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ABSTRACT 

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of 

samples from most types of experimental crosses involving laboratory strains, particularly for reduced 

complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, 

there is the opportunity to improve array's performance and the associated report's usefulness by 

leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we 

report our efforts to update and improve marker annotation, increase the number and the reliability of 

the consensus genotypes for inbred strains and increase the number of constructs that can reliably be 

detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to 

identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, 

remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, 

and improve robust detection of the presence of commercially available substrains based on diagnostic 

alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and 

completeness of the analysis and added a table summarizing the ideogram. We believe that these 

changes will be of general interest to the mouse research community and will be instrumental in our 

goal of improving the rigor and reproducibility of mouse-based biomedical research. 
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INTRODUCTION 

Genotyping arrays have been a staple in mouse research for more than two decades and have been 

successfully adopted for genetic QC and colony maintenance (Petkov et al. 2004; Yang et al. 2011; 

Morgan et al. 2015; Andrews et al. 2021; Amos-Landgraf et al. 2022). Five years after its introduction, 

the MiniMUGA array has been used for genotyping over 40,000 mouse samples and the manuscript 

describing the array and its capabilities has been cited widely (Sigmon et al. 2020; Birling et al. 2022; 

Bourdon and Montagutelli 2022; Yoshiki et al. 2022; Smith et al. 2022). Part of MiniMUGA’s success is 

due to its unique characteristics, including discrimination between commercial substrains, robust 

chromosomal sex determination, and detection of commonly used constructs. In addition, a key 

advantage of MiniMUGA is the inclusion of a descriptive summary report of the sample that 

accompanies cost-effective genotypes. This has made MiniMUGA an attractive tool for organizations 

charged with genetic quality control (GQC) of important collections such as the Mutant Mouse Resource 

and Research Centers (Amos-Landgraf et al. 2022, https://www.mmrrc.org/), and of large and complex 

breeding programs like the Collaborative Cross (https://csbio.unc.edu/CCstatus/index.py). Despite these 

successes and the fact that the MiniMUGA content is now fixed (i.e. production array), several 

limitations of the original analysis pipeline can be addressed now. These limitations were caused by the 

limited number and type of samples genotyped in the production version of the array at the time (less 

than 1,500 out of almost 8,000 used in that publication) and used for the initial marker annotation and 

bioinformatic pipeline validation (Sigmon et al. 2020). This had severe consequences in marker 

annotation from performance to diagnostic information. Additional limitations included the exclusive 

use of a “greedy” algorithm for determining the contribution of primary and secondary genetic 

backgrounds, the exclusion of Y chromosome and mitochondria from the ideogram, and the use of an 

overly restrictive threshold for the level of sample inbreeding required to run the informatic pipeline to 

completion.  

Here, we report our efforts to improve marker annotation based on over 8,500 samples genotyped in 

the final array, improvement in the analysis pipeline for background selection, ideogram content, 

construct detection, and a new section that summarizes the genome complement in the form of 

diplotype intervals. These changes improve the rigor of the analysis and make the report useful for non-

inbred samples such as experimental crosses and partially congenic lines. We are committed to 

continuing this cycle of improvements in the future as needed. 
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MATERIALS AND METHODS 

Mice 

We used 8,559 mouse DNA samples to analyze and annotate SNP marker performance. Samples 

included in this set were required to have excellent genotyping quality on the production version of the 

MiniMUGA array. In addition, we selected samples with varying levels of inbreeding and different 

genetic backgrounds to increase the likelihood of capturing all three possible genotypes at each SNP 

marker (reference, alternative, and heterozygous (hereafter ref, alt, and het respectively)). We used 

1,623 mouse DNA samples from 237 distinct inbred strains to create new consensus reference 

genotypes. 1,011 of these consensus samples were included in the previously described marker 

performance sample set. 612 consensus samples were not included in the performance sample set, 352 

genotyped on the initial version of the array, 236 biological replicates of CC strains already represented 

in the performance set, and 24 technical replicates. Eighty-three were provided by Transnetyx and 

Neogen to represent six additional strains and to increase the number of biological replicates in three 

existing strains. We used six mice provided by the MMRRC as positive controls for the Flp construct and 

four mice included in the initial description of the array as positive controls for the cHS4 construct. Table 

S1 lists the origin of the samples included in the SNP marker performance annotation, expanded 

consensus genotypes, and expanded number of constructs detected. Samples are identified with 

random six-digit ID and a reference of the publication if available.  

