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2 

ABSTRACT 37 

 38 

Climate change represents a significant challenge to global food security by altering 39 

environmental conditions critical to crop growth. Plant breeders can play a key role in mitigating 40 

these challenges by developing more resilient crop varieties; however, these efforts require 41 

significant investments in resources and time. In response, it is imperative to use current 42 

technologies that assimilate large biological and environmental datasets into predictive models to 43 

accelerate the research, development, and release of new improved varieties. Leveraging large 44 

and diverse data sets can improve the characterization of phenotypic responses due to 45 

environmental stimuli and genomic pulses. A better characterization of these signals holds the 46 

potential to enhance our ability to predict trait performance under changes in weather and/or soil 47 

conditions with high precision. This paper introduces CHiDO, an easy-to-use, no-code platform 48 

designed to integrate diverse omics datasets and effectively model their interactions. With its 49 

flexibility to integrate and process data sets, CHiDO's intuitive interface allows users to explore 50 

historical data, formulate hypotheses, and optimize data collection strategies for future scenarios. 51 

The platform's mission emphasizes global accessibility, democratizing statistical solutions for 52 

situations where professional ability in data processing and data analysis is not available. 53 

 54 
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1 INTRODUCTION 68 

As the global population continues to surge, projected to reach 10 billion by 2050 (Gu et al., 69 

2021), the imperative to increase agricultural yields becomes increasingly critical (Van Dijk et 70 

al., 2021). This challenge is compounded by the escalating frequency and intensity of weather 71 

variations due to climate change, posing a significant threat to food security worldwide (Lesk et 72 

al., 2016). Such climatic extremes have already begun to impact the productivity of elite crop 73 

varieties, with studies indicating a potential reduction of up to 6% for an increase of one degree 74 

Celsius in average temperature (Zhao et al., 2017). 75 

To meet these rising demands for available food products, agricultural production must 76 

increase, and supply chain improvements must be achieved to reduce food waste at different 77 

stages. Plant breeding can play a pivotal role in increasing total harvestable output through the 78 

development of improved genotypes that can withstand changing environmental conditions. 79 

More resilient crop varieties serve dual purposes: 1) fulfilling the nutritional demands of a 80 

growing population, and 2) mitigating reliance on environmentally harmful inputs like fossil 81 

fuels and synthetic agrochemicals (Foley et al., 2011). However, traditional plant breeding 82 

methods, which predominantly rely on phenotypic and pedigree data, are resource-intensive and 83 

time-consuming (Atlin et al., 2017). These conventional approaches require significant 84 

investments in land and time, often taking up to eight years to develop a new variety for annual 85 

crops (Jarquín et al., 2017). Moreover, genetic engineering, while a potential solution, is 86 

surrounded by socio-economic and ecological concerns, as well as issues of accessibility, 87 

corporate control and public acceptance (Clapp, 2018; Tsatsakis et al., 2017). 88 

Recent advances in sequencing technologies have revolutionized our ability to 89 

characterize genotypes with high precision through DNA-based marker profiles (Varshney et al., 90 

2014). This genomic information enables the characterization of genetic relationships between 91 

individuals (Bernardo 1994), forming the foundation of genomic selection (GS). However, this 92 

selection framework has its own set of challenges, such as handling large genomic datasets for 93 

reduced number of phenotypic observations --the "large p, small n" problem--. Leveraging 94 

genomic selection-by-genomic prediction (GS-GP) techniques allows the prediction of the 95 

performance of unobserved genotypes based solely on their marker profiles (Meuwissen et al., 96 

2001). This approach, although a significant leap in breeding efficiency, overlooks the impact of 97 

environmental factors. The next iteration of computational methods to accelerate and improve 98 

breeding efforts was modeling Genotype-by-Environment (G×E) interactions. 99 

G×E analysis examines how genotypes respond to different environmental conditions 100 

