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Abstract 29 

Whether single-cell RNA-sequencing (scRNA-seq) captures the same biological information as single-30 

nuclei RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a 31 

head-to-head comparison was performed in matched normal-adenocarcinoma human lung samples to 32 

assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the 33 

cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621 34 

cells/nuclei was obtained. In non-tumor lung, cell type proportions varied widely between scRNA-seq 35 

and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells 36 

(69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall 37 

increase in cell type heterogeneity and a greater prevalence of copy number variants in cells of 38 

epithelial origin, which suggests malignant assignment. The cell type transition that occurs from 39 

normal lung tissue to adenocarcinoma was often discordant whether cells or nuclei were examined. In 40 

addition, we showed that the ligand-receptor interactome landscape of lung adenocarcinoma was 41 

largely different whether cells or nuclei were evaluated. Immune cell depletion in fresh specimens 42 

partly mitigated the difference in cell type composition observed between cells and nuclei. However, 43 

the extra manipulations affected cell viability and amplified the transcriptional signatures associated 44 

with stress responses. In conclusion, research applications focussing on mapping the immune landscape 45 

of lung adenocarcinoma benefit from scRNA-seq in fresh samples, whereas snRNA-seq of frozen 46 

samples provide a low-cost alternative to profile more epithelial and cancer cells, and yield cell type 47 

proportion that more closely match tissue content. 48 

 49 

Keywords: Single Cell, Single Nuclei, RNAseq, adenocarcinoma, lung cancer, cell type annotation, 50 

Immune cell depletion  51 
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Introduction 52 

Single-cell transcriptomics (scRNA-seq) has the ability to inspect the cellular heterogeneity of 53 

tissue and cancer with unprecedented details, and as such provide important insights into the cellular 54 

origin and cell-specific molecular defects that play a role in disease pathogenesis1–4. However, given 55 

the pace at which the field is evolving, uncertainties remain with respect to the design and analysis of 56 

single-cell transcriptomic datasets in order to gain the most from priceless biological samples. Fresh 57 

biospecimens are generally prioritized for cell viability and greater yield of high-quality cells. For 58 

tissues, scRNA-seq requires disaggregating the tissue to release individual cells into a single-cell 59 

suspension. Differences in dissociation and sample preparation efficiency across cell types are known 60 

to affect RNA integrity and can skew cell type proportions. A well-known instance of dissociation bias 61 

is observed in human lung tissue, where dissociation of fresh tumor (biopsies or resected specimens) 62 

commonly results in a majority of immune cells being sequenced5–7. While the aforementioned cell-63 

type dissociation bias can be partly alleviated by enriching the epithelial cell fraction using EPCAM-64 

based cell sorting6, single cell preparation protocols may also affect cell viability and introduce 65 

transcriptional signatures associated with dissociation and stress responses6,8,9. 66 

Analyzing nuclei (snRNA-seq) instead of cells has been proposed as an alternative for frozen 67 

samples and tissues that cannot be readily dissociated10. While cellular compositions recovered from 68 

scRNA-seq versus snRNA-seq can vary substantially11, the transition from cell to nuclei sequencing 69 

may help to reduce the dissociation bias and transcriptional stress responses, facilitate the study of 70 

difficult-to-dissociate tissues and cell types, and allow the assessment of large cells that cannot pass 71 

through microfluidics systems. At the same time, reference databases and cell type-specific gene 72 

markers, which are readily used to annotate unknown cell populations, have been largely built from 73 

scRNA-seq datasets4 and therefore may not be optimal for snRNA-seq. Cell types and gene expression 74 

differences between scRNA-seq and snRNA-seq have been observed in mouse kidneys12,13 and 75 
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brain14,15 as well as in human metastatic breast cancer and neuroblastoma11. However, head-to-head 76 

comparisons between scRNA-seq and snRNA-seq are still scarce and to the best of our knowledge, this 77 

direct comparison has never been evaluated in the context of patient-matched normal lung and tumor 78 

tissues. 79 

Lung cancer is highly prevalent and the number one cause of cancer mortality. It thus represents 80 

a medically valuable case study to compare the biological signal recovered through cells and nuclei 81 

sequencing. A variety of experimental designs and samples have been evaluated by scRNA-seq in 82 

patients with lung cancer. This includes lung samples enriched (e.g. FACS-sorted) for immune cells16,17, 83 

lung tumor of mixed histological types2,7, and non-small cell lung cancer (NSCLC) samples before and 84 

after targeted therapy18 or immunotherapy19. More specifically in lung adenocarcinomas (LUAD), the 85 

most common histological subtype of lung cancer, which originates from epithelial cells that line the 86 

inside of the lungs, resected specimens or biopsies from two to eleven2,5–7,20 patients have been 87 

evaluated, but with a very limited number of paired normal-adenocarcinoma lung samples. Compared 88 

with normal lung samples, epithelial cells from lung adenocarcinomas were characterized by a 89 

depletion of alveolar cells (AT1 and AT2)2,6, lost cell identity and more cells annotated as mixed-90 

lineage5,21, higher transcriptome complexity and cell heterogeneity6,22, patient-specific cancer cell 91 

clusters18, transcriptional states associated with survival20,21, and AT2 cells dedifferentiated into a stem-92 

like state22. The shift in immune cells from normal to LUAD samples observed in previous studies 93 

were similarly informative. It unveiled an increase in B, plasma and T regulatory cells coupled with a 94 

decline in natural killer cells as well as reduced signatures of cytotoxicity in T cells, antigen 95 

presentation in macrophages, and inflammation in dendritic cells, which are all coherent features of an 96 

immunosuppressive tumor microenvironment6,16. Finally, differentially enriched ligand-receptor 97 

interactions promoting tumorigenesis were also observed between LUADs and normal tissues6,20. 98 
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Herein, specimens derived from the same patients were tested using both scRNA-seq in fresh 99 

tissues and snRNA-seq from flash frozen tissues using the 10x Genomics® workflows. The biology 100 

captured by both methods was compared in the context of paired tumor-normal human lung samples 101 

explanted from patients that underwent surgery for lung adenocarcinoma. This study design revealed 102 

the cellular and molecular transition that occurs from normal lung to adenocarcinoma, and evaluated 103 

the commonality and discordance in the stemming biological insights gained from cells versus nuclei. 104 

