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ABSTRACT 
 
Aurora kinase A (AURKA) is a major regulator of the cell cycle. A prominent association exists between 
high expression of AURKA and cancer, and impairment of AURKA levels can trigger its oncogenic 
activity. In order to explore the contribution of post-transcriptional regulation to AURKA expression in 
different cancers, we carried out a meta-analysis of -omics data of 18 cancer types from The Cancer 
Genome Atlas (TCGA). Our study confirmed a general trend for increased AURKA mRNA in cancer 
compared to normal tissues and revealed that AURKA expression is highly dependent on post-
transcriptional control in several cancers. Correlation and clustering analyses of AURKA mRNA and 
protein expression, and expression of AURKA-targeting hsa-let-7a miRNA, unveiled that hsa-let-7a is 
likely involved to varying extents in controlling AURKA expression in cancers. We then measured 
differences in the short/long ratio (SLR) of the two alternative cleavage and polyadenylation (APA) 
isoforms of AURKA mRNA across cancers compared to the respective healthy counterparts. We 
suggest that the interplay between APA and hsa-let-7a targeting of AURKA mRNA may influence 
AURKA expression in some cancers. hsa-let-7a and APA may also independently contribute to altered 
AURKA levels. Therefore, we argue that AURKA mRNA and protein expression are often discordant in 
cancer as a result of dynamic post-transcriptional regulation. 
 
INTRODUCTION 
 
AURKA is a key regulator of the cell cycle, controlling centrosome maturation and mitotic spindle 
assembly1. AURKA is overexpressed and represents a marker of poor prognosis in a broad range of 
human malignancies2–4. Because of the significant association between high AURKA expression and 
cancer progression, poor prognosis, and drug resistance, AURKA is a preferred target for anti-cancer 
strategies, especially the use of small molecule kinase inhibitors4,5 and targeted proteolytic tools6,7. 
However, even the most promising AURKA inhibitors are still under clinical studies and only alisertib 
has concluded phase III clinical assessment4. Furthermore, the existence of kinase-independent 
AURKA activity suggests that deregulation of expression may be sufficient to promote some of its 
oncogenic functions. Accordingly, anti-cancer strategies aimed at reducing AURKA expression levels 
have been shown to be effective in suppressing the carcinogenicity of AURKA8–13. 

The literature mainly reports that AURKA overexpression in cancers is due to increased gene copy 
number, transcription, or protein stability14. Various single nucleotide polymorphisms (SNPs) of the 
AURKA gene have also been associated with cancer development and susceptibility15. Additionally, 
certain microRNAs (miRNAs) control AURKA expression in cancers where its overexpression is a 
driving factor or a marker of poor prognosis16–20. However, overexpression of AURKA protein in cancer 
does not always correlate with the above mechanisms, suggesting that other deregulated post-
transcriptional events may occur21–24.  

One important step in the maturation of mRNAs is the cleavage and polyadenylation (C/P) process, 
which involves cutting the 3’ end of precursor mRNAs (pre-mRNAs) and adding a poly(A) tail25. A 
polyadenylation signal (PAS), which is found 10–30 nucleotides upstream, as well as UGUA and U-rich 
motifs usually precede the cleavage site, whereas U- and GU-rich motifs usually follow; these elements 
altogether form the C/P site26. Most human pre-mRNAs have multiple C/P sites27, which allows for 
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different transcript isoforms to be expressed for the same gene by alternative cleavage and 
polyadenylation (APA).  

The function of microRNAs in controlling genes involved in the cell cycle and the significance of this 
control in cancer are widely recognised28,29. The hsa-let-7 miRNA family consists of 11 closely related 
genes that map in chromosomal areas that are usually deleted in human tumours30. Because of their 
pathogenic downregulation in cancer, hsa-let-7 miRNAs are classified as tumour suppressors28,31. A link 
between hsa-let-7a expression and clinical characteristics has been shown in triple negative breast 
cancer32,33, and roles for hsa-let-7a in breast tumour development and metastasis have been 
hypothesised34,35. Multiple studies also reported a role for hsa-let-7a in controlling AURKA 
expression19,24,31,36. Indeed, we recently described a post-transcriptional pathway of AURKA regulation 
through APA of AURKA mRNA that underlies cell cycle-dependent translational efficiency24. We found 
that perturbation of AURKA APA allowed AURKA expression to evade regulation by the tumour 
suppressor miRNA hsa-let-7a and was sufficient for acquisition of cellular properties associated with 
oncogenic transformation24. However, the extent of deregulated post-transcriptional events influencing 
AURKA expression across cancers is currently unknown. 