(change in the response patterns - rankings).  However, similar problems (p>>n) than for 101 

conventional GS-GP models arise when considering the interaction between genes and 102 

environmental factors increasing the computational demands of modeling a large number of 103 

interactions via contrasts (Crossa et al., 2017).  Utilizing the approach proposed by Jarquín et al. 104 
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(2014), we can overcome these challenges by analyzing and integrating all first degree 105 

interactions between marker SNPs and environmental covariates via covariance 106 

matrices/structures. This alternative significantly reduces the dimensionality of data by 107 

leveraging correlations between genotype-by-environment combinations that are similar both 108 

genetically and at the level of the environmental covariates (environmentally) rather than 109 

computing individual contrast effects between markers and weather factors  (Jarquín et al., 110 

2014).  Several studies have shown the advantages of taking into consideration the G×E 111 

interaction in prediction models in plant and animal breeding applications (Jarquin et al., 2020, 112 

Tiezzi et al., 2017). The predictive power of the G×E interaction can be bolstered through the 113 

inclusion of a broad spectrum of omics (or layers) data (e.g. genomics, proteomic, metabolomics, 114 

enviromics, ionomics, high-throughput data, etc.), known as multi-omics analysis (Yang et al., 115 

2021). 116 

Implementing models that effectively integrate and interpret this complex multi-omics 117 

data can be challenging, often requiring specialized programming and statistical expertise that 118 

may not be readily available in many breeding programs around the world, especially in 119 

developing regions. To address this gap, we have developed CHiDO, a no-code platform 120 

designed to facilitate the integration of multi-omics data to build, train and test complex G×E 121 

prediction scenarios. 122 

Across several Latin-American cultures, the word ‘chido’ (meaning ‘cool’ in English) is 123 

a powerful and oversimplistic expression that succinctly describes all the positive aspects of an 124 

action, event, thing, etc. In our case, CHiDO stands for Characterization and Integration of 125 

Driven Omics, and it enables breeders to use advanced analytical methods without having to 126 

write code themselves; removing a technical barrier and democratizing access to the latest 127 

predictive analytics used in breeding implementations. Our CHiDO development is not just a 128 

“prediction software”, it also integrates a series of developments proposed by several Latin 129 

American scientists (Drs. de los Campos, Crossa, Perez-Rodriguez, Gianola) that are recurrently 130 

cited along this paper, and this is a way to acknowledge their contributions in the field. In this 131 

paper, we discuss the development of this platform, its components and the statistical methods 132 

leveraged for its functionality. Currently, the application can be accessed at 133 

https://jarquinlab.shinyapps.io/chido/. 134 

 135 

2 MATERIALS AND METHODS 136 

2.1 Platform Overview 137 

The implementation of elaborated prediction models, integrating data from multiple omics of 138 

information (including interactions of several types), and their corresponding evaluation 139 
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considering different prediction scenarios (mimicking realistic scenarios) poses extra challenges 140 

in many breeding programs.  141 

 142 

ChiDO is a no-code platform that can fill this gap by allowing breeders to build, train, and 143 

validate linear models that incorporate data derived from multiple omics of information in a 144 

simple manner.  It also addresses two challenges with leveraging G×E interaction models for 145 

breeding efforts by 1) using a UI-based workflow to overcome the technical barrier associated 146 

with multi-omics data handling and programming, and 2) reducing the dimensionality of G×E by 147 

adopting the reaction norm model described in Jarquín et al., (2014) which is further described in 148 

the Statistical Background subsection. The platform's user interface (UI) is divided into four 149 

sections –data loading, model assembly, training/validation, and results view where each section 150 

contains instructions and widgets to customize the metadata, parameters and model equations as 151 

necessary. The drag-and-drop interface is a novel approach to building complex models where 152 

users can add individual omics as main effects and form interactions between them (e.g., G×E) 153 

by collapsing these effects without requiring any advanced programming knowledge. 154 

 155 

Other key features of CHiDO include: 1) customizable data processing and parameter 156 

tuning, 2) handling multiple input files within a single session, 3) viewing omics data and editing 157 

associated metadata, 4) building and testing multiple models in a single session, 5) viewing 158 

results in the UI with the option to download them as CSV and PNG files, and 6) exporting 159 

models as R objects via an RDS file. These features and additional functionality are split into 160 

four separate page views within the CHiDO platform (Figure 1).  161 

2.1.1 Design 162 

 163 

CHiDO was built using the Shiny framework (Winston Chang et al., 2023), a popular R package 164 

for creating interactive web and desktop applications. Its architecture, however, diverges from 165 

the typical UI-Server split typically found in most Shiny applications, emphasizing a modular 166 

design methodology. This approach involves segmenting logical components into individual 167 

functions to enhance the platform's long-term maintainability, support and expansion. The 168 

software's architecture is based on modern development practices to prevent logical duplication, 169 

reduce dependencies within the codebase, and minimize disruption as new versions are released. 170 

