the by-catch of 310 

the harbour porpoise (n=5), obtaining a reduction of 60% (Kratzer et al. 2021). Another 311 

measure tested was the modification of two types of nets, a barium sulfate net and a 312 

stiff nylon net (Bordino et al. 2013), but a reduction of only 7.4% (n=54) was obtained 313 

(Figure 3B). 314 

3.3.3. Seabirds 315 

With regard to seabirds, the percentage of reduction in by-catch was not significantly 316 

different among fishery areas (G=7.84, X-squared df=5, p=0.16, n=6, G-test). Similarly, no 317 

significant differences were found among seabird species (G=1.58, X-squared df=16, p=1, 318 

n=20, G-test). Notably, the species with the highest percentage of by-catch reduction 319 

were the Atlantic yellow-nosed albatross (Thalassarche chlororhynchos) (n=43), the 320 
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black-browed albatross (Thalassarche melanophris) (n=22) and the white-chinned petrel 321 

(Procellaria aequinoctialis) (n=486) (100%, 100% and 97.7%, respectively) when using 322 

visual measures, and specifically tori lines (Figure 1). 323 

3.3.3.1. Olfactory 324 

The main olfactory mitigation measures used to minimize seabird by-catch were offal 325 

discard management (Kuepfer et al. 2022; Collins et al. 2021; Rollinson et al. 2017), 326 

thawed bait (Collins et al. 2021; Rollinson et al. 2017), blue-dyed bait (Gilman et al. 327 

2021), artificial bait (Cortés and González-Solís, 2018) and replacing squid with mackerel 328 

as bait (Gonzalez et al. 2012; Li et al. 2012) (¡Error! No se encuentra el origen de la r329 

eferencia.). These measures were, in certain instances, reinforced with non-sensory 330 

methods, such as night setting (Collins et al. 2021; Rollinson et al. 2017), seasonal 331 

closures (Collins et al. 2021), hook management (Collins et al. 2021) and the limitation 332 

of by-catch rates per year (Rollinson et al. 2017).  333 

Despite the variety of existing measures, there is limited information regarding their 334 

effectiveness as regards reducing seabird by-catch and their effect on commercial 335 

catches. For instance, the evaluation of artificial bait demonstrated a reduction in target 336 

catches of 77% when compared to control lines (Cortés and González-Solís, 2018), but 337 

sample sizes were not included in the study.  338 

3.3.3.2. Physical 339 

In order to reduce the by-catch rate of seabirds by using physical measures, the increase 340 

in the sink rate of baited hooks by reducing the distance between the hook and the 341 

weight of the branch lines (65g) was tested in a pelagic longline fishery (Jiménez et al. 342 

2019), obtaining a reduction of 42.5%. Others studies propose the introduction of BLW 343 
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as a mitigation measure, such as that by Paterson et al. (2019), which was carried out in 344 

a demersal longline fishery where a reduction in the by-catch was from 90.9% to 100%. 345 

3.3.3.3. Visual 346 

The measures most commonly used in the case of seabirds are those of visual mitigation 347 

and include techniques such as LEDs (Bielli et al. 2020; Mangel et al. 2018; Field et al. 348 

2019), high contrast panels (Field et al. 2019; Oliveira et al. 2021), buoys with looming 349 

eyes (Rouxel et al. 2021), night setting (Cortés and González-Solís, 2018) and tori lines 350 

(Cortés and González-Solís, 2018; Gilman et al. 2021) (¡Error! No se encuentra el origen de 351 

la referencia.). 352 

The implementation of 500 nm LEDs was positive as regards reducing the by-catch of 4 353 

species (n=46), with a reduction of 84% (Bielli et al. 2020), while green LEDs led to a 354 

reduction of 85.1% (Mangel et al. 2018). However, in the study carried out by Field et al. 355 

(2019), the efficacy of two types of 500 nm LEDs (constant green lights and flashing white 356 

LED lights) achieved a reduction of only 32.6% (n=43), although the use of high contrast 357 

panels reduced the by-catch of species by 50.8% (n=65). New devices such as the 358 

“Looming eyes buoy” (LEB) have also emerged, leading to a decrease in the by-catch of 359 

seabirds species of 22% (n=5724) (Rouxel et al. 2021) (Figure 3C). 360 

Another measure is that of night setting, which has been tested with the artisanal 361 

demersal longliners of the Western Mediterranean. Although the sample sizes were 362 

limited, the results obtained showed a reduction of 83.3% and 100% (n=19) (Figure 3C), 363 

and an increase in sample testing is, therefore, recommended in order to ensure the 364 

efficiency of this measure.  365 
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Finally, the most widely used measure with which to reduce the by-catch of seabirds is 366 

that of tori lines, which have been shown to provide a significant reduction in the by-367 

catch of all birds species, from 97.7% to 100% (Domingo et al. 2017; Paterson et al. 2019) 368 