In addition, we compared the same paired normal-adenocarcinoma human lung samples using an 105 

immune cell depletion protocol that alleviates the cell-type dissociation bias, with the aim of recovering 106 

a more representative biological signal. 107 

  108 
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Results 109 

Single cell/Nucleus dataset preparation 110 

Four patients, two tissue type (Normal/Tumor) and three experimental methods (scRNA-seq, 111 

snRNA-seq & immune-depleted scRNA-seq, hereafter labelled as Cell, Nucleus and Immune-depleted 112 

cell) were processed for a total of twenty-four samples. 160,621 cells/nuclei passed quality control 113 

(53,286; 57,078 and 50,257 for Cell, Nucleus and Immune-depleted cell datasets respectively) with a 114 

mean of 6,692 cells per sample (6,661; 7,135 and 6,282 for Cell, Nucleus and Immune-depleted cell 115 

datasets respectively, Fig. 2A) and a mean of 2,214 genes per cell (1,868; 2,309 and 2,473 genes for 116 

Cell, Nucleus and Immune-depleted cell datasets respectively, Fig. 2B). The experimental design is 117 

presented in Fig. 1A-B, while the clinical and cellular characteristics are detailed in Tables S1 & S2, 118 

respectively. 119 

From the 61 finest cell types annotations defined by Human Lung Cell Atlas (HLCA)4, 35 were 120 

present in the current dataset at a frequency of >100 cells and we were able to annotate confidently 121 

97.7% of cells at the coarsest level (immune, epithelial, endothelial, stroma, Fig. 2C, Table S3). This 122 

reference-based mapping and annotation approach is consistent with a marker-based approach for both 123 

the Cell and Nucleus datasets (Fig. S1). Nevertheless, cell type annotation scores were significantly and 124 

consistently lower (smaller fraction of annotated cells) in the Nucleus compared to the Cell dataset 125 

(two-way ANOVA, p-value < 2e-16), fine-level compared to high-level annotations (p-value < 2e-16) 126 

and Tumor compared to Normal tissue (p-value < 2e-16). 127 

 128 

Cell composition differs from Nucleus in Normal lung tissue. 129 

In Fig. 3, the UMAP visualisation showed that the Cell dataset from Normal lung tissue was 130 

largely dominated by immune cells, with 23,044 immune cells (81.5% of total, Fig. 3A). Conversely, 131 

the Nucleus dataset was dominated by epithelial cells, with 12,556 epithelial cells (69.9%, Fig. 3B). In 132 
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addition, the Nucleus dataset contained a larger fraction of unclassified cells compared to the Cell 133 

dataset (7.3 % vs 0.1 %, Fisher Exact Test [FET], p-value < 2e-16). 134 

To further refine the immune community of cells, we sub-setted only the immune cells and 135 

labelled the plots with a finer level (level 3) annotation (Cell, Fig. 3C; Nucleus, Fig. 3D). We observed 136 

that the Cell dataset provided a better fine-grained classification as proportionally more cells could be 137 

classified into specific cell types. To this effect, the Nucleus dataset contained a larger fraction of 138 

unclassified cells (41.7 % vs 0.7 %, FET, p-value < 2e-16).  139 

We repeated this sub-setting approach for epithelial cells, given their primary role in the onset 140 

of lung adenocarcinoma. We observed that Cell samples form distinct clusters mainly composed of 141 

AT1, AT2 and multiciliated lineages (Fig. 3E-F). The Nucleus dataset, which had more than five times 142 

more epithelial cells than the Cell dataset (12,556 versus 2,264), contained similar cell types and 143 

mainly in similar proportions, except for a sizable fraction of unclassified cells that appeared largely 144 

scattered in the UMAPs (10.9 % unclassified in Nucleus versus 1.29% in Cell, FET, p-value < 2e-16, 145 

Fig. 3E-F).  146 

In Fig. 4, we present, for each cell type (level 3 annotation), the fraction of cells originating 147 

from each patient (Fig. 4A), the number of cells (Fig. 4B) and the number of genes per cell (Fig. 4C). 148 

In Fig. 4D-F, we present the same information for the Nucleus dataset and this visualization confirmed 149 

that the Nucleus dataset has similar cellular composition, except for the over-representation of immune 150 

cells in the Cell dataset. Both in Cell and Nucleus datasets, epithelial cell types were dominated by AT1 151 

first and then AT2; endothelial cell types were dominated by capillary; and stromal cell types were 152 

dominated by fibroblasts. With respect to the number of genes (transcripts) per cell (Fig. 4 C, F), we 153 

observed many discordant patterns between Nucleus and Cell datasets, indicating that similar cell types 154 

presented different overall transcriptional signatures based on the experimental method. For example, 155 

in the Cell dataset, median numbers of genes per cell were low for monocytes (635), but high for T 156 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.20.581199doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581199
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

cells (1,709), and the pattern was in the opposite direction for the Nucleus dataset (Monocytes = 2,729, 157 

T cells = 1,055). For their part, alveolar cells AT1 and AT2 contained 50% more genes expressed in the 158 

Cell dataset (AT1: 2,479 and AT2: 3,126) compared to the Nucleus (AT1: 1,639 and AT2: 2,004), and 159 

fibroblast two times as much (2,101 vs 1,061). 160 

 161 

The cellular origin of tumoral cells 162 

In Fig. 5A, the UMAPs showed that Cell sequencing samples from lung tumor tissues were 163 

largely dominated by immune cell types (20,410 immune cells vs 5,764 in Nucleus dataset), while in 164 

Fig. 5B, the Nucleus dataset were dominated by epithelial cells (27,362 epithelial cells in Nucleus vs 165 