 171 

Consequently, CHiDO's design integrates both R and JavaScript in its frontend and backend 172 

logic. The packages shinyjs (Dean Attali, 2021) and shinyjqui (Yang Tang, 2022) are utilized to 173 

introduce functionality that extends beyond the traditional capabilities of R/Shiny, including the 174 

drag-and-drop interface for model assembly (Figure 2). Many features are made available by 175 

leveraging a suite of R packages such as ggplot2 (Hadley Wickham, 2016) for rich data 176 

visualizations and DT (Yihui Xie et al., 2023) to display and handle tabular objects. The 177 
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selection of DT is deliberate, enabling table and data frame manipulation with either JavaScript 178 

or R code. For an exhaustive list of libraries used by CHiDO, see Table 1. 179 

2.1.2 Usage 180 

 181 

The typical workflow for CHiDO (Figure 3) can be listed as the following steps: 182 

 183 

Step 1: CHiDO accommodates the upload of tabular data in CSV and RDA format, with a 184 

flexible approach to data requirements. The primary necessity is the phenotypic response file 185 

(Y), which must contain columns for environment IDs, genotype IDs, and the target trait to 186 

predict, at minimum. Dealing with data from multi-environment trials, the column corresponding 187 

to the ID of the environments, and the genotypes should be specified in the interface. Also, if 188 

omic data is collected at the plant or sample level (e.g. multispectral data collected with drones, 189 

ionomic data, information collected on secondary traits, etc.) a column serving as a unique 190 

identifier (compound) for that level should be included for alignment. 191 

 192 

For omics data, each file must have an identifier column specified by the user to link back to the 193 

matrix of phenotypes in the Y file; this could be a column with the genotype IDs, an environment 194 

ID column, or a unique identifier (UID-compound) column (e.g. genotype-in-environment 195 

combination, plant or sample ID). Once a data file is uploaded, users can modify its metadata 196 

including its display label and linkage type (Environment ID, Genotype / Line ID, Compound 197 

ID). 198 

 199 

Users are responsible for ensuring their data is properly formatted prior to uploading it to 200 

CHiDO. Extra care should be taken to ensure that all identifier levels of an omic are represented 201 

in the Y file. For example, if molecular information is uploaded, all lines referenced in this 202 

dataset should be present in the Y file as part of the Genotype / Line ID column, even if the 203 

corresponding phenotypic values are missing. If these identifiers are not consistent across both 204 

files, the covariances matrices cannot be constructed for the implementation to work.  205 

Step 2: Upon upload, each file is recognized as a separate omic within CHiDO and is assigned a 206 

unique label, if not specified by the user during upload. In the model assembly section, these 207 

labels appear as draggable elements for the user to add as main effects into a linear model 208 

formula box. Interaction effects can be added by dragging -collapsing- two or more of these 209 

labels into the same box before adding them into the formula. Users can build and save as many 210 

models as desired, facilitating comparative analysis of these to determine which set of effects can 211 

best predict trait performance (e.g., including G×E interactions) for desired phenotypic 212 

expression. 213 

 214 

Step 3: In the training and validation section, users have the option to adjust convergence hyper-215 

parameters (e.g., number of iterations and burn-in) and data pre-processing steps on genomic 216 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583604doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583604
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

data (i.e., quality control – minor allele frequency and percentage of missing values) at their 217 

discretion. These settings can be altered for each model or applied uniformly across the multiple 218 

models created in the previous section. Once a model is selected, it can be tested with one or 219 

more of the four distinct cross-validation (CV) schemes that mimic prediction scenarios of 220 

interests to breeders; 1) CV2: predicting tested genotypes in observed environments; 2) CV1: 221 

predicting untested genotypes in observed environments; 3) CV0: predicting tested genotypes in 222 

new environments; and 4) CV00: predicting untested genotypes in new environments (Persa et 223 

al. 2021). The implementation of the declared linear predictors (models) is done using the BGLR 224 