An additional 16,123 samples genotyped by the FPMV lab at UNC have been used for manual curation 

and validation of our results. 

Marker Annotation 

The updated marker annotation is provided in Table S2. This file includes marker annotations for the 

following fields (fields in bold are new or have updated information): 

• chromosome – Marker chromosomal location. Possible values are 1-19 autosomes, X and Y sex 

chromosomes, PAR pseudoautosomal region, or 0 for unmapped genetic construct probes. 

• position – location in base pairs based on the GRCm38 reference build. 

• name – marker name 

• tier_2022 – new SNP marker performance tier assignment. 1A, 2A, 1B, 2B, 1C, 2C, and 4 are 

possible values. Construct probes have no tier_2022 assignment. 

• diagnostic – the list of substrains (or diagnostic class) for which this SNP is found to be 

diagnostic, or blank if it is not diagnostic. 

• partial_diagnostic - the list of substrains for which this SNP is found to be partially diagnostic, or 

blank if it is not partially diagnostic. 

• diagnostic_allele – the minor (diagnostic) allele at this diagnostic SNP.  

• construct_info (called diagnostic_info in the code) – this field indicates the genetic construct 

this marker detects. This field is blank if the marker does not detect a construct. 
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• positive_threshold – for a set of markers that detect a given genetic construct, this value 

indicates the minimum threshold for reporting a positive detection (presence), based on the sum 

intensity of that set of markers.  

• negative_threshold – for a set of markers that detect a given genetic construct, this value 

indicates the maximum threshold for reporting a negative detection (absence), based on the sum 

intensity of that set of markers. 

• duplication – this field indicates whether the SNP targeted by a given marker probe appears to 

be duplicated in the genome of some samples. Duplication may lead to a downgrade of a marker in the 

tier_2022 classification. The identification of duplicated SNPs is not exhaustive. 

• recluster – Indicates whether the Illumina genotype calling parameters (clusters) were modified 

in this update, relative to the initial publication (Sigmon et al. 2020). After this update, Markers 

annotated as TRUE may generate different genotype calls for the same intensity values (or for the same 

sample). 

 

Consensus Genotypes 

The updated consensus genotypes are provided in Table S3. This table lists inbred strains for which we 

have created consensus genotypes used in primary and secondary background determination and 

contribution.  

Synthetic Backgrounds 

For each of 131 pairs of related substrains, we generate a synthetic background in silico. These are 

added to the set of consensus genotypes used in primary and secondary background determination and 

contribution. To generate a synthetic background, we compare the consensus genotypes at each SNP 

marker for a pair of substrains. If the substrain genotypes are the same call (A,T,G,C, or H), the resulting 

synthetic background call is that same call. If the calls are different, the resulting synthetic call is an H. 

Note that this is the same as assigning H calls to the synthetic background at every marker that is 

annotated as diagnostic for either of the substrains in the pair. 

Strain Annotation 

Classical inbred strains have been assigned to one of 11 groups based on their name and origin (Table 

S4). The rows list all classical strains, while the columns list the strain groups used for the determination 

of the diagnosticity of SNPs and an outgroup with all classical inbred strains without diagnostic SNPs. 

Numbers in each cell are the number of diagnostic SNPs followed by the number of partially diagnostic 

SNPs, separated by a forward slash. N/A is not applicable because, by definition, they cannot have 

diagnostic SNPs. Blank cells should be ignored. 
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RESULTS 

This update of the MiniMUGA platform takes advantage of the large increase in the number of DNA 

samples genotyped with the production array since the original publication (Sigmon et al. 2020) to: 1) 

update the annotation of markers, including performance and diagnostic value for SNP markers and 

identification of markers used for detection of two additional constructs; 2) generate higher quality 

consensus genotypes for a larger number of inbred strains; and 3) update the content and layout of the 

report.  

Updated Annotation of SNP Marker Performance 

To address the limitations of the MiniMUGA pipeline, we reassessed the performance of the 10,819 SNP 

markers in the array and used that information to improve their annotation. For this task, we used a set 

of 8,559 excellent quality samples genotyped with the production version of the array (materials and 

methods; annotated as PERFORMANCE sample set in Table S1). This set includes 1,943 inbred samples 

(or samples with very low levels of residual heterozygosity) and 6,616 outbred samples, including 535 F1 

hybrids. Most outbred samples in this set are experimental backcrosses or intercrosses. Both sexes are 

similarly represented in this set, and there are a few examples of sex chromosome aneuploids (4,239 XX, 

4,276 XY, 36 XO, and 8 XXY as defined by our original method (Sigmon et al. 2020). It also includes at 

least one sample from each inbred strain for which we have consensus genotypes. The representation of 

homozygous and heterozygous calls as well as both sexes is critical to improving the annotation of SNP 

marker performance. 