Several studies have determined the expression profile of AURKA and its prognostic significance in 
a wide range of cancers using whole-genome datasets from TCGA4,37–41, although limited by two main 
caveats. First, these studies used incongruent datasets that included patients who had undergone prior 
treatments or who had been diagnosed with other types of cancers or metastases, as well as datasets 
that do not meet TCGA standards. In these studies cancer expression information was downloaded 
directly from user-friendly online resources, which perform downstream analysis of the entire group of 
datasets by TCGA, such as UALCAN42 or GEPIA243. Second, the existence of multiple AURKA mRNA 
isoforms44 was never considered. Given the key role of post-transcriptional control in cancer45, analyses 
of isoform-specific expression may reveal mechanisms converging on mRNA that underlie dysregulated 
AURKA expression and that the studies carried out to date have overlooked.  

In this article, analysis of protein and mRNA expression of AURKA in all cancers was performed 
using genomic datasets available from TCGA and explored in previous published studies4,37–40. 
However, we improved the accuracy and reliability of the analysis by filtering datasets from patients 
with unusual medical histories or from those who have undergone specific prior treatments, as well as 
non-standard datasets as determined by TCGA. Additionally, we sought to understand the role of post-
transcriptional regulation in AURKA expression in cancer. Based on our previous finding that hsa-let-
7a miRNA and APA of AURKA mRNA can control AURKA protein levels24, we explored the extent to 
which such association may provide a general mechanism for AURKA overexpression in cancer. Based 
on our findings, we hypothesise that AURKA protein expression in cancer could result from dynamic 
post-transcriptional regulation by hsa-let-7a and APA, in combination or independently. 

 
MATERIALS AND METHODS 
 
Pan-cancer analysis of AURKA and hsa-let-7a expression. Public datasets of harmonized gene, 
miRNA and protein expression quantification of 18 primary tumour types from TCGA41 (Table 1) were 
downloaded directly from the TCGA repository. Only solid tumours and tumours for which at least three 
datasets of matched normal tissues existed were considered for analysis. Datasets were excluded if 
they: (i) were derived from patients under systemic, radiation, neoadjuvant, hormone, or other 
treatments prior to the malignancy, or concomitant to the malignancy but claimed unsuitable by TCGA; 
(ii) were derived from patients previously or concomitantly diagnosed with other types of cancers or with 
metastases; (iii) were derived from patients with recurrent tumours; (iv) did not meet TCGA study 
protocols or did not have clear tumour classification. R46 was used to manage downloaded datasets 
and perform downstream analysis. Data points relative to AURKA mRNA and hsa-let-7a miRNA 
expression were extracted from transcriptome profiling datasets and plotted as fragments per kilobase 
of transcript per million mapped reads (FPKM) and as reads per million miRNA mapped (RPM), 
respectively, in log2 scale. Abundance of mature hsa-let-7a was calculated as the sum of reads from all 
miRNA IDs corresponding to the same unique MIMAT identifier (MIMAT0000062) from miRBase47. Data 
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points of AURKA protein expression were extracted from proteome profiling datasets and plotted as 
log2 arbitrary units (a.u.). Bioinformatics pipelines used by TCGA to generate mRNA, miRNA, and 
protein expression quantification datasets can be found at docs.gdc.cancer.gov/Data/Introduction. 
 
Correlational analysis. RStudio46 was used to match variables to their originating sample according 
to the Sample ID for each TCGA cancer project. The variables were first matched in pairs; paired data 
points belonging to individual samples were then plotted in XY graphs to perform the Spearman’s rank 
test, and the strength of correlation was expressed as value of the Spearman’s rank correlation 
coefficient (r). Degrees of correlation were considered as follows: r < |0.1| none; r = [|0.1|-|0.3|] weak; r 
= [|0.3|-|0.5|] moderate; r = [|0.5|-|0.7|] strong; r > |0.7| very strong. p values were corrected using the 
Bonferroni test. 
 
Clustering analysis. k-means clustering was used to partition two observations into clusters, in which 
each cancer belongs to the cluster with the nearest mean of the observations’ values (cluster centroid) 
serving as a prototype of the cluster. The total sum of the squared distance between centroid and each 
member of the cluster (i.e., total SSE) was 0.2 and the SSE per cluster was ≤ 0.1.  
 