1,220 in Cell dataset). For both Cell and Nucleus datasets, cells appeared more scattered (i.e., more 166 

heterogeneous) in the tumor compared to normal lung (median silhouette index (Normal) = 0.69; median 167 

silhouette index (Tumor) = 0.53; two-way ANOVA, p-value < 2e-16, Fig. S2). This shows a suboptimal 168 

cell type assignment of heterogeneous tumor samples to the described lung cell types from the HLCA 169 

reference. 170 

In Fig. 6A-C, we present, for each level 3 annotation cell type, the fraction of cells from each 171 

patient (Fig. 6A), the number of cells (Fig. 6B), the number of genes per cell (Fig. 6C) and in Fig. 6E-172 

G, we present the same information for the Nucleus dataset. First, we observed that within a coarse 173 

level annotation, similar cell types and similar proportions are observed in Cell and Nucleus datasets. 174 

For example, T cells largely dominated the immune cells, fibroblasts dominated the stroma cells and 175 

endothelial cell types were relatively rare. With respect to epithelial cells, these were mainly composed 176 

of unclassified and AT1 in both Cell and Nucleus datasets, and secretory epithelial cells appeared to be 177 

mainly segregated to patient 3. However, rare cell types were much more common in the Nucleus than 178 

the Cell datasets. 179 
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To distinguish malignant and non-malignant cells, we defined a genome-wide summary score 180 

(CNV score) that relies on gene expression levels to identify gene deletion and duplication and serves 181 

as a proxy to identify cancerous aneuploid cells23. This score was the highest for different epithelial cell 182 

types depending whether we analysed the Cell dataset (rare, multiciliated lineage, AT1, unclassified, 183 

Fig. 6D) or the Nucleus dataset (multiciliated lineage, secretory and unclassified, Fig. 6H). In addition, 184 

we also noted that annotation scores were negatively correlated with CNV scores for Cell (r2 = 0.11, p-185 

value < 2e-16) and Nucleus (r2 = 0.05, p-value < 2e-16) datasets (Fig. S3). 186 

 187 

The cellular transition to lung adenocarcinoma 188 

Given the known epithelial origin of lung adenocarcinoma and the role of the immune system in 189 

effectively controlling the growth of carcinoma cells, we analysed the transition in the proportions of 190 

epithelial and immune cells from normal to adenocarcinoma tissue (Fig. 7A-B). Alveolar Type 1, AT2 191 

and multiciliated cells decreased in relative abundance in adenocarcinomas, and this was consistent for 192 

the Cell and Nucleus datasets. On the contrary, rare, secretory and unclassified epithelial cell types 193 

increased in abundance in adenocarcinoma tissue in a consistent manner between Cell and Nucleus 194 

datasets. For Immune cells, patterns were harder to interpret given the small number of immune cells in 195 

the Nucleus dataset. Nevertheless, an augmentation of B and T cell lineages in adenocarcinoma was 196 

found for both datasets, as well as a sharp drop in natural killer cells in the Cell dataset. For 197 

macrophages and monocytes, a discordance in the transition from normal to tumor between scRNA and 198 

snRNA was observed. 199 

 200 

The Ligand-receptor interactome differs between Cell and Nucleus 201 

In Fig. 8A, we visualised the incoming and outcoming interactions among 319 ligand-receptor 202 

interactions (cell-cell contact) for the Cell-Normal dataset. The number of interactions between cell 203 
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types varies first according to the Cell vs. Nucleus method (two-way ANOVA, F = 90.7, p-value < 2e-204 

16) and then the Normal vs. Tumor tissue type (F = 68.2, p-value = 3.6e-16). In Fig. 8B, we show an 205 

example of a typical pathway common in Cell, rare in Nucleus (Major Histocompatibility Complex-I) 206 

and its interacting genes, which is more similar between Normal vs Tumor tissue of the same 207 

experimental method (Cell vs Nucleus). An example pathway, rare in Cell but common in Nucleus 208 

(Protein Tyrosine Phosphatase Receptor Type M) and its self interacting gene is presented in Fig. 8C. 209 

In this case, each network shows differences according to both the experimental method and tissue. 210 

 211 

The effect of immune depletion on Cell sequencing 212 

In order to remove the large fraction of immune cells, we performed immune depletion in 213 

Normal and Tumor single-cell suspensions. We confirmed that the Immune-depleted cell dataset was 214 

enriched in epithelial cells and depleted in immune cells (Fig. 9A-B). As such, both the Normal and 215 

Tumor tissues resemble the Nucleus dataset in the fact that they harbor a majority of epithelial cells 216 

(61.5% and 69.9% of total for the Immune-depleted cell and Nucleus dataset, respectively), yet they 217 

differ given that immune depleted cells harbor proportionally more endothelial (17.8% vs 4%) and 218 

stromal (18.4% vs 7.9%) cell types, but less immune cells (1.3% vs 13.0%). In addition, Normal tissues 219 

were largely composed of epithelial AT1 and AT2, while Tumor tissues also harbored secretory, rare 220 

and unclassified cell types, much like the Nucleus dataset (Fig. 9C-D). Finally, as we observed for the 221 

non-depleted dataset, we saw an increase in the heterogeneity from Normal to Tumor datasets (median 222 

Silhouette index for each level 3 cell type annotation: si (Normal) = 0.56, median si (Tumor) = 0.2, two-way 223 

ANOVA, p-value < 2e-16, Fig. S2). 224 

Finally, we downloaded a set of 512 heat shock and stress response genes that were previously 225 

identified as affected by the scRNA-seq method9. Ninety four percent (482 genes) of the genes in this 226 

core dataset were also present in our current dataset, with varying levels of expression. More 227 
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specifically, the percentage of cells expressing these genes was largely dependent on the method (Fig. 228 