We generated individual scatter plots for each SNP marker, plotting the normalized intensities for the 

performance sample set, using different colors to visualize the three possible genotype calls: ref, alt, and 

het, plus no calls (Figure 1, Figure S1). As expected, for most markers the allele intensities group into 

three distinct clusters representing the three standard types of calls (ref, alt, and het). We identified 791 

markers where at least one allele cluster included multiple different genotype calls, due to incorrect 

genotype-calling software tuning (Figure 1). We used the allele intensity plots to set new cluster 

boundaries and recalled all 8,559 samples at these 791 markers. We then compared plots and genotype 

calls to identify SNPs where the new cluster boundaries produce more consistent genotype calls (fewer 

clusters with inconsistent genotype calls and fewer no calls overall). The new cluster boundaries were 

updated for 756 markers (733 from training array content, 23 from production) where there is marked 

improvement in the congruency of the genotype calls (compare panels A and B in Figure 1). Users 

should expect discrepancies between the new and original genotype calls at these markers, given that 

the cluster boundaries have changed. 

The next step was to address the performance of individual SNPs after reclustering based on the number 

of clusters, the discrimination between clusters, and the level of consistency of genotype calls within a 

cluster in the performance sample set. We use these metrics to define a new performance annotation 

called Tier 2022 (henceforth called Tier). First, we divided markers into three broad classes: class 1 

makers have three distinct clusters at the expected locations for reference, alternate, and heterozygous 

genotype calls for autosomal and X chromosome markers, and two distinct reference and alternate 

clusters at Y chromosome and mitochondrial markers. Class 2 markers have an additional cluster of no 

calls at or near the intensity plot origin (these samples fail to produce a signal for either allele). This 

cluster is predicted to be due to the presence of off-target variants in one or more haplotype(s) (Didion 

et al. 2012, Figure S1). We used Whole-Genome Sequencing to confirm this prediction in a small set of 
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cases (data not shown). Tier 4 markers exhibit no recognizable intensity clustering patterns (or form only 

one cluster) and fail to produce reliable genotype calls in the performance sample set. These markers 

should always be excluded from analysis. The second level of classification applies to tier 1 and 2 

markers and divides them into three additional classes, A, B, and C. Class A markers have the highest 

performance within a tier: the three genotype clusters are clearly separated, there are no inconsistent 

genotype calls within these clusters, and they have no or very few N calls, excluding the cluster of N calls 

at the origin for tier 2 markers. Classes B and C have decreasing performance, with lower discrimination 

between clusters, an increasing number of inconsistent genotype calls within clusters, and an increasing 

number of N calls. There is no hard boundary between B and C classes as the performance depends on 

the haplotype present at the locus.  

Tier 1A markers have the best performance across all samples and comprise 82.5% (8,929) of all SNP 

markers in the array. Table 1 summarizes the number of markers classified in each Tier. In the sample 

report, only Tier 1A markers are used to identify and quantify the contribution of the primary and 

secondary backgrounds, and to determine the level of inbreeding. Although tiers 1B, 2A and 2B may 

perform well in most genetic backgrounds, they are not completely reliable and may produce incorrect 

genotype calls in some backgrounds. For example, for tiers 2A and 2B markers, samples that are 

heterozygous for a combination of the off-target variant and any of the two standard alleles will 

genotype as homozygous. Furthermore, Tier 1B includes markers that are duplicated in the genome of 

one or more classical laboratory strains and may lead to heterozygous calls in some inbred mice and 

incorrect genotype calls in some experimental mice. Markers with known or suspected duplications in 

inbred strains are annotated in Table S2.  

In addition, we manually downgraded the performance annotation of specific makers if we observed 

incorrect genotype calls in samples with known genotypes (inbred, F1 and F2 mice). 

 

Improved Annotation of Diagnostic SNPs and Alleles  

We classified each classical inbred strain into one of ten strain groups or a common outgroup (see Table 

S4). The classification was based on partial name-sharing and historical records. A given marker is 

considered diagnostic if its minor allele is present in only one strain group and absent in the common 

outgroup. For these diagnostic markers, the set of substrains in which the minor (now diagnostic) allele 

is observed is called its diagnostic class.  