(Bayesian Generalized Linear Regression) package developed by Perez and de los Campos 225 

(2014). 226 

 227 

Step 4: The results of the selected CV schemes are presented in the UI in both tabular and 228 

graphical outputs, with the option to download these locally. The downloadable results are 229 

delivered in a compressed zip folder where the contents are systematically sorted by model, with 230 

each model's folder containing CSV files with the raw numeric data for each CV and PNG files 231 

showing a graphical representation of the results. In addition to the CV data, the results also 232 

include evaluation metrics to assist with model interpretation efforts and the corresponding 233 

variance components derived from the full data analysis. The metrics available are prediction 234 

accuracy (as the Pearson correlation between predicted and observed values), root-mean-235 

squared-error (RMSE), and variance components to evaluate the relative contribution of each 236 

one of the omics to explain the phenotypic variability. The formulae for each metric are provided 237 

in the Statistical methods section. The output and evaluation metrics are displayed in both tabular 238 

and graphical formats. This data is available to view as overall model performance (Figure 4) or 239 

split by environment (Figure 5). 240 

2.2 Statistical Background 241 

 242 

Modeling high-dimensional sets of covariates p (e.g., genomic, environmental, gene × 243 

environment interactions, etc.) using a reduced set of n phenotypic observations such that p >> 244 

n, poses extra challenges. Especially under the conventional prediction approaches based on 245 

linear regressions of the ordinary least squares (OLS) framework. The phenotypic response 𝑦𝑖 of 246 

the ith genotype (i  = 1, 2, …, n) can be represented as the linear combination between p markers 247 

𝑥𝑖𝑗 (j = 1, 2, …, p) and their corresponding effects 𝑏𝑗 such that 248 

 249 

𝑦𝑖 = ∑ 𝑥𝑖𝑗𝑏𝑗 + 휀𝑖
𝑝
𝑗=1     [1] 250 

 251 

Then, under the OLS framework the solution for the vector of marker effects is given by 252 

 253 

�̂� = (𝑋′𝑋)−1𝑋′𝑦    254 

 255 
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A major challenge to obtain the solution of the vector of marker effects is the inversion of 256 

singular matrices of the form (𝑋𝑋′)−1 which are not full rank due to the larger number of 257 

coefficients to estimate (p) with respect to the reduced number of data points (n) available for 258 

model fitting. Under the parametric context, several statistical approaches have been developed 259 

to deal with the course of the dimensionality (p >> n). Two of the most popular statistical 260 

frameworks are the penalized regressions and the Bayesian methods which in many cases are a 261 

sort of Bayesian versions of the former ones. By design, the penalized methods delimit to n the 262 

total number features or covariates to select in the model.  263 

 264 

On the other hand, the Bayesian methods consider distributional assumptions of the 265 

marker effects, allowing (in principle) all features to be included in the final prediction model. In 266 

both cases, the inversion of matrices with large dimensions (p × p) is accomplished by adding a 267 

value to the diagonal elements of the (𝑋𝑋′) matrix to “break” the singularity. Another option is 268 

to consider prior distributions for the marker effects such that 𝑏𝑗~𝑁(0, 𝜎𝑏
2). This will help to 269 

reduce the uncertainty of their estimation (prediction) by adding a bias. In both cases, the general 270 

solution takes the following form 271 

 272 

�̂� = (𝑋′𝑋 + 𝜆 × I𝑝)
−1

𝑋′𝑦   273 

 274 

The value to add in the diagonal matrix of 𝑋′𝑋 is conveniently selected in a trade-off 275 

between model goodness of fit and model complexity, where 𝜆~
𝜎𝜀

2

𝜎𝑏
2, 𝜎𝑏

2 and 𝜎𝜀
2 are the 276 

corresponding variance components of the effect of the genomic covariates (genes/SNPs) and of 277 

the error term. 278 

 279 

Although the previous implementations allow us to get a solution when considering main 280 

effects only, these still deal with large matrices and do not solve the problem of including 281 

interactions between high dimensional sets of covariates (e.g., p genomic or phenomic and Q 282 

environmental features for a total of p × Q first order contrasts). To tackle this problem, first we 283 

examine an alternative parameterization proposed in animal breeding (VanRaden, 2008) to 284 

include main effects in a computationally-convenient manner, then we provide a few details of 285 

the implemented method for including interactions between groups of covariables.  286 