9E, two-way ANOVA, p-value < 2e-16). The Immune-depleted cell dataset showed the highest 229 

expression of the stress response genes, whereas on average a cell from the Immune-depleted cell 230 

dataset expressed 21% of the 482 genes, compared to 11.0% and 6.9% for the Cell and Nucleus dataset, 231 

respectively. In addition, the proportions of cells expressing this core set of stress response genes was 232 

slightly, but significantly (p-value = 9.7e-8) higher in Tumor than in Normal (12.4 % and 11.5 %, 233 

respectively) tissue. In a similar manner, higher mitochondrial contamination is often considered a sign 234 

of lower cell quality or viability24 and we observed that the percentage of unique sequences (UMIs) 235 

assigned to mitochondrial genes in the raw data prior to any filtering was significantly higher (two-way 236 

ANOVA, p-value = 3.6e-5) in the Immune-depleted cell (mean = 15.2 %) and Cell (11.2 %) compared 237 

to the Nucleus (2.6%) dataset, while the tissue type (p-value = 0.10) had no significant effect (Fig. S4).  238 

 239 

 240 

 241 

 242 

  243 
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Discussion 244 

In this study we generated a dataset of 160,621 cells/nuclei showing commonalities and 245 

discordances in biological insights derived from single-cell and single-nucleus RNA-sequencing of 246 

paired normal-adenocarcinoma human lung specimens. A distinct portrait of cellular composition was 247 

observed per experimental methods that favors scRNA-seq of fresh samples to map the immune 248 

landscape of lung adenocarcinoma. On the other hand, snRNA-seq of frozen samples surpassed the 249 

relative merits of scRNA-seq to obtain a dataset with cell type proportion that match tissue content and 250 

to provide a more cost-effective approach for research applications necessitating a higher number of 251 

epithelial and cancer cells (see Table S4 for a summary of the benefits of each method). In these paired 252 

lung samples, we identified gene expression and cell type transitions from normal to tumoral tissue that 253 

were not always concordant whether cells or nuclei were examined. The most striking difference was 254 

the ligand-receptor interactions that varied more across methods (cells vs. nuclei) rather than tissue 255 

types (normal vs. tumor). Immune cell depletion partly alleviated the difference in cell type 256 

composition between cells and nuclei, but at the detriment of inducing a stress response. Finally, our 257 

analysis revealed that the recently proposed five-level hierarchical cell type annotation system by the 258 

Human Lung Cell Atlas4 will require customization for assigning cell types from nuclei and tumor 259 

samples. 260 

Despite the fact that samples originated from the same patients’ specimens, scRNA-seq and 261 

snRNA-seq varied substantially in their recovered cellular compositions and transcriptional landscape, 262 

thus highlighting the considerable impact of methodology on biological inference. While it has been 263 

shown previously that cryopreservation of tissue sample (such as performed for snRNA-seq) results in 264 

a major loss of epithelial cell types and an underrepresentation of T, B, and NK lymphocytes in the 265 

single-nucleus libraries11,13, it is not necessarily apparent which experimental method is more 266 

biologically relevant. Slyper et al.11 have suggested to analyse both fresh and frozen tissue, but this is 267 
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often unrealistic in practice. For their part, Denisenko et al.13 indicate that the apparent discordance in 268 

the recovered cellular composition between scRNA and snRNA might be due to either an under-269 

representation of immune cells in snRNA, or an under-representation of other cell types cells in scRNA 270 

due to incomplete dissociation. Early pioneering work in lung histology would suggest the latter, 271 

whereas cell staining and electron microscopy has revealed that the alveolar regions of normal human 272 

lungs are comprised mainly of epithelial, endothelial and interstitial cells, while immune cells 273 

(macrophages) comprised a small fraction (~5%) of all cells identified25. We thus conclude that in the 274 

context of lung adenocarcinoma and patient-matched normal samples, snRNA-seq provides a dataset 275 

comprising cell populations more closely matching tissue content. 276 

In addition, we observed a decrease in cell viability in both depleted and non-depleted scRNA-277 

seq, likely due to the longer sample preparation times at room temperature. While this could be partly 278 

alleviated by cold-activated proteases9, it favors snRNA-seq as a experimental protocol to preserve 279 

sample integrity. Although immune depletion works well for removing immune cells and therefore 280 

might draw a more accurate representation of the lung cellular composition that is closer to snRNA-seq, 281 

it requires extra laboratory manipulations and has the adverse effect of affecting both cell viability (Fig. 282 

S4) and inducing a dissociation transcriptional stress response (Fig. 9E), as shown previously12. 283 

The reference-based annotation used here provides an attractive alternative to unsupervised 284 

analysis26. We annotated the large majority of cells/nuclei in all tissue types, methods and patients (Fig. 285 

2, Fig. S5) while showing that it performed as well as a marker-based approach, at least at the coarsest 286 

annotation level (Fig. S1). Arguably, the confidence in this reference-based annotation approach 287 

depends on several factors. Notably, the comprehensiveness of the reference, the quality and type of 288 

query data and the level of cellular granularity required to answer the biological question of interest 289 

will dictate the best approach to use. Nevertheless, an unsupervised-marker based approach also 290 

depends on several factors such as the clustering algorithm, the gene markers used, and almost always, 291 
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the expertise and subjectivity of the person annotating the dataset27,28. Here, annotation and mapping 292 

were done using the same analytical framework for all samples and therefore provided an objective 293 

overview of the transcriptional cellular landscape. Fortunately, we were able to use a recently published 294 

comprehensive atlas of the lung (HLCA)4, although thorough cell atlases might not exist for all tissue 295 

types, biological conditions and demographic states29. The lower annotation scores observed in nuclei 296 

and tumor samples and consequently the greater number of unclassified cells, especially at the finer 297 

annotation levels suggest that these cells or nuclei have a distinct signature from the current reference 298 

cell types. A similar phenomenon was also observed in the HLCA for different disease states4 and the 299 

authors concluded themselves that the HLCA must be viewed as a live resource that will require 300 

continuous updates in the future, including samples of diverse ethnic, clinical and experimental (e.g. 301 