Diagnostic alleles observed in some but not all constituent samples used to create the genotype 

consensus for a given substrain are annotated as “partially diagnostic”. Note that partially diagnostic 

SNPs are typically not shared between substrains. Partially diagnostic SNPs are annotated as 

heterozygous (or H) in the consensus for the substrain in which they are segregating (Table S3).  

By design, there is an overrepresentation (3,253) of diagnostic SNPs in MiniMUGA to ensure that it can 

discriminate between as many substrains as possible. The performance of diagnostic SNPs is, on 

average, better than non-diagnostic markers. For example, 95% of diagnostic markers are in Tier 1A 

versus 77% of non-diagnostic markers. In addition, there are no diagnostic markers in Tier 4 versus 15% 

of non-diagnostic markers (Table 1). In conclusion, the presence of diagnostic alleles in a sample is 
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highly reliable evidence for the contribution of the corresponding substrain(s) to the genome of the 

sample.  

 

Expanded Detection of Genetic Constructs 

We annotated 14 probes (Figure S2) which detect two additional constructs: chicken HS4 insulator 

(cHS4) and Flippase (Flp). Figure 2 shows the aggregate performance of these probes in negative 

controls, positive controls, and experimental samples. Thresholds for presence and absence were 

determined as previously described for other constructs by minimizing the number of experimental 

samples with questionable presence of the corresponding constructs while keeping positive and 

negative controls fully concordant (Sigmon et al. 2020). 

 

Expansion and Update of Consensus Genotypes for Inbred Strains 

We created new consensus genotypes for 237 inbred strains based on 1,623 samples (only 556 samples 

were used to create the previous consensus genotypes). All samples in the consensus set were curated 

to ensure they were pure representatives of the corresponding inbred strain. This consensus set 

includes five additional classical inbred strains (BALB/cAnNRj, BALB/cByJRj, BALB/cJRj, CBA/CaJ, 

DBA/1Rj) and updated genotypes for 63 Collaborative Cross (CC) strains.  

Consensus genotype calls are a representation of the strain or substrain genotypes. The accuracy of a 

given strain consensus depends on the number of biological replicates included. The calls are generated 

according to previously described rules (Sigmon et al. 2020), with one notable change: partially 

diagnostic SNPs, which were previously annotated as a lower-case diagnostic allele call, are now 

annotated as H in the corresponding substrain. This H call indicates that the diagnostic allele is 

segregating in a substrain; therefore, samples from this substrain may have any of the three possible 

genotypes at those markers. 

Figure 3 shows the distribution of biological replicates per strain, grouped by strain type (Table 2). The 

number of replicates is variable. The average number of replicates in the 89 classical inbred strains is 

5.76 (range 1-28). For classical inbred strains where we have multiple substrains or sibling strains, there 

is a higher number of replicates. The number of replicates for wild-derived stains is lower than for 

classical inbred strains. For the CC strains, the average number of samples in the consensus is higher 

(15.06), it always includes males and females, and includes all breeders alive for that strain in 2020 in 

the SGCF at UNC. The BXD panel typically includes only one sample per strain. 

Figure 3 also shows the number of consensus H calls per strain, below the X-axis. A priori, inbred strains 

should have no H calls for tier 1A markers. However, H calls can represent either true heterozygosity (in 

partially diagnostic markers for substrains and residual heterozygosity in the CC strains) or rare miscalls 

due to off-target variants. The latter are particularly prevalent in wild-derived strains (note that the CC 

strains are derived from eight founders including three wild-derived strains). 
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Changes in the Analytical Pipeline and Report Layout 

There are five main updates in the analysis pipeline and/or report presentation (Figure 4): 1) updated 

pipeline for genetic background determination in samples with more than one genetic background; 2) 

changes in inbreeding estimation; 3) inclusion of the Y Chromosome and mitochondria in the ideogram; 

4) specification of the ‘Minimal Strain Sets Explaining All Diagnostic Classes’ and 5) the addition of a 

table with diplotype intervals. 