(Figure 1). 369 

3.3.4. Elasmobranchs 370 

With regard to elasmobranchs, the percentage of reduction in by-catches was 371 

significantly different according to the study site (G=11.83, X-squared df=2, p<0.01, n=3, 372 

G-test), with a Uruguayan longline fishery attaining the highest values as regards a 373 

reduction in by-catch (Jiménez et al. 2019). No significant differences were found among 374 

elasmobranch species (G= 1.60, X-squared df=17, p=1, n=21, G-test), although the 375 

species that attained the highest percentage of reduction in by-catch were the night 376 

shark (Carcharhinus signatus) (n=38) and the smooth hammerhead (Sphyrna zygaena) 377 

(n=190) (89.5% and 86.3%, respectively) when using visual measures such as tori lines 378 

(Figure 1). 379 

3.3.4.1. Acoustic 380 

During the study of the effectiveness of pingers at reducing the by-catch of certain 381 

species of marine mammals, their effect was also analyzed for elasmobranchs. No 382 

significant differences in captures were attained when using Aquamark 100 and 200 383 

pingers (Bilgin and Kose, 2018; Mangel et al. 2013). 384 

3.3.4.2. Olfactory 385 

Only one olfactory mitigation measure with which to reduce the by-catch of different 386 

species of sharks and rays has been studied over a 13-year period (Coelho et al. 2012): 387 
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that of replacing squid with mackerel bait. However, the effectiveness of this measure 388 

was limited. 389 

3.3.4.3. Physical 390 

Physical measures by which to mitigate the by-catch of elasmobranchs include BLW 391 

(Jiménez et al. 2019), Bycatch Reduction Devices (BRDs) (Gupta et al. 2020) and the use 392 

of a 'tickler' (Kynoch et al. 2015), i.e., a piece of chain placed in front of the bottom gear 393 

of the trawler that is considered effective as regards catching skates and rays that may 394 

escape under the net. The inclusion of BLW in a Uruguayan longline fishery led to a 395 

reduction in the by-catch of the scalloped hammerhead (Sphyrna lewini) (n=2) of 100%, 396 

while the figure for the pelagic stingray (Pteroplatytrygon violacea) (n=18) was 27.8% 397 

(Figure 3D). However, in the case of the “tickler”, the number of species captured 398 

increased for all species with the exception of the lesser-spotted dogfish (Scylorhinus 399 

canicular) (n=1525), which attained a decrease of 2.3% (Kynoch et al. 2015) (Figure 3D). 400 

3.3.4.4. Visual 401 

The use of LED lights as a mitigation measure has been tested for all four groups (sea 402 

turtles, marine mammals, seabirds and elasmobranchs), with an uncertain effect on 403 

elasmobranchs (Mangel et al. 2018). However, in a Mexican gillnet fishery, there was a 404 

reduction in the elasmobranch by-catch of 95% (Senko et al. 2022). Tori lines have also 405 

obtained good results for this group, reducing the by-catch rate for the porbeagle 406 

(Lamna nasus) (n=34), copper shark (Carcharhinus brachyurus) (n = 8), night shark (n=38) 407 

and smooth hammerhead (n=190) by 41.2%, 87.5%, 89.5% and 86.3%, respectively 408 

(Jiménez et al. 2019) (Figure 1). 409 
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3.3.4.5. Echolocation 410 

Rays do not use echolocation, and the by-catch data obtained after the implementation 411 

of the acrylic glass spheres by Kratzer et al. (2021) in a Turkish commercial fishery 412 

confirm this. More thornback skate (Raja clavata) individuals were caught in the 413 

modified gillnet (n=97) than in the standard one (n=41).  414 

3.3.4.6. Electrosensory 415 

Sharks have a complex and extensive electrosensory system, which includes the 416 

ampullae of Lorenzini located around the snout or rostral area (Kajiura and Holland, 417 

2002). The use of SMART hooks in a longline fishery in the Gulf of Maine (USA) led to a 418 

reduction in the number of shark species caught, from 25% to 100% (O’Connell et al. 419 

2014) (Figure 3D). 420 

The last sensory type measure found was the use of hooks made from a neodymium-421 

praseodymium alloy, use by longlines in USA and Ecuador with the scalloped 422 

hammerhead (n=52), leading to a reduction of 61.5% (Hutchinson et al. 2012) (Figure 423 