snRNA-seq) backgrounds. 302 

During the transition from normal to tumoral tissue, we identified a drop in AT1, AT2 and NK 303 

cells, concurrently with a rise in immune B and T cells, as previously identified2,6,16. In addition, 304 

tumoral cells showed an increased transcriptomic heterogeneity and a greater prevalence of copy 305 

number variants in epithelial cells. Similarly, it has been described that NSCLC exhibit important 306 

interpatient histologic heterogeneity and inferred origin of tumor cells30. Here, we showed that 307 

epithelial AT1, secretory and multiciliated lineages cell types had higher Copy Number Variants scores 308 

than AT2, which suggests malignant assignment. Yet, the distinction between these epithelial cells is 309 

not always straightforward, especially in a context of oncogenesis. Along those lines, we noted that 310 

annotation scores were negatively correlated with CNV scores which implies that cells with high CNV 311 

(likely carcinoma cells) loose their cellular identity and become harder to classify as distinct lung cell 312 

types. During the construction of the HLCA, Sikkema et al.4 also noted than a significant fraction of 313 

cells from adenocarcinomas did not cluster into the specific fine level cell types. Similarly, Wang et 314 

al.22 argued that cancer cells originate from ‘AT2-like’ cells, but also nuanced this fact and stated that 315 
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these form a distinct cluster from regular AT2 cells and in fact, have a transcriptional profile closely 316 

resembling other epithelial cells. Again, a more refined and thorough reference database will help to 317 

solve these questions. 318 

Ultimately, we hope to develop a comprehensive transcriptional resource for the identification 319 

of cell-targeted biomarkers and therapeutic targets to treat and prevent LUAD and other ailing aspects 320 

of the lung. Accordingly, this study may have clinical significance as immunotherapy is currently 321 

revolutionizing the treatment of lung cancer. Response to immune checkpoint inhibitors relies on the 322 

existing cell-cell interactions between tumor and T cells (e.g., commercial immunotherapy drugs 323 

targeting the interaction between PD-1 in tumor cells and PD-L1 in T cells)31 and identifying accurate 324 

biomarkers of response to immunotherapy is a major challenge in the field of lung cancer32. 325 

Consequently, this seems like a clinical problem where single-cell genomics can provide a solution. 326 

However, here we demonstrated that the ligand-receptor interactome landscape of lung 327 

adenocarcinoma is largely different whether cells or nuclei are evaluated. This may lead to conflicting 328 

prediction response to these novel immunotherapy agents. Accordingly, at least in the context of lung 329 

cancer, the choice between scRNA-seq and snRNA-seq has important implications. Our results favor 330 

scRNA-seq on fresh samples to provide a more comprehensive portray and granularity of the immune 331 

cells diversity. On the other hand, it may not be representative of the true cellular community, and lead 332 

to fewer difficult-to-dissociate tumor cells to assess relevant tumor-immune interactions. More studies 333 

will be needed to assess the best methods as well as to overcome other barriers to move single-cell 334 

genomics into the clinical setting33. 335 

336 
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Materials and methods 337 

Patients and samples  338 

Lung samples were collected from four patients that underwent curative intent primary lung 339 

cancer surgery at the Institut universitaire de cardiologie et de pneumologie de Québec – Université 340 

Laval (IUCPQ-UL) in 2021-2023, henceforth referred to patient 1, 2, 3 and 4. The four patients were 341 

self-reported white French Canadian (European ancestry) with no prior chemotherapy and/or radiation 342 

therapy, and all patients were between the age of 59 and 69, former smokers with adenocarcinomas 343 

(See Fig. 1 for overview of experimental design, and Table S1 for detailed clinical characteristics of 344 

patients). 345 

Following surgery, the explanted lobes were immediately transferred to the pathology 346 

department. For each patient, two �1 cm3 fresh tumor samples and two �1 cm3 non-tumor (normal) 347 

lung samples located distant from the tumor were harvested. The first set of tumor/non-tumor samples 348 

was transferred in dedicated tubes containing ice-cold RPMI (ThermoFisher, Cat. 11875093) for 349 

immediate cell dissociation and single-cells RNA sequencing (scRNA-seq) experiment. The second set 350 

of tumor/non-tumor samples was transferred in dedicated tubes, immediately snap-frozen in liquid 351 

nitrogen and stored at -80°C until the day of the single-nucleus RNA sequencing (snRNA-seq) 352 

experiment. A histologic slide of each specimen was stained (H&E) and reviewed by a pathologist. 353 

Staging was performed using the 8th edition of the TNM Classification of Malignant Tumours34. Lung 354 

tissue samples were obtained in accordance with the Institutional Review Board guidelines. All patients 355 

provided written informed consent, and the ethics committee of the IUCPQ-UL approved the study. 356 

 357 

Sample preparation for scRNA-seq 358 

Immediately after collection, the weight of each sample was recorded. Samples were transferred 359 

to 6-well cell culture plates, washed twice with 3 mL ice-cold PBS (Thermo Fisher, cat. 10010023) to 360 
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remove excess blood and transferred to a 5 mL glass beaker. Using a 1 mL syringe and 25G needle, 361 

300 µL of Enzyme dissociation mix was injected in the tissue followed by mechanical mincing into 362 

small fragments (<1mm³) using spring scissors for 2 minutes. Samples were then transferred to 50 mL 363 

Falcon tubes containing 5,7 mL of Enzyme dissociation mix and pipette mixed 5 times using wide bore 364 

1 mL tips. The enzymatic digestion was performed at 37°C, using a Vari-Mix™ test tube rocker at max 365 

speed for 35 minutes. Samples were pipette mixed 20 times after 15 and 30 minutes using wide bore 1 366 

mL tips. Enzyme dissociation mix contained: Pronase 1250 µg/mL (Sigma Aldrich, cat. 10165921001), 367 