Determination of Global Genetic Background 

The Genome Analysis section summarizes the global genetic background, showing the contribution of 

the primary, secondary, and further unexplained backgrounds, each as a percentage of the genome. This 

global summary complements the local information shown in the ideogram. The primary and secondary 

backgrounds are determined by the greedy algorithm described previously (Sigmon et al. 2020) with the 

following changes: 1) Background analysis now involves only the highest quality markers (Tier 1A); 2) 

The set of potential background strains now includes several synthetic backgrounds composed of pairs 

of substrains generated in silico (see Materials and Methods). These were created specifically to enable 

the pipeline to work equally well for samples whose genetic background includes two related substrains 

plus an additional third (or even a fourth) strain; 3) The default threshold for clustering remains set at 

two markers per 2Mb; 4) The requirement for samples to have less than a threshold level of 

heterozygosity has been removed and thus reports are created for all samples including F1 hybrids and 

F2 samples. As a result, the updated pipeline produces a complete report at more than twice the rate of 

the original (only 11,767 samples out of 26,245 (44.8%) in our database would have generated a full 

report with the original pipeline); and 5) The threshold for the minimum fraction of the genome that 

must be explained to produce a report is now 97.5% percent (99.8% previously). 

In cases where two backgrounds are necessary to explain a sample, we only use markers that are 

informative among the primary background, secondary background, and sample genotypes. We use the 

genome positions of these informative SNPs to identify clusters in the sample genome of consistent 

genetic background and zygosity. We merge neighboring clusters with the same background and 

zygosity. We extend the proximal and distal cluster boundaries to the midpoint for the intervals 

between clusters with different backgrounds and/or zygosity. For the most proximal and distal clusters, 

we extend them to the start and end of the corresponding chromosome. The resulting set of Diplotype 

Intervals is used to construct the Ideogram presented in the Local Genetic Background section of the 

report, to estimate the contribution of the primary, secondary, and unexplained backgrounds presented 

in the Global Genetic Background, and to calculate the overall Level of Inbreeding reported for the 

sample. This physical size-based approach improves the estimation of the contribution of the primary 

and secondary backgrounds and the level of heterozygosity (or inbreeding) over the original marker 

number-based analysis used in the original version of the MiniMUGA sample report (Sigmon et al. 2020). 

In addition, the updated method of estimating the contribution of genetic background using physical 

distance (in megabases) is a major improvement over the original pipeline, which was based solely on 

the number of markers. Specifically, the initial pipeline overestimated the contribution of the primary 

background to the sample genome by an average of 18% (range 0-48%) (Table S5). It also 

underestimated the contribution of the secondary background in homozygosity to the sample genome 

by an average of 8.6% and 8.7% in homozygosity and heterozygosity respectively (ranges 0-27%, 0-33%, 

respectively). The contribution of any unexplained background to the genome was underestimated by 
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1.1% on average (0-7.1%). Error in the estimated contribution to genetic background in the original 

pipeline was proportional to the amount of non-primary background present in a sample. In summary, 

the updated pipeline performs much better than the original, particularly in samples with heterogenous 

genetic background, including F2 and F1 hybrids.  

Changes in the Inbreeding Estimate 

The inbreeding estimate is now based on the percentage of the nuclear genome, excluding the Y 

chromosome, that is homozygous (or hemizygous for males) for primary, secondary, and unexplained 

backgrounds. In contrast to the previous estimate, this update is far less dependent on the number and 

density of informative SNPs for a given pair of backgrounds. This is especially relevant for samples 

derived from two closely related substrains (Figure S3).  

 

Representation of the Local Genetic Background in the Ideogram 

The report shows the local genetic makeup of the sample in a visualization of the genome known as an 

ideogram. This is as described in the original paper (Sigmon et al. 2020), with the addition of the Y 

chromosome (shown as a single bar) and the mitochondria (shown as a torus). The regions of the 

genome shown in black represent the primary or majority genetic background. The regions shown in red 

represent the secondary or minority genetic background. Red and black in the same region indicates 

heterozygosity. Transitions between primary and secondary backgrounds are always placed at the 

midpoint between flanking informative markers (see above). Regions shown in white are Identical By 

Descent (or IBD). This means that MiniMUGA cannot distinguish between the primary and secondary 

backgrounds in these regions, and as above, this is especially relevant for samples derived from two 

closely related substrains. The MiniMUGA sample report is optimized for reproducible mouse models 

involving only one or two genetic backgrounds. If more than two backgrounds are present, any 

unexplained regions will be shown in gray.  

The diagnostic markers for the primary and secondary background are also shown in the ideogram. 

Diagnostic markers for the primary background are represented by triangles at the corresponding 

position on the left side of the chromosome. Similarly, diagnostic markers for the secondary background 

are represented by triangles on the right side of the chromosome. Black-filled triangles indicate the 

presence of the diagnostic allele for the primary background at the corresponding SNP in the sample. 

