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Abstract 10 

Summary: RegionScan is an R package for comprehensive and scalable genome-wide 11 

association testing of region-level multiple-variant and single-variant statistics and visualization 12 

of the results. It implements various state-of-the-art region-level tests to improve signal detection 13 

under heterogeneous genetic architectures and facilitates comparison of multiple-variant region-14 

level and single-variant test results. It exploits local linkage disequilibrium (LD) structure for 15 

genomic partitioning and LD-adaptive region definition. RegionScan is compatible with VCF 16 

input file formats for genotyped and imputed variants, and options are available for analysis of 17 

multi-allelic variants and unbalanced binary phenotypes. It accommodates parallel region-level 18 

processing and analysis to improve computational time and memory efficiency and provides 19 

detailed outputs and utility functions to assist results comparison, visualization, and 20 

interpretation. 21 

Availability and implementation: RegionScan is freely available for download on GitHub 22 

(https://github.com/brossardMyriam/RegionScan).  23 

Contact: bull@lunenfeld.ca, brossard@lunenfeld.ca. 24 

Supplementary information: Supplementary data are available at Bioinformatics online. 25 
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1. Introduction           26 

Compared to genome-wide single-variant testing, region-level multi-variant association analysis 27 

can better capture signals under complex genetic architectures1. Because fewer tests are 28 

conducted, multiple testing is reduced, and the genome-wide testing threshold can be relaxed. 29 

However, for comprehensive genomic analysis, region-level testing requires appropriate region 30 

definition, e.g. including intergenic, intronic, and exonic variants. It also faces analytical 31 

challenges, including high dimensionality and multi-collinearity within regions produced by 32 

complex and long-range linkage disequilibrium (LD) structure. Available region-level tests differ 33 

according to the underlying assumptions, the construction of the test statistic, and thus are 34 

sensitive to different regional genetic architectures2,3. We focus on three classes of state-of-the-35 

art region-level tests (Supplementary Information 1), including multi-variant linear/logistic 36 

regression tests with and without dimension reduction3–5, variance component score tests6,7, and 37 

region-level minP tests8–10; sensitive to heterogeneous regional architectures. Our goal is to 38 

integrate region definition with implementation of region-level and single-variant tests in one 39 

scalable R package for comprehensive genome-wide region-level association analysis and 40 

improve region discovery under heterogeneous regional architectures.  41 

2. Implementation and Key features 42 

We introduce the RegionScan R package for genome-wide discovery analysis and define regions 43 

using the gpart11 R package for LD-based genomic partitioning, optimized for region-level 44 

analysis12. Although a major advantage of our approach is comprehensive analysis of the 45 

genome, including intergenic regions, RegionScan can also accommodate other user-specified 46 

region definitions.  47 
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2.1 Capability and Scalability 48 

The main function is called regscan (Supplementary Information 2, for a detailed description 49 

and list of options). regscan takes four main inputs: data which includes genotypes (additively 50 

coded); SNPinfo input with variant information; phenocov with phenotypes (quantitative or 51 

binary) as well as covariates (if applicable) and a REGIONinfo input with region start/end 52 

positions, as produced with gpart11. Alternatively, the auxiliary function recodeVCF can process 53 

large VCF 4.0 files with vcftools13 to produce a temporary subset VCF file by region, 54 

subsequently processed in R to improve memory efficiency. regscan also deals optionally with 55 

multi-allelic variants in addition to bi-allelic variants. 56 

To improve scalability, regscan can process, recode and analyze each region in parallel. The 57 

processing steps for each region include variant filtering and recoding based on minor allele 58 

frequency (MAF), and an option to reduce multicollinearity by pruning variants within regions. 59 

This is followed by application of region-level tests including regression-based tests (MLC2, 60 

PC803, LC4,5,14,15, generalized Wald tests), variance component score tests (SKAT16,17, SKAT-61 

O7), and region-level min P tests (simpleM8 , GATES9, MinP10,18), in addition to single-SNP 62 

tests for variants within regions. regscan includes an option to reduce finite-sample bias in 63 

logistic regression of unbalanced binary traits and/or variants with low minor allele counts, using 64 

a Jeffreys-prior penalized likelihood19,20. For the MLC2 region-level test, variants within each 65 

region are clustered in LD bins based on pairwise correlation21 for reduced-df region-level 66 

testing adaptive to the number of LD bins, followed by variant recoding within each bin to 67 

maximize variant pairs positive correlation (Supplementary Information 2, section 2.1.1); bin-68 

level tests within regions are reported in addition to MLC region-level tests.  69 
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2.3 Detailed Outputs and Visualization 70 

regscan produces six outputs detailing results for all regions analyzed (Supplementary 71 