3D). 424 

3.4. Limitations of this review 425 

The objective of this literature review was to provide a comprehensive overview of the 426 

most effective measures used to date in order to reduce the by-catch of sea turtles, 427 

marine mammals, seabirds and elasmobranchs. However, it was difficult to carry out the 428 

global standardization of data because many studies were incomplete owing to a lack of 429 

sample sizes (Königson et al. 2022; Kuepfer et al. 2022; Godin et al. 2013), the existence 430 

of small sizes (O’Connell et al. 2014; Domingo et al. 2017; Jiménez et al. 2019) or the 431 

absence of the name of the species being studied (Diomedea spp., Procellaria spp., 432 
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Delphinus spp., Globicephala spp.) (Yokota et al. 2011; Mangel et al. 2013). Moreover, in 433 

many cases the effectiveness of different mitigation measures for the species involved 434 

was not included (Kynoch et al. 2015; Porsmoguer et al. 2015; Basran et al. 2020), making 435 

it difficult to make comparisons among studies.  436 

3.5. Recommendations for future research 437 

A limited number of complete studies on by-catch mitigation measures were found. 438 

These included TEDs for sea turtles (Warden, 2011; Casale et al. 2017), pingers for 439 

marine mammals (Amano et al. 2017; Moan and Bjørge, 2021) and tori lines for seabirds 440 

(Domingo et al. 2017; Paterson et al. 2019). However, the available research on this topic 441 

is still lacking in many aspects. 442 

There is a need for more studies that quantitatively assess the actual amount of by-catch 443 

(Basran et al. 2020; Culik et al. 2015; Westlake et al. 2018). Moreover, most of the results 444 

obtained often vary according to geographical areas, species and fishing practices, thus 445 

highlighting the importance of conducting further research into effective strategies by 446 

which to mitigate by-catch, particularly in regions in which SFFs are prevalent, such as 447 

Asia, Africa and South America.  448 

It is also essential to establish standardized reporting practices, define study parameters, 449 

specify research locations and context, and examine unintended impacts on animal 450 

populations so as to attain accurate comparisons (Kynoch et al. 2015; Porsmoguer et al. 451 

2015; Grant et al. 2018). Consistency in measurement metrics is crucial, focusing on the 452 

number of individuals captured per unit of effort (Senko et al. 2022; Berninsone et al. 453 

2020; Gautama et al. 2022). Thorough documentation should encompass specifics such 454 

as gear type, study locale, the technology employed, and technical specifications (Senko 455 
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et al. 2022; Mangel et al. 2013). It is, therefore, also recommended that studies explicitly 456 

detail sample and effect sizes (O’Connell et al. 2014; Domingo et al. 2017). 457 

Furthermore, we believe that it is necessary to increase exploration into the combination 458 

of sensory deterrents in order to reduce by-catch across various taxonomic groups 459 

(Coelho et al. 2015; Gilman et al. 2021). Future research should prioritize the use of cost-460 

efficient technologies that are straightforward to implement, as these are more likely to 461 

gain the support and compliance of the fishing industry. This will make it possible to work 462 

toward preserving the future of many endangered species and reducing the impact of 463 

by-catch. 464 
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Table 1. Mitigation measures proposed by different countries depending on the sensory system involved for each 704 
megafauna group, with their references (Methods SI). 705 
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Branch Line 
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Bycatch Reduction 
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Turtle Excluder 
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Lights 

LED lights X   X X (11) 

UV-LED X     (12) 

Chemical 
lightsticks 

X     (13) 

 
 

Physical model 

Predator cut-outs X X  X X (14) 

Looming eyes X   X  (15) 

High contrast 
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Tori lines X  X X X (17) 
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Acoustic 
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Net material 
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Figure 1. World map showing the percentage of reduction in by-catch per group (sea turtles in red, marine mammals in light blue, seabirds in green and 

elasmobranchs in dark blue) by continent (America divided into North (1) and South (2) America, Africa (3), Europe (4), Asia (5) and Oceania (6)), obtained by the 

most frequently used mitigation measure: TEDs for sea turtles, pingers for marine mammals and tori lines for seabirds and elasmobranchs. 
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Figure 3. Success in reducing by-catch (%) of A. Sea turtles; B. Marine mammals; C. Seabirds, and D. Elasmobranchs, 

using different by-catch mitigation measures. The horizontal lines inside each box correspond to the mean, while the 

vertical lines at the ends of each box refer to SD. 

Figure 2. A. Violin plot illustrating the percentage of reduction in by-catch obtained for the species groups (marine turtles, marine 

mammals, seabirds and elasmobranchs). B. Percentage of reduction in by-catch obtained with the different mitigation types (acoustic, 

visual, echolocation, electrosensory, physical and olfactory). The horizontal lines inside each box correspond to the mean, while the vertical 

lines at the ends of each box refer to standard deviation (SD). 
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