Red-filled triangles indicate the presence of the secondary background at the corresponding SNP in the 

sample. Note that filled triangles do not imply homozygosity or heterozygosity for the diagnostic allele. 

Unfilled triangles indicate the absence of the diagnostic allele and can sometimes be found in 

unexpected regions due to the existence of partially diagnostic SNPs.  

Reporting of the Substrains Detected with the Diagnostic Alleles 

Utilizing the updated diagnostic annotations, we now report the number and zygosity of SNPs with 

diagnostic alleles for each of the 94 diagnostic classes (Table S2) present in a sample. As previously 

discussed, a diagnostic class groups all substrains sharing specific diagnostic alleles and thus reflects the 

local ancestry of the substrains. Then the report programmatically determines the minimum set, or sets, 

of substrains required to explain all the diagnostic alleles present in a sample. This is presented as 

“Minimal Strain Sets Explaining All Diagnostic Classes” in the report. There are three important caveats 
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to consider here. First, if there are multiple solutions presented (multiple combinations of substrains) 

the user is encouraged to use external information, if available, to select the most likely solution. 

Second, the minimal solution may not represent the genetic backgrounds present in a sample. Any 

combinations of substrains covering all diagnostic classes can be the “true” solution. Third, the “Minimal 

Strain Sets Explaining All Diagnostic Classes” is not used directly in the determination of primary and/or 

secondary background present in a sample. In other words, genotypes at those SNPs are used but not 

given any special weight or consideration. Finally, we reiterate the point made in the original paper 

(Sigmon et al. 2020) that these markers are not reliable in mice with some contribution from wild 

derived strains.  
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Addition of Diplotype Intervals 

This section presents the data shown in the ideogram in table format. The main differences with the 

ideogram are that diagnostic SNPs, the Y chromosome, and mitochondrial genome are not included. For 

each interval, the table provides the chromosome, start and end positions in GRCm38 genome 

coordinates, background (name(s) of the (sub)strain assigned to the interval), and zygosity. Note that for 

XY males, the X chromosome is reported as homozygous instead of hemizygous.   
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DISCUSSION 

It has been our experience since the public release of the MiniMUGA array that many users struggle 

with and spend an inordinate amount of effort dealing with uncommon inconsistent and/or unexpected 

genotype calls in a sample (for example, H calls in inbred samples, the presence of an unexpected 

diagnostic allele in “pure” sample, etc.). To address this issue, we reannotated the performance and 

diagnostic capability of all SNP markers. Reclustering for selected markers leads to better performance 

as measured by the level of consistent genotype calls between samples known to carry the same allele. 

Importantly, some identical (or related) samples genotyped using both the original and the new 

clustering parameters may have differing genotypes at some markers. Users should check whether 

these markers are annotated as reclustered in Table S2. In these cases, changes in genotypes are likely 

due to the analytical pipeline rather than biological reasons. In general, the genotypes generated with 

the updated pipeline should be preferred.  

In the future, adding new samples may result in upgrading some markers from low performance to a 

higher performance tier. In addition, we will continue to manually curate the tier of markers with 

inconsistent annotations (for example, tier and diagnostic value) or subpar performance in specific 

samples. If the number of markers with annotation changes is significant, we will consider releasing a 

public update.  

The report uses only Tier 1A markers to determine the primary and secondary backgrounds. The report 

uses all Tier 1A, 1B, 2A, and 2B markers annotated as diagnostic in the Backgrounds Detected 

(Diagnostic Alleles) section. The selection of markers from different Tiers in these different analyses 

reflects that Tier 1A markers are reliable across all genetic backgrounds for local and global genome 

analysis, and the additional four Tiers listed above do not falsely detect diagnostic alleles in any genetic 

background tested. 

Our general advice to those planning to use MiniMUGA genotype data directly is to submit enough 

biological replicates from both sexes for the backgrounds of interest (we also recommend genotyping 

the corresponding F1s hybrids), and to use those genotypes to select markers that are both informative 

and have fully consistent genotypes in parentals and F1s. These will be mostly Tier 1A markers but some 

Tier 1B, 2A, and 2B may be selected and useful for specific needs.  

Including the mitochondria and the Y Chromosome in the ideogram is a long overdue improvement that 

will easily alert users of congenic strains, among others, of potential errors or limitations in their mice. 

When an ideogram has regions where the primary and secondary backgrounds are highly fractured 

(having frequent changes of genetic background and/or zygosity over a short genomic distance), as 

shown in Figure S4, the selected genetic backgrounds are likely incorrect, or there are additional 

backgrounds present. Fracturing can also be localized, and the same conclusion applies. The report will 

provide a warning in the Summary section if fracturing is detected. 