Pan-cancer analysis of AURKA PAS usage. Mapped RNA-seq datasets in .bam format from the 18 
selected TCGA solid primary tumours (Table 1) were obtained with permission of the NIH, and were 
analysed using the public software APAtrap48 according to the developers’ instructions. The analysis 
was only directed at AURKA and CCND1 genes. GRCh38/hg38 was used as reference genome and 
the GENCODE release 3649 was used for gene annotations. The analysis was run using APAtrap default 
parameters but with a minimum average coverage required for each 3’UTR of 10. Data relative to APA 
isoform usage of the genes of interest were plotted as short/long ratio (SLR) of individual samples, or 
as mean cancer to normal fold change of SLR values for individual normal-cancer sample pairs (i.e., 
SLR fold change).  
 
RESULTS 
 
Pan-cancer analysis of AURKA mRNA and protein expression  
 
We first explored AURKA mRNA expression levels across cancers. Before performing a pan-cancer 
analysis of AURKA expression, we first explored whether the inclusion or exclusion of unusual samples 
affected fold change estimates between cancer and normal tissues. To do this, two pools of TCGA gene 
expression quantification datasets were created (Table 1). One contained the entire set of datasets 
from both cancer and normal samples as downloadable from TCGA (n = 8483). The second pool (n = 
7758) excluded datasets from irregular cases, which were from both cancer and normal tissue samples. 
The difference between the fold change of median AURKA FPKM in cancer over normal samples when 
the entire pool is used (a) and when the filtered pool is used (b) was calculated as: difference (%) = [(a 
– b)/b] x 100. While this difference was < |5|% in 13 cancers, it was ~5–10% in four cancers (ESCA, 
LUSC, PRAD, LUAD), and ~24% in BLCA (Table 1). Differences were observed with both positive and 
negative trends, indicating that using nonconforming datasets can lead to both overestimate and 
underestimate of changes in AURKA mRNA expression between cancer and normal samples.  

The pan-cancer analysis of AURKA mRNA expression revealed a general trend of increased mRNA 
levels in cancer tissues, although to varying extents (Figure 1A). Other studies reported different 
statistical significances due to the use of alternative statistical tests and a different number of control 
samples4,37–40. THCA represents the only example in which AURKA mRNA is lower in cancer compared 
to normal tissue, although its expression is overall very low, and this difference is therefore non-
significant (Table 1). Most cancer samples showed an extensive range of data distribution, indicating 
variable levels of AURKA mRNA expression among cancer patients. The median AURKA mRNA 
expression across normal tissues was tissue-dependent, and the overall AURKA mRNA levels in cancer 
also varied across tissues suggesting tissue-specific dysregulation. 
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Next, how AURKA mRNA expression correlated with protein expression (‘protein vs mRNA’) was 
examined in cancer samples (Figure 1B, Supplementary Figure 1). Proteomic datasets were also 
filtered for irregularities before analysis. For all the cancers, except PRAD and THCA, there existed a 
positive correlational relationship (r > 0.1) of varying degrees between AURKA mRNA and protein 
expression levels (Figure 1B). The wide range of r coefficient values suggests that mechanisms exist 
that modulate the coupling of AURKA mRNA and protein expression (Figure 1C). High r values would 
indicate that AURKA protein levels are dictated by mechanisms that determine the number of its mRNA 
molecules, such as gene copy number variation (CNV), the rate of transcription or of mRNA 
degradation. Contrarily, low r values might indicate that AURKA protein abundance likely results from 
mechanisms instead influencing the rate of translation or of protein degradation. Therefore, 
mechanisms governing AURKA translation or degradation play a greater role in cancers with lower 
AURKA mRNA-protein correlation (Figure 1C).  
 
Pan-cancer analysis of hsa-let-7a miRNA expression  
 
Since aberrant AURKA protein expression in cancer may derive from alterations in post-transcriptional 
events, this was further investigated in light of the reported role of hsa-let-7a miRNA in controlling 
AURKA expression19,24,31,36. Initially, the selected 18 cancers were subjected to analysis of hsa-let-7a 
expression levels. Two pools of datasets were created, one containing the entire set of datasets from 
both cancer and normal samples as downloaded from TCGA (n = 8376), and a second one that 
excluded datasets pertaining to irregular cases (n = 7702) (Table 2). The percentage difference (%) 
between the fold change of median hsa-let-7a RPM in cancer over normal samples when the entire 
pool is used and when the filtered pool is used was calculated as per Table 1. While the difference was 
minimal for nine cancers (< |1|%), it was |1–5|% for six cancers (BLCA, BRCA, COAD, HNSC, LIHC, 
THCA), and ~|6–9|% for three cancers (ESCA, KIRP, LUAD). Similarly to the analysis of AURKA mRNA 
expression, differences could be either positive or negative (Table 2).  