Elastase 18.4 µg/ml (Worthington Biochemical, cat. LS006363), DNase I 100 µg/mL (Sigma Aldrich, 368 

cat. 11284932001), Dispase 100 µg/mL (Worthington Biochemical, cat. LS02100), Collagenase A 369 

1500 µg/mL (Sigma Aldrich, cat.10103578001) and Collagenase IV 100 µg/mL (Worthington 370 

Biochemical, cat. LS 004186) in HBSS (Thermo Fisher, cat. 14170112). Enzymatic digestion was 371 

stopped by adding 1.5 mL of fetal bovine serum (FBS, ThermoFisher, cat. A3840301) followed by 372 

pipette mix 5 times using wide bore 1 mL tips. Dissociated cells were filtered through a 70 µm strainer 373 

and washed with 7.5 mL ice-cold PBS. Cells were then pelleted at 400g, 4°C for five minutes and 374 

supernatant was removed. Three cycles of red blood cells removal were performed as follow: cell pellet 375 

resuspended by manual agitation in 500 µL of ACK Lysis Buffer (ThermoFisher, cat. A1049201) and 376 

incubated on ice one minute. One mL of ice-cold PBS was added and cells were centrifuged at 400g, 377 

4°C for two minutes and the supernatant was removed. The final pellet was resuspended in 500 µL ice-378 

cold-PBS containing 0.04% Bovine Serum Albumin (BSA, Sigma Aldrich Cat. A7284) and 10% FBS. 379 

Cell suspensions were successively passed through 100 µm, 70 µm and 40 µm strainer using quick spin 380 

to reach 400g to filtrate each sample. Samples were transferred to 2.0 mL low binding tubes and kept at 381 

4°C. Cell count and viability were performed using a 1:1 mix of cell suspension, Trypan blue 382 

(ThermoFisher, cat. 15250061), haemocytometer and conventional light microscopy. Cells suspensions 383 

meeting the following criteria were accepted for scRNA-seq library preparation: absence of aggregated 384 
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cells, a viability >80%, and a total cell count between 400 and 1200 cells/µL. 1x105 cells were 385 

transferred to a low binding 2 mL tube and kept at 4°C (non-depleted fraction). The remaining cells 386 

(from 2 to 5 x106 cells) were submitted to CD45 immune cell depletion protocol (single cells depleted 387 

fraction) as described below. The characteristics of the lung specimen and the single cell suspension for 388 

each sample are given in Table S2. 389 

 390 

CD45 immune cell depletion 391 

Cells (from 2 to 5 x106 cells) were centrifuged at 300g, 4°C, 10 minutes. The supernatant was 392 

removed and the cell pellet was resuspended in 80 µL MACS buffer (0.5% BSA, 2 mM EDTA pH 8.0 393 

in PBS) previously degassed for 1 hour at room temperature. Twenty µL of CD45 microbeads 394 

(Miltenyi Cat. 130-045-801) were added and sample was incubated 15 minutes at 4°C followed by 395 

addition of 1 mL MACS buffer and centrifugation 300g, 10 minutes at room temperature. Supernatant 396 

was removed and pellet resuspended in 2-steps 100 µL + 400 µL MACS buffer. The total volume (500 397 

µL) was applied to a LS Positive Selection Column (Miltenyi Cat. 130-042-401) previously rinsed with 398 

3 mL MACS buffer and installed on a MidiMACS magnetic Separator with a collection tube. Column 399 

was rinsed with 3 X 3 mL MACS buffer and all volumes (9.5 mL) were collected which contained the 400 

CD45-negative fraction. CD45-negative cells were centrifuged 300g, 10 minutes at room temperature 401 

followed by supernatant removal. Cells were washed twice with 1 mL PBS followed by centrifugation 402 

at 300g, 10 minutes after each wash. Cells were finally resuspended in 100 µL BSA 0.04%, 10% FBS 403 

in PBS and kept at 4°C. Cell count and viability were performed using a 1:1 mix of cell suspension, 404 

Trypan blue, haemocytometer and conventional light microscopy. Cells suspensions meeting the 405 

following criteria were accepted for scRNA-seq library preparation: absence of aggregated cells, a 406 

viability >80%, and a total cell count between 400 and 1200 cells/µL. 407 

 408 
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Sample preparation for snRNA-seq 409 

Nuclei suspension was prepared from ~30 mg snap frozen tissue using Chromium Nuclei 410 

Isolation Kit as per manufacturer protocol (10x Genomics Cat. 1000494). Nuclei count and integrity 411 

were performed using a 1:1 mix of nuclei suspension and methylene blue 0.25% (Ricca Chemical, Cat. 412 

48504), haemocytometer and conventional light microscopy. Nuclei suspensions meeting the following 413 

criteria were accepted for snRNA-seq library preparation: absence of aggregated nuclei, nuclei with 414 

circular shape and intact membrane (without blebbing) >80%, and a total nucleus count between 400 415 

and 1200 nuclei/µL. Nuclei suspension were kept at 4°C until proceeding with 10x Genomics snRNA-416 

Seq library preparation protocol. 417 

 418 

10x Genomics sn/scRNA-seq library preparation 419 

For each sample, approximatively 15,000 nuclei or cells were loaded into each channel of a 420 

Chromium Next Gel Beads-in-emulsion (GEM) Chip G (10x Genomics Cat. 1000127) as per 421 

manufacturer instruction for GEM generation and barcoding. Given the cell capture efficiency of 422 

around 65%, 10,000 cells per library were therefore expected. The Chip was run on the Chromium 423 

Controller, GEMs were aspirated and transferred to a strip tube for cDNA synthesis, cDNA 424 

amplification and library construction using Chromium Next GEM single-cell 3’ Library Kit v3.1 (10x 425 

Genomics Cat. 1000128) and Single Index Kit T Set A (10x Genomics Cat. 2000240) as per 426 

manufacturer instruction. The library average fragment size and quantification was performed using 427 

Agilent Bioanalyzer High Sensitivity DNA kit (Agilent Cat. 5067-4626) and a final concentration 428 

determination was performed using NEBNext® Library Quant Kit for Illumina (New England Biolabs 429 