Diagnostic alleles are recent mutations that arose in an inbred line in the ancestors of one or more of its 

substrains. They were intentionally overrepresented in MiniMUGA to discriminate between closely 

related substrains. They are a unique feature of the MiniMUGA design in part because their inclusion 

necessitates prior knowledge of the whole genome sequence of the relevant substrain. Given their 

importance in genetic QC, the reliability of genotypes at diagnostic markers is worth considering. The 

vast majority (95%) of diagnostic SNPs are in the best performing Tier 1A. Manual curation has been 
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employed to confirm that samples containing a diagnostic allele (in homozygosity and/or 

heterozygosity) are consistent with the presence of the substrain(s) indicated in the annotated 

diagnostic class. For diagnostic SNPs where the diagnostic allele is very rare or absent (in homozygosity 

and heterozygosity), the reliability of those genotypes is lower due to lack of precision in the clustering 

algorithm. As a rule, the reported presence of a substrain based on a single heterozygous call at a 

diagnostic SNP should be treated with caution.  

An operational definition of diagnostic SNP is that the minor allele is only observed in the annotated 

substrains. The reliability of the diagnostic annotation depends on the size and genetic diversity of the 

outgroup of classical inbred strains in which the diagnostic allele is absent. In this analysis, the diagnostic 

outgroup used has at least 36 distinct classical inbred strains (27 strains in the common outgroup plus 9 

strains with substrains) representing most genetic diversity in the classical inbred strains commonly used 

in mouse-based research (Table S4; Yang et al. 2011). Furthermore, each diagnostic allele is absent in an 

average of 87.6 (± 0.6 SD) classical inbred strains and substrains in our consensus set. (Table S4; Yang et 

al. 2011). Future addition of new substrain samples may lead to annotation change from fully diagnostic 

to partially diagnostic. The addition of new substrains may lead to new diagnostic class annotations. 

In conclusion, the updates in the MiniMUGA pipeline reported here reduce the impact of under-

performing SNP markers, increase the reliability of the reported genetic backgrounds, provide a better 

estimation of background contribution and level of inbreeding, expand the universe of samples for 

which a full report is generated, and provide new information including the potential presence of two 

additional construct and detailed diplotype intervals. We hope these changes are useful, and we 

welcome comments from the community regarding further enhancements. Non-expert users may want 

to take advantage of a recently released short video tutorial that provides a 10-minute guide on how to 

interpret a MiniMUGA sample report (https://www.med.unc.edu/mmrrc/). 
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Data Availability and Software 

All sample genotype and intensity data used in the supporting analyses and development of this 

manuscript have been archived at the University of North Carolina Dataverse (Blanchard 2024, 

https://doi.org/10.15139/S3/YQLDUJ) 
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FIGURE LEGENDS 

Figure 1. Intensity plot for Tier 1 A marker gUNC11564970. The left side shows the genotype calls for 

8,893 samples with the original algorithm. Note that 6 samples were called heterozygous incorrectly 

(they are homozygous alt) and 56 resulted in no genotype call. These miscalls have been corrected on 

the right side using new clustering parameters. Each sample is shown as a circle, square, or cross. Colors 

denote genotype calls, while shape denotes change in genotype call. 

Figure 2. Detection of new genetic constructs validated in MiniMUGA. For each construct, samples are 

shown as dots and classified as negative controls (left), experimental (center), and positive controls 

(right). The dot color denotes whether the sample is determined to be negative (blue), positive (red), or 

questionable (gray) for the respective construct. For each construct, the gray horizontal lines represent 

data-driven ad hoc thresholds discriminating between presence and absence. Chicken HS4 insulator 

(cHS4) and Flippase (Flp).  

Figure 3. Number of biological replicates and heterozygous calls in the consensus genotypes of each 

inbred strain. Each dot is an inbred strain, color coded into five groups according to the legend. Classical 

inbred strains are divided into two groups based on the fact that they are part of a group of substrains 

or sibling strains (diagnostic, green) or independent inbred strains (orange). Strains are ordered by 

ascending number of replicates within type. Only Tier 1A markers are included in the analysis. The upper 

Y axis is the number of replicates per consensus strain. The lower Y axis is the number of H calls per 

consensus strain, in an inverted log10 scale.  