The levels of hsa-let-7a expression in the selected cancers compared to corresponding normal 
tissues are shown in Figure 2A. Despite hsa-let-7a’s status as a known tumour suppressor 
miRNA28,31,36, and therefore the expectation that its expression is down-regulated in cancer, five cancers 
(BLCA, CESC, ESCA, PAAD, PRAD) showed increased hsa-let-7a expression compared to normal 
tissues (Figure 2A, Table 2). Two cancers (STAD, UCEC) did not show any particular change in hsa-
let-7a expression compared to their respective controls. On the other hand, 11 cancers showed a 
decrease in hsa-let-7a expression compared to normal tissues, which was statistically significant for all 
with the exception of KIRP. By examining hsa-let-7a expression in the normal samples across tissue 
types, it is evident that this varied considerably and was therefore tissue-dependent30. The general level 
of hsa-let-7a expression in cancer was also fluctuating across tissue types, implying tissue-specific 
mechanisms of dysregulation. 

 
Involvement of hsa-let-7a in AURKA expression across cancers 
 
Subsequently, the correlation between AURKA mRNA and hsa-let-7a expression levels (‘mRNA vs hsa-
let-7a’) in individual cancer samples was interrogated as a route to infer the role of hsa-let-7a in 
modulating AURKA expression (Figure 2B, Supplementary Figure 2A). A correlation was found to 
exist (r ≥ |0.1|) with statistical significance for six cancers (BRCA, LUAD, LUSC, PRAD, THCA, UCEC). 
Nonetheless, in accordance with the role of hsa-let-7a in suppressing AURKA expression19,24,31,36, 
negative r coefficients were measured in all cases where r > |0.1|, except in PRAD, despite the general 
lack of statistical significance. A potentially existing correlation suggests that hsa-let-7a may act upon 
AURKA mRNA stability, whereas lack of correlation may not exclude that hsa-let-7a controls AURKA 
expression by tuning its translation, provided that a link exists between hsa-let-7a and AURKA protein 
expression.  

The relationship between AURKA protein expression and hsa-let-7a expression (‘protein vs hsa-let-
7a’) was then explored for the 18 cancers of interest (Figure 2C, Supplementary Figure 2B). An 
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existing correlation (r ≥ |0.1|) with statistical significance was found for two cancers (BRCA, UCEC). In 
addition, negative r coefficients were measured for all cancers where r > |0.1|, with the exception of 
HNSC and PAAD. The correlations between hsa-let-7a and AURKA protein levels were overall weaker 
than those measured between hsa-let-7a and AURKA mRNA expression but might reflect a connection 
between hsa-let-7a and protein levels, underpinned by a role of hsa-let-7a in either AURKA mRNA 
abundance or translation rate, according to whether a link exists between hsa-let-7a and AURKA mRNA 
or not. A clustering analysis was therefore carried out between two chosen observations: r coefficients 
of the ‘protein vs mRNA’ correlation; r coefficients of the ‘protein vs hsa-let-7a’ correlation. Five clusters 
were identified (Figure 2D), the members and features of which, as well as speculations on possible 
involvements of hsa-let-7a in AURKA expression, are summarized in Figure 2E. We point to a 
heterogeneous landscape of how hsa-let-7a might be implicated in the regulation of AURKA expression 
in cancer. Based on our analysis, the involvement of hsa-let-7a could be hypothesised to range from 
being null to negatively controlling the rate of degradation or of translation of AURKA mRNA.  
 
Pan-cancer profiling of AURKA APA mRNA isoforms  
 
One source of variability in the correlation between hsa-let-7a and AURKA expression in different 
cancers could arise from differences in AURKA mRNA processing that would determine sensitivity to 
hsa-let-7a targeting. For example, we previously showed that hsa-let-7a targets only the long APA 
isoform of AURKA mRNA24 and a different short/long ratio (SLR) of AURKA APA isoforms is present 
between several types of normal and cancer cells24,50–53. Here, pre-processed RNA-seq datasets from 
the selected TCGA cancers were subjected to analysis of PAS usage using APAtrap48. The APAtrap 
analysis only detected two of the AURKA transcripts annotated in ENSEMBL, namely 
ENST00000371356.6 (AURKA-203) and ENST00000395914.5 (AURKA-207). These transcripts share 
the same 3’ UTR region, therefore the APAtrap results are identical, and we only report those for 
AURKA-203. The depth of coverage of reads mapped to the reference genome in is shown in Figure 
3A for representative BRCA primary tumour samples, which show different AURKA SLRs. Most cancers 
showed an increase in mean AURKA SLR (AURKA-203) in cancer samples compared to respective 
matched normal samples (SLR fold change > 1) (Figure 3B). In most cases the cancer-dependent 
increase in mean SLR was more than 1.5-fold. In particular, BRCA showed an increase of ~2.5 fold 
change in mean SLR, and this recapitulates results that others have obtained using different 
methods24,50–52. AURKA-207 followed the same trends as AURKA-203 (data not shown). As a positive 
control to our analysis, the APAtrap analysis was extended to the cyclin D1 (CCND1) mRNA, also known 
to have an increased SLR in cancer54–57. We found that the cancer/normal fold change of mean CCND1 
SLR values was > 1 in most cases (Figure 3C), confirming the ability of APAtrap to report on APA 
events. In summary, our data indicate that APA represents a mechanism of AURKA post-transcriptional 
dysregulation. Given the higher translation rate of the short APA isoform24, APA likely contributes to the 
increased expression of AURKA in cancers. 
 