Cat. E7630) prior to library sequencing. 430 

 431 
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Next generation sequencing 432 

Libraries were individually diluted to 10 nM, pooled and sequenced on an Illumina 433 

NextSeq2000 system following manufacturer’s recommendations. Sequencing was realized on a P3 434 

(100 cycles) cartridge, aiming for 200 to 500 million reads per library (sample). Run parameters for 435 

paired-end sequencing were as follows: read 1, 28 nucleotides; read 2, 91 nucleotides; index 1, 8 436 

nucleotides; and index 2, 0 nucleotide. 437 

 438 

Single cell/nucleus data preparation 439 

Demultiplexing, alignment and transcript counting was performed using the Cellranger 440 

software (v7.1.0, 10x Genomics) on our local server (Lenovo ThinkSystem SR650, 40 cores and 441 

384GB RAM). The BCL files from the Illumina sequencing run were first demultiplexed into FASTQ 442 

files using the cellranger mkfastq command. Read alignment and UMI counting were then executed 443 

with the cellranger count command (see alignment and cell statistics in Table S5). We used GRCh38 444 

as the reference transcriptome available on Gencode, release 43 (GRCh38.p13).  445 

 446 

Data quality control 447 

The most up-to-date bioinformatics procedure defined by the R (v4.3.0)35 library Seurat 448 

(v4.3.0)24 was used to create an object for each sample and calculate values for nCount (number of 449 

Unique Molecular Identifiers [UMI] per cell), nFeatures (number of genes expressed per cell) and 450 

percent.mt (fraction of UMIs aligning to mitochondrial genes) parameters. Using the R library scuttle 451 

(v1.10.1)36, we determined outlier values for nCount, nFeatures and percent.mt based on the median 452 

absolute deviation and sub-setted each sample accordingly. Note that for the percent.mt parameter, if 453 

necessary, we further capped this outlier value at twenty-five percent per sample. 454 
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For each sample, we then performed normalization and variance stabilization using the function 455 

SCTransform, which also has the benefit to regress out the percent.mt effect from the underlying count 456 

data. Then, using the R library DoubletFinder (v2.0.3)37, we identified and removed doublets 457 

(assuming a five percent doublet rate), which occur when multiple cells are captured into a single oil 458 

droplet during the GEM generation.  459 

 460 

Reference-based cell type annotation and mapping  461 

On each of these curated samples, cellular annotation was performed using the R library 462 

Azimuth (v0.4.6)26 and the most recent version of the Human Lung Cancer Atlas (HLCA v2)4. Note 463 

that in the subsequent methodology, cell annotation refers to the annotation of a uniquely barcoded 464 

GEM sample stemming from either a scRNA-seq or a snRNA-seq dataset. 465 

The HLCA is a comprehensive and curated reference dataset constructed using a diverse set of 466 

107 healthy lung samples (584,444 cells) and which allows to identify the transcriptional signature of 467 

61 hierarchical cell types, from the coarsest possible annotations (level 1: Immune, Epithelial, 468 

Endothelial and Stroma), recursively broken down into finer levels (levels 2-5). In addition, this 469 

reference-based mapping approach allows to robustly and sensitively compare samples of broad 470 

cellular compositions, while also identifying specific and rare cell populations24,26,38 471 

Specifically, for each sample (query), the algorithmic approach first identifies anchors between 472 

the reference and query (that is, pairs of cells from each dataset that are contained within each other's 473 

neighborhoods) and uses these anchors to integrate the query dataset onto the reference. Then, the 474 

embeddings of the query data onto the reference Principal Components (50 PCs) are calculated and 475 

visualised directly onto the reference two-dimensional Uniform Manifold Approximation and 476 

Projection (UMAP). Finally, annotation scores [0:1], which reflect the confidence in the annotation, 477 

were used to label cell types, whereas cells with annotation scores < 0.5 were labelled as unclassified. 478 
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 479 

Copy number variations analysis 480 

For each scRNA-seq and snRNA-seq tumor sample, we performed an analysis of Copy-Number 481 

Variants (CNVs) in order to identify malignant aneuploid cells based on the premise that gene CNVs 482 

can be identified using the difference between the mean log expression level of non-cancerous 483 

reference cells (here immune cells) and the log gene expression level of a cell of interest. This was 484 

performed using the R library infercnv (v1.17.0)23 and a general index (CNV score) for each cell was 485 

then defined as the mean sum of square of scaled [-1;+1] standardized log fold-change values. 486 

 487 

Biological dataset comparisons 488 

We integrated twenty-four samples into six different datasets (Cell-Normal, Nucleus-Normal, 489 

Cell-Tumor, Nucleus-Tumor, Immune-depleted cell-Normal, Immune-depleted cell-Tumor), in order to 490 

quantify biological similarities and differences among datasets (see Fig. 1F-G for summary of 491 

comparisons and accompanying figures). Given that the same reference dimensionality reduction 492 

(PCA) and visualisation space (UMAP) was used for each sample, we could simply merge expression 493 

data, metadata and projections into objects that accounts for technical variation among sample in order 494 

to quantify patterns. For each individual cell, we also calculated a Silhouette index39 to evaluate the 495 

goodness of fit of the clustering, whereas the index is calculated from the UMAP embeddings and the 496 

clusters correspond to specific cell type (level 3) annotations. We then tested the effect of the 497 

experimental method and tissue type on the Silhouette index using a two-way Analysis of Variance 498 

(ANOVA). 499 

 500 

Ligand-receptor analysis 501 
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In order to infer and visualise the intercellular communication among cell populations, we used 502 

the R library cellchat (v 1.6.1)40. We quantified the cell-cell interaction pathways in normal and tumor 503 

tissue (cell and nucleus dataset) to describe the cellular transition during oncogenesis and quantify how 504 

the experimental method and tissue type affected the results. We limited this analysis to level 3 505 

annotation and excluded infrequent cell types (<500 cells in total) and cells that were unclassified at the 506 

level 3 annotation. We quantified the number of interactions from and to each cell type and tested the 507 

effect of the experimental method and tissue type using a two-way ANOVA. 508 

 509 

Stress-related genes  510 

To quantify the effect of our Cell, Nucleus and Immune Depleted Cell experimental methods on 511 

the overall stress responses of the cell populations, we analysed the expression pattern of a core set of 512 