Information 2, section 2.1.3): (1) region-level output with results for all regions analyzed; (2) 72 

bin-level output including bin-level test results for all bins within each region; (3) variant-level 73 

output with variant positions, LD-bin assignments, and corresponding effect sizes and P-values 74 

from single- and multi-variant regional regression models; within-region variance inflation factor 75 

values (VIFs) are included to facilitate identification of multi-collinearity; (4) a list of variants 76 

pruned out with reasons for exclusions; and optionally, (5) a single-variant output including 77 

variant-to-LD bin assignments for all the variants (available before pruning) and (6) a covariate 78 

output with covariate effects and P-values extracted from multi-variant regional regression 79 

models.  80 

Utility functions are implemented to visualize comparisons between region and/or variant-level 81 

test results. For example, MiamiPlot produces a genome-wide comparison of -log10 P-values for 82 

a pair of tests; LocusPlot displays results of several region-level tests in a set of contiguous 83 

regions; QQPlot assesses consistency of the observed distribution of a specified region-level 84 

statistic P-value with that expected under the null hypothesis and returns corresponding genomic 85 

inflation factors. regscan also produces optional heatmap plots within each of a set of selected 86 

region(s) to visualize correlation within region and within/across LD bins; it annotates variant 87 

positions according to the LD-bin assignment.  88 

3 Usage case  89 

In Supplementary Information 3, we demonstrate RegionScan capabilities and computational 90 

efficiency by genome-wide analysis of 1,340 individuals with type 1 diabetes (T1D) from the 91 
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DCCT/EDIC22,23 genetic study for LDL-cholesterol (LDL-c, measured at baseline). Fig. 1 gives 92 

an overview of RegionScan capabilities based on the results for chr19. In Supplementary 93 

Information 4, we report computation time by sample size and region size based on a realistic 94 

test dataset. 95 

Conclusion  96 

RegionScan is a flexible and versatile R package designed for scalable and comprehensive 97 

genome-wide region-level analysis that leverages region definition adaptive to local LD structure 98 

(or any other user-provided region definition). It implements multiple region-level tests sensitive 99 

to heterogeneous genetic architecture, including LD-bin reduced-df region-level tests, facilitates 100 

comparisons of region-level and single-variant test results, and includes options to deal with high 101 

dimensionality and multi-collinearity arising from improving resolution of 102 

genotyped/sequenced/imputed genetic data. Modular design is flexible for future developments. 103 
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Software, code and data availability  108 

The R package RegionScan (https://github.com/brossardMyriam/RegionScan) is available on 109 

GitHub and includes a vignette on how to install and run RegionScan in a realistic artificial 110 

dataset provided. The DCCT/EDIC data are available to authorized users at 111 
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https://repository.niddk.nih.gov/studies/edic/  112 

and https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000086.v3.p1 113 

(IRB #07-0208-E). Data analysis, software development, and computation time estimation were 114 

performed on the Hospital for Sick Children High-performance Computing Facility, the 115 

Lunenfeld-Tanenbaum Research Institute High-performance Computing platform, and the 116 

Niagara supercomputer (with support from the Canada Foundation for Innovation under the 117 

auspices of Compute Canada, the Government of Ontario, Ontario Research Fund - Research 118 

Excellence, and the University of Toronto). For hardware specifications on Niagara, see 119 

 https://docs.computecanada.ca/wiki/Niagara#Niagara_hardware_specifications 120 

 and https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart. 121 
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Fig. 1. Overview of RegionScan for genome-wide region-level association analysis of LDL-c at 133 
baseline in 1,340 individuals from the DCCT/EDIC22,23 Genetics Study of the Usage case study. 134 
Details of analysis are described in Supplementary Information 3.  To facilitate visualization 135 
of the results, we illustrate results on chr19 which exhibits genome-wide region-level association 136 
signals at the region- and variant-levels. Panel (A) illustrates a comparison between region-level 137 
association results based, for example, on the MLC test (top panel) with single-SNP results 138 
(bottom panel) for 89,001 regions analyzed genome-wide; the dotted lines indicate the genome-139 
wide Bonferroni-corrected significance levels: 5.6E-7 for region-level tests (top panel) and 5E-8 140 
(bottom panel) for single-SNP tests. Panel (B) illustrates partitioning results for 13 regions in 141 
chr19: 45,257,201-45,436,657bp; gene positions are shown in GRCh37. The blocks are delimited 142 
by triangles. Panel (C) illustrates comparison of results for multiple region-level tests for the 143 
same 13 regions as illustrated in Panel (B); changes in grey shading facilitate visualization of 144 
region boundaries. Panel (D) shows the LD bins constructed for the MLC test within the top 145 
LDL-c associated region, overlapping APOE gene (chr19: region #1690, chr19:45,385,759-146 
45,415,935). The left panel shows the heatmap of the SNP correlation matrix (with SNPs ordered 147 
by position within LD bin, and LD bins ordered by number of SNPs assigned); the right panel 148 
shows the SNP positions (X axis) along the LD bins (Y axis).  149 
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