Interplay of APA and hsa-let-7a in regulating AURKA expression  
 
We then examined the extent to which APA is linked to AURKA expression and how it may be associated 
with hsa-let-7a in mediating AURKA expression across cancers. First, a positive correlation (r > 0.1) 
between AURKA SLR and protein expression levels (‘protein vs SLR’) was found in six cancers (Figure 
4A, Supplementary Figure 3A), suggesting that APA modulates AURKA expression in these cancers 
(UCEC, BRCA, KIRP, LUAD, READ, KIRC). Furthermore, the ‘protein vs SLR’ correlation was analysed 
in light of the cancer-dependent changes in AURKA SLR (Figure 4B). A positive correlation was found 
(r = 0.2) when we estimated how the correlation of AURKA protein expression with its SLR varied 
according to SLR change in different cancers, although this has no statistical significance (p = 0.714). 
Our findings may potentially be consistent with the idea that APA positively contributes to shaping 
AURKA protein expression in certain cancers. 
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We then probed the correlation of AURKA SLR to AURKA mRNA expression (‘mRNA vs SLR’) across 
the six cancers (Figure 4C, Supplementary Figure 3B). Despite the degree of uncertainty in our 
measurements, these observations may be consistent with an effect of APA on AURKA mRNA stability 
in READ, BRCA, and UCEC, and lack of correlation in LUAD, KIRC, and KIRP instead possibly points 
to an effect on AURKA translation in these cancers. Finally, analysis of the correlation between AURKA 
SLR and hsa-let-7a expression levels (‘hsa-let-7a vs SLR’) suggests varying extents to which hsa-let-
7a might be associated with AURKA APA. Different trends could be identified when AURKA ‘protein vs 
SLR’ correlation was compared to the ‘hsa-let-7a vs SLR’ correlation (Figure 4D). This raises the 
hypothesis that APA could influence AURKA expression via interplay with hsa-let-7a (UCEC, BRCA, 
KIRP, READ) or independently of hsa-let-7a (LUAD, KIRC).  
 
Heterogeneity of AURKA splicing isoforms across cancers 
 
Seventeen high-scoring AURKA transcript variants have been annotated to date, nine of which are listed 
in the NCBI database58 and eight in the Ensembl database59 (Figure 5A). The ‘matched annotation 
from NCBI and EMBL-EBI’ (MANE)60 label was recently given to two AURKA transcripts that were 
revealed identical (NM_198437.3 and ENST00000395915.8/AURKA-208). The 16 distinct isoforms are 
5’ untranslated region (UTR) splicing variants, resulting from alternative splice sites and exon skipping. 
The coding sequence and the 3’UTR instead follow canonical splicing, except for ENST00000395907.5 
(AURKA-204), whose coding sequence includes the last intron and has a truncated 3’UTR; this 
transcript variant is however characterized by a poorer annotation score. 

The public web server GEPIA243 was consulted to retrieve information on the distribution of AURKA 
transcripts across TCGA cancers. Figure 5B shows the expression levels of each of the eight Ensembl 
transcripts in the selected TCGA cancers. It is evident that each isoform has an individual profile of 
expression across cancers. In particular, some transcripts are abundantly expressed in most cancers, 
whereas others are expressed only in specific cancers. Reciprocally, some cancers express most 
isoforms quite equally, while other cancers express only a specific group of transcripts. Since these are 
alternatively spliced isoforms in the 5’UTR with different combinations of exons44 it can be concluded 
that splicing and unknown features of the 5’UTR play a role in determining the context-dependent 
expression profile of AURKA mRNA.  
 