512 heat shock and stress response genes that were previously identified to be affected by the scRNA-513 

seq sample preparation method9. We quantified the proportions of cells that expressed these genes for 514 

each sample and tested the effect of the experimental method, tissue type and patient using a two-way 515 

ANOVA. 516 

  517 
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 627 

628 
 629 
Figure 1 | Overview of the experimental design. For each patient (A), a tumor specimen and a 630 
normal (non-malignant) lung specimen harvested from a site distant from the tumor were resected (B631 
The research specimens were immediately divided into smaller fragments. For both normal and tumo632 
lung specimens, a fragment was frozen in liquid nitrogen and stored at -80oC until further processing633 
for snRNA-seq. For fresh specimens, the fragments proceeded directly to dissociation into single-cel634 
suspensions. A subsample of the dissociation mix underwent immune cell depletion (C). The final se635 
of samples (D) were then loaded in wells of the microfluidic chip (E) in order to generate the 636 
transcriptome of approximately 10,000 cells or nuclei per sample (F). Dataset comparisons performe637 
with accompanying figures (G). 638 
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 641 

 642 
 643 
Figure 2 | Overview of the 160,621 cells/nuclei that passed quality control obtained from lung 644 
tumors and distal normal lung samples. A. Number of cells retained after quality control for each 645 
patient, each experimental method (Cell, Nucleus, Immune-depleted cell) and tissue type (Normal, 646 
Tumor). B. Mean number of genes per cell, per patient, method and tissue type. C. The fraction of 647 
annotated cells for each of the five-level HLCA hierarchical cell annotation reference framework, pe648 
method and tissue type. 649 
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 652 

 653 
 654 
Figure 3 | UMAP representations and cell types annotations (Normal tissue) for Cell (A) and 655 
Nucleus (B) datasets with general cell types (level 1) annotation. Finer-grained annotation (level 3) fo656 
the subset of immune cells (C) or nuclei (D) and for the subset of epithelial cells (E) or nuclei (F). To657 
the right of each UMAP, stacked bar plots indicate the proportion of each cell type in the specific 658 
dataset. Cell types present at < 1% are labelled as others. 659 
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 662 

 663 
 664 
Figure 4 | Cell types characteristics (Normal tissue). For each of the four coarse (level 1) cell type665 
annotation (Immune, Epithelial, Endothelial, Stroma) further refined into finer categories (level 3): th666 
fraction of cells (A: Cell dataset, D: Nucleus) and the number of cells (B: Cell, E: Nucleus) originatin667 
from each patient. Box plots of the number of genes expressed per cell (C: Cell, F: Nucleus), with pl668 
center, box and whiskers corresponding to median, IQR and 1.5�×�IQR, respectively. Note that onl669 
cell types with > 20 cells were retained for clarity in this visual representation.  670 
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 673 

674 
 675 
Figure 5 | UMAP representations and cell types annotations (Tumor tissue) for Cell (A) and 676 
Nucleus (B) datasets with general cell types (level 1) annotation. Tumor samples are overlaid on top 677 
Normal samples (in gray). To the right of each UMAP, stacked bar plots indicate the proportion of ea678 
cell type in the specific dataset. 679 
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 682 

683 
 684 
Figure 6 | Cell types characteristics (tumor tissue). For each of the four coarse (level 1) cell types 685 
annotations (Immune, Epithelial, Endothelial, Stroma) and unclassified (unc), further refined into fin686 
categories (level 3 cell types): the fraction of cells (A: cell samples, E: nuclei samples) and the numb687 
of cells (B: cell, F: nucleus) originating from each patient. Box plots of the number of genes expresse688 
(C: cell, G: nucleus) and the CNV score (D: cell, H: nucleus), with plot center, box and whiskers 689 
corresponding to median, IQR and 1.5�×�IQR, respectively. Note that only cell types with > 20 cel690 
were retained for clarity in this visual representation. 691 
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 694 

 695 
 696 
Figure 7 | Normal - tumor transition. A. For each specific (level 3) Epithelial or Immune cell type,697 
the fraction of cells they represent in the Tumor dataset divided by the fraction of cells they represent698 
the Normal dataset (ratios above 1 represent an increase in the Tumor dataset), with plot center, box 699 
and whiskers corresponding to median, IQR and 1.5�×�IQR, respectively B. The percentage of 700 
specific (level 3) Epithelial or Immune cell types in Tumor and Normal dataset. Note that only cell 701 
types with > 20 cells were retained for clarity in this visual representation. 702 
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706 
 707 
Figure 8 | The ligand-receptor interactome. A. Scatter plots of ingoing and outgoing interactions p708 
tissue type and method for common cell types (see methods) among all comparisons. To the right are709 
the top 10 interacting pathways. B: An example of pathway common in cell, rare in nucleus (MHC-I)710 
with the contribution of the top10 ligand-receptor interacting genes (bar plot to the right). C: An 711 
example of pathway rare in cell, common in nucleus (PTPRM) with the ligand-receptor interacting 712 
gene (bar plot to the right). 713 
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 715 

716 
 717 
Figure 9 | UMAP representations and cell types annotations (immune depleted cells) for Norma718 
(A) and Tumor (B) tissue samples with general cell types (level 1) annotation. To the right of each 719 
UMAP, stacked bar plots indicate the proportion of each cell type in the specific dataset. Number of 720 
cells in the Normal (C) and Tumor (D) tissue, per patient. E: The percentage of cells expressing a 721 
stress-related gene signature as a function of the experimental method and tissue type. 722 
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