Figure 4. The figure is an example of the current layout of the MiniMUGA report for an MMRRC 

congenic sample.   

 

TABLE LEGENDS 

Table 1. MiniMUGA SNP Marker Counts - grouped by Tier 2022 and diagnostic capability. Each cell in the 

table displays the number of markers with a given Tier and Diagnostic Capability, followed by the 

percentage of the row total this represents in parenthesis. 

Table 2 - Constituent samples per consensus strain. 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.29.582794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582794


SUPPLEMENTARY MATERIAL 

Table S1. List of samples used in this update of MiniMUGA. The table provides a randomly assigned ID, 

the laboratory source of the samples, the type of sample regarding the level of inbreeding, a reference 

for previously published samples, whether the sample was used in reclustering exercise, used in building 

the consensus genotypes for a given strain or serve as positive or negative control for the two new 

constructs added to the report.  

Table S2: Marker annotation updates. This file includes marker annotations for the following fields: 

• chromosome – Marker chromosomal location. Possible values are 1-19 autosomes, X and Y sex 

chromosomes, PAR pseudoautosomal region, or 0 for unmapped genetic construct probes. 

• position – location in base pairs 

• name – marker name 

• tier_2022 – new SNP marker performance tier assignment. 1A, 2A, 1B, 2B, 1C, 2C, and 4 are 

possible values. Construct probes have no tier_2022 assignment. 

• diagnostic – the list of substrains (or diagnostic class) for which this SNP is found to be 

diagnostic, or blank if it is not diagnostic. 

• partial_diagnostic - the list of substrains for which this SNP is found to be partially diagnostic, or 

blank if it is not partially diagnostic. 

• diagnostic_allele – the minor (diagnostic) allele at this diagnostic SNP.  

• diagnostic_info – this field indicates which genetic construct this marker detects, or blank if it 

does not detect a construct (or detection has not been validated) 

• positive_threshold – for markers that detect the same genetic construct, this value indicates the 

minimum threshold for reporting positive detection (presence), based on the sum intensity at 

these markers.  

• negative_threshold – for markers that detect the same genetic construct, this value indicates 

the maximum threshold for reporting negative detection (absence), based on the sum intensity 

at these markers. 

• duplication – This field indicates whether the marker probe appears to be duplicated in some 

samples in our performance sample set. This duplication may be the cause of a tier_2022 

downgrade from A to B or C class. This field is still under development and not exhaustive. 

• recluster – Indicates whether the Illumina genotype calling parameters (clusters) were modified 

in this update. Markers that are annotated as TRUE may generate different genotype calls for 

the same intensity values (or for the same sample) after this update. 

 

Table S3: Genotype dump for consensus genotypes. This table includes consensus genotype calls for 237 

inbred strains and substrains at 10,819 SNP markers.  

 

Table S4. List of classical substrains and strains. The rows list all classical strains while the columns list 

the strain groups used for determination of diagnosticity of SNPs and an outgroup with all classical 

inbred strains without diagnostic SNPs. Only cells with numbers or N/A should be considered. Numbers 
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in each cell are the number of diagnostic SNPs followed by the number of partially diagnostic SNPs for 

each substrain. 

Table S5. 23 examples of improved estimation of the contribution of the primary and secondary 

backgrounds. 

 

Figure S1. Tier 1B, 1C, 2A, 2B, 2C and 4. 

Figure S2. Intensity of individual probes for the new constructs detected by MiniMUGA 

Figure S3. Example ideograms of F1 hybrids of related substrains  

Figure S4. Example of fracturing of ideograms. 
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1A 2A 1B 2B 1C 2C Total
Diagnostic 3098  95.2% 106  3.3% 44  1.4% 5  0.2% 0  0.0% 0  0.0% 0    0.0% 3253    30.1%

Not Diagnostic 5831  77.2% 185  2.4% 151  2.0% 44  0.6% 209  2.8% 28  0.4% 1118  14.8% 7566    69.9%

Total 8929  82.5% 291  2.7% 195  1.8% 49  0.5% 209  1.9% 28  0.3% 1118  10.3% 10819  100.0%

Tier 2022

A B C

4
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Strain Type strains mean min max mean min max
Classical Laboratory 89 5.83 1 28 3.81 0 15
Wild Derived 34 2.53 1 9 2.18 0 5
CC 64 15.06 6 44 5.14 2 13
BXD 49 1.04 1 2 0 0 0
Other Recombinant Inbred 1 3 3 3 3 3 3

Total Samples Per Strain Male Samples Per Strain
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