DISCUSSION 
 
This article describes an exploratory analysis around the expression of AURKA on a pan-cancer scale. 
Following the analysis of publicly available data from TCGA41, it was clear that AURKA overexpression 
at the level of the mRNA is prevalent in many cancers, a finding previously reported4,37–40. However, our 
analyses of TCGA datasets avoided TCGA data-processing servers (e.g., UALCAN or GEPIA2). In 
addition, we carefully selected datasets to exclude those with annotations containing ‘disqualifying’ 
information about patients or samples. TCGA itself suggests reviewing datasets according to their 
accompanying annotations prior to running an analysis, although this practice is not commonly 
observed. Importantly, since a great number of flagged datasets derive from patients having received 
radiation, hormone, or other treatments, removing nonconforming datasets counteracts the bias in gene 
expression introduced by treatment-derived selective pressure, which constitutes a basis of tumour 
heterogeneity61. 

We investigated to what extent post-transcriptional regulation is responsible for defining and 
dysregulating AURKA expression in human cancers. To this aim, the extent to which the abundance of 
AURKA protein follows changes in the abundance of AURKA mRNA was measured across TCGA 
cancer samples. Our results suggest that mechanisms affecting AURKA translation or protein 
degradation are involved in tuning AURKA protein expression in various cancers, with a role of 
increasing importance as the degree of mRNA-protein correlation decreases. This has already been 
proposed as a general mechanism of gene expression regulation62–64, and is concordant with results 
reported by others specifically regarding AURKA expression21,65–67.  
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Investigations of the possible involvement of hsa-let-7a miRNA in AURKA expression in cancer were 
also performed. First, analysis of expression levels of hsa-let-7a indicated that hsa-let-7a is 
downregulated in most cancers, in accordance with its tumour suppressor role28,31,36, however with 
some exceptions. Such pan-cancer analysis of hsa-let-7a expression has no precedent in the literature 
to our knowledge. Our data support the idea that hsa-let-7a tunes the expression of AURKA in some 
cancers. Weak relationships were generally found across all the cancers, apparently inconsistent with 
a hypothesis that AURKA mRNA is a major target of hsa-let-7a19,31 unlike other oncogenes like RAS 
and MYC68. We hypothesise that mechanisms influencing the ability of hsa-let-7a to target AURKA 
mRNA could limit the coupling between hsa-let-7a abundance and AURKA expression measurable in 
our pan-cancer analysis. For example, hsa-let-7a’s targeting ability can indeed be subject to contextual 
regulation, such as cell cycle phase-dependent, since AURKA mRNA is specifically repressed by hsa-
let-7a in G1 and S phases but not in G224.  

Other groups have used alternative software tools to measure genome-wide APA changes in TCGA 
samples, but in these studies AURKA SLR changes were not reported in the published lists of genes 
with cancer-dependent changes in SLR69–74. In contrast, other studies using alternative sample sources 
and methods of analysis found AURKA SLR increased in cancer samples, specifically in breast and 
lung cancers, where such increase even correlated with poor prognosis and survival24,50,52. Here, using 
the APAtrap software48 to interrogate our curated TCGA samples, AURKA SLR was discovered to have 
increased in almost all cancers compared to their normal tissues. Results presented here using high 
quality RNA-seq data are therefore consistent with what has previously been observed in breast and 
lung cancers using microarray data24,50,52, and expand the observation to other cancers. 

Overall, the diverse results on AURKA cancer-specific SLR across studies are not yet conducive to 
a unifying hypothesis for the APA-mediated regulation of AURKA. Interestingly, transcript AURKA-203 
contains exon III and transcript AURKA-207 contains exon II, both of which are thought to be implicated 
in breast cancer75,76, which is also the type of cancer showing the second highest change in AURKA 
SLR as recorded by the APAtrap analysis. Furthermore, while APAtrap exposes the abundance of one 
3’UTR isoform compared to another of the same gene, abundance levels of each isoform can be 
otherwise influenced by mechanisms linked to alternative splicing. It is highly possible that there exists 
a combination of AURKA APA and alternative splicing isoforms in different contexts.  

In conclusion, the data presented here cumulatively suggest that post-transcriptional mechanisms 
can constitute the primary form of regulation of the expression of AURKA in some cancers. As a 
consequence, impairments in mechanisms affecting mRNA dynamics offer a substantial basis for 
alterations in AURKA protein expression in cancer. This is a previously underrated notion, as the basis 
for AURKA oncogenic activation by means of overexpression has generally been attributed to enhanced 
gene copy number, transcription, or protein stability. We therefore add a new facet to the complex 
oncogenic expression program of the AURKA cancer gene, highlighting molecular mechanisms that 
could represent actionable targets of both DNA- and RNA-based therapeutics. 
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Table 1: Comparison of the two pools of datasets for analysis of AURKA mRNA expression. For each pool (entire 
or filtered), the table displays the available number of RNA-seq datasets (n°), the median AURKA mRNA FPKM, and 
the ratio between tumour (T) to normal tissue (NT) of median FPKM, per cancer project and tissue type. The table also 
shows the % difference between the T / NT ratio when the filtered set is used and that when the entire set is used.  
 
 
 

 
 

Entire set 
 

Filtered set  

 n° Median 
FPKM 

Median FPKM(T) /  
Median FPKM(NT) n° Median 

FPKM 
Median FPKM(T) /  
Median FPKM(NT) 

difference 
(%) 

NT 19 1.29 9.33 15 1.03 11.54 23.68 BLCA 412 12.04 362 11.89 
NT 113 0.93 7.88 110 0.93 7.91 0.41  BRCA 1118 7.33 1090 7.36 
NT 3 0.51 30.13 3 0.51 30.23 0.33  CESC 306 15.37 303 15.42 
NT 41 6.20 2.98 30 6.11 3.02 1.20  COAD 483 18.48 408 18.43 
NT 13 1.92 6.43 12 1.74 7.10 10.34  ESCA 185 12.36 181 12.36 
NT 44 2.78 4.08 39 2.68 4.19 2.72  HNSC 522 11.33 483 11.22 
NT 72 1.04 1.64 64 1.04 1.63 -0.58  KIRC 542 1.71 427 1.70 
NT 32 1.00 1.99 28 0.98 2.06 3.58  KIRP 291 1.99 261 2.02 
NT 50 0.54 9.81 43 0.56 9.55 -2.67  LIHC 374 5.30 355 5.35 
NT 59 1.21 5.69 46 1.16 5.98 5.07  LUAD 541 6.89 462 6.94 
NT 51 1.17 10.54 43 1.11 11.23 6.52  LUSC 502 12.33 458 12.46 
NT 4 1.53 2.41 4 1.52 2.46 2.30  PAAD 179 3.68 157 3.74 
NT 3 0.78 1.74 3 0.78 1.73 -0.74  PCPG 184 1.36 181 1.35 
NT 52 0.63 1.76 44 0.60 1.87 5.95  PRAD 502 1.11 475 1.12 
NT 10 6.15 3.25 9 6.18 3.24 -0.24  READ 167 19.97 146 20.02 
NT 36 2.82 4.80 36 2.82 4.77 -0.52  STAD 412 13.53 376 13.46 
NT 59 0.86 0.89 57 0.86 0.89 0.16  THCA 513 0.77 482 0.77 
NT 35 0.67 11.91 34 0.69 11.45 -3.87 UCEC 554 7.98 521 7.90 
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Figure 1: Pan-cancer analysis of AURKA mRNA and protein expression. (A) Median and 95% CI of AURKA mRNA 
FPKM values in 18 TCGA cancers compared to their respective normal tissue (NT). Number of datasets per condition 
shown in Table 1, filtered set. Kruskal-Wallis with Dunnett’s multiple comparisons test. ns, not significant; *, p<0.02; ****, 
p<0.0001. (B) Distribution of r coefficients of the AURKA mRNA-protein correlation across cancers. (C) Graphic 
representation of molecular processes likely underlying the AURKA mRNA-protein correlation in cancer samples. Figure 
created with BioRender.com. 
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Table 2: Comparison of the two pools of datasets for analysis of hsa-let-7a expression. For each pool (entire or 
filtered), the table displays the available number of miRNA-seq datasets (n°), the median hsa-let-7a RPM, and the ratio 
between tumour (T) to normal tissue (NT) of median RPM, per cancer project and tissue type. The table also shows the 
% difference between the T / NT ratio when the filtered set is used and that when the entire set is used.  
 
 
 

 
 

Entire set 
 

Filtered set  

 n° Median 
RPM 

Median RPM(T) /  
Median RPM(NT) n° Median 

RPM 
Median RPM(T) /  
Median RPM(NT) 

difference 
(%) 

NT 57 5640 
1.31 

45 5780 
1.25 -4.02 BLCA 1254 7371 1098 7250 

NT 312 11684 
0.82 

306 11760 
0.81 -1.21  BRCA 3309 9528 3192 9474 

NT 9 7385 
1.30 

9 7385 
1.29 -0.54  CESC 927 9557 897 9505 

NT 24 18908 
0.31 

18 18841 
0.31 2.36  COAD 1371 5803 1158 5919 

NT 39 7258 
1.22 

30 6788 
1.30 6.73  ESCA 561 8864 552 8848 

NT 132 14321 
0.65 

114 14751 
0.62 -4.10  HNSC 1575 9241 1464 9128 

NT 213 9460 
0.76 

189 9460 
0.76 0.06  KIRC 1635 7149 1368 7153 

NT 102 7486 
0.83 

87 8161 
0.75 -9.19  KIRP 876 6194 786 6132 

NT 150 12050 
0.80 

129 12519 
0.78 -2.73  LIHC 1125 9609 1068 9710 

NT 138 25917 
0.35 

99 27139 
0.32 -8.08  LUAD 1563 8974 1344 8638 

NT 135 13831 
0.52 

117 14195 
0.52 0.64  LUSC 1434 7197 1254 7434 

NT 12 7594 
1.31 

12 7594 
1.31 0.07  PAAD 537 9967 456 9974 

NT 9 18148 
0.51 

9 18148 
0.51 0.07  PCPG 552 9179 549 9185 

NT 156 5440 
1.75 

132 5440 
1.76 0.46  PRAD 1497 9507 1416 9551 

NT 9 13717 
0.49 

9 13717 
0.50 0.79  READ 486 6748 435 6801 

NT 135 6823 
1.07 

135 6823 
1.06 -0.60  STAD 1338 7302 1275 7258 

NT 177 19193 
0.76 

171 19193 
0.75 -1.09  THCA 1542 14643 1449 14483 

NT 99 8123 
1.05 

99 8123 
1.05 0.06 

UCEC 1638 8549 1635 8554 
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Figure 2: Pan-cancer analysis of hsa-let-7a expression and involvement in AURKA expression. (A) Median and 
95% CI of hsa-let-7a RPM values in 18 TCGA cancers compared to their respective normal tissue (NT). Number of 
datasets per condition shown in Table 2, filtered set. Kruskal-Wallis with Dunnett’s multiple comparisons test. ns, not 
significant; **, p<0.01; ***, p<0.001; ****, p<0.0001. (B) Distribution of r coefficients of the AURKA mRNA-hsa-let-7a 
correlation across cancers. (C) Distribution of r coefficients of the AURKA protein-hsa-let-7a correlation across cancers. 
(D) Clusters found according to common trends in the two types of correlation. The r coefficient of the indicated 
correlation is plotted on each axis. (E) Table showing clusters composition and speculative involvement of hsa-let-7a in 
controlling AURKA expression.  
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Figure 3: Pan-cancer profiling of AURKA APA mRNA isoforms. (A) Integrative Genomics Viewer (IGV) view of the 
depth of coverage of reads mapping to the 3’ end of the AURKA-203 transcript (the last exon and 3' UTR are shown at 
the bottom, in blue). A subset of BRCA primary tumour samples is shown, selected to represent a range of SLRs, from 
low (top) to high (bottom). Reference genome GRCh38/hg38. Note, the y-axis scale (read depth) differs across panels. 
(B), (C) Mean and standard error of the mean of SLR fold change values for cancer-normal sample pairs of AURKA 
transcript ENST00000371356.6 (B) and CCND1 transcript ENST00000227507.3 (C). Value of the mean indicated. SLR 
values were calculated using APAtrap and the analysis was performed once. n, number of cancer-normal sample pairs. 
Y axis in log2 scale. 
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Figure 4: Interplay of APA and hsa-let-7a in regulating AURKA expression. (A) Distribution of r coefficients of the 
AURKA protein-SLR correlation across cancers. p<0.05 only for BRCA. (B) Scatter plot showing cancers according to 
the cancer/normal AURKA SLR fold change and to the value of the ‘protein vs SLR’ correlation coefficient r. (C) 
Distribution of r coefficients of the AURKA mRNA-SLR correlation across cancers. p>0.05 for all r coefficients. (D) Scatter 
plot showing cancers according to the r coefficient of the ‘protein vs SLR’ and of the ‘hsa-let-7a vs SLR’ correlations. 
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Figure 5: Heterogeneity of AURKA splicing isoforms across cancers. (A) UCSC Genome Browser view of AURKA 
transcript variants annotated in the NCBI (top) and Ensembl (bottom) databases. AURKA gene resides on the negative 
strand. The MANE isoform identical in both databases is shown in light blue at the bottom. (B) Violin plots showing the 
expression level [log2(TPM+1)] of the individual Ensembl AURKA transcripts in the TCGA cancers on the y axis. Cancer 
types in columns, AURKA transcripts in rows. TPM, transcript per million. Figure downloaded from the GEPIA2 platform. 
(A), (B) ENST00000395907.5 (AURKA-204) transcript is displayed although it has lower annotation quality. 
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