 287 

The Genomic Best Linear Predictor (G-BLUP) attempts to directly compute the genomic 288 

effect of the ith individual g𝑖 resulting from the linear combination between p marker and their 289 

corresponding effects such that g𝑖 = ∑ 𝑥𝑖𝑏𝑖𝑗
𝑝
𝑗=1 . Hence, instead of focusing in obtaining first the 290 

marker effects 𝑏𝑖𝑗 to be used later in the linear combination, the genomic effect is obtained in 291 

one step. The solution to this model requires the inversion of matrices of the type (𝑋𝑋′)−1 and 292 

order n × n instead of p × p, facilitating the handling of information derived from large matrices, 293 

with 𝑋 centered and scaled by columns (rows-genotypes; columns-marker SNPs). Under this 294 
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parameterization, the vector of genetic effects is modeled as 𝐠 = {g𝑖}~𝑁(𝟎, 𝐆𝜎𝑔
2), where 𝐆 =295 

𝑋𝑋′

𝑝
 and 𝜎𝑔

2 = 𝑝 × 𝜎𝑏
2. Here, 𝐆 corresponds to the kinship matrix whose entries describe the 296 

genomic similarities between pairs of individuals (VanRaden 2008). The resulting model in a 297 

matrix parameterization is as follows  298 

 299 

𝒚 = 𝐠 + 𝜺    [2] 300 

 301 

A similar idea based on covariance structures can be considered to include high-302 

dimensional interactions between factors (more details are provided below in 2.3 section). 303 

Jarquin et al. (2014) proposed the reaction norm model that allows the inclusion of all first order 304 

interactions between genomic and weather factors. First, it was shown that the main effects of 305 

weather covariables can be introduced into models in a similar fashion than the main effect of 306 

genes or marker SNPs. Here, the environmental similarities between pairs of environments can 307 

be characterized using weather information.  This is analogous to considering marker SNPs to 308 

conducting the genomic characterization between pairs of genotypes. Then the interactions 309 

between markers and environmental factors are introduced via covariance structures computed as 310 

the element-to-element product between the previous covariance matrices for genotypes and 311 

environments.  312 

 313 

Indirectly, this model, below described, allows to include the interaction between each 314 

marker SNP and each weather covariate by modeling the interaction between their corresponding 315 

linear combinations via covariances structures following the G-BLUP model fashion. The 316 

resulting covariance structure of this interaction component that considers genomic and weather 317 

factors is computed as the Hadamard product, which is the cell-by-cell product between two or 318 

more covariance structures of the same dimension. In this case, the corresponding covariance 319 

structures are redistributed/extended according to the vector of phenotypes and levels of the 320 

corresponding factors (genotypes and environments) to ensure these are conformable. 321 

 322 

In summary, modeling the G×E interactions can be both computationally and statistically 323 

expensive due to the high dimensionality of the number of contrasts that can be formed between 324 

genetic markers and environmental covariates (ECs). There are equivalent methods that reduce 325 

such dimensionality by introducing markers and ECs via covariance structures as described in 326 

Crossa et al. (2017). Interactions can be introduced through covariance structures computed via 327 

the Hadamard product between these. Although these methods were already developed, there is 328 

no simple method for capturing and integrating interactions among different omics. 329 

2.3 Statistical Methods – Model Building 330 

 331 
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As mentioned previously, CHiDO was developed as a way to easily build models that can 332 

capture main effects of diverse omics and incorporate the interactions between these, such as 333 

those derived between genomic markers and ECs. CHiDO'S drag-and-drop interface simplifies 334 

the process of creating complex models and adds a layer of abstraction for the methodology 335 

established by Jarquin et al. (2014).  336 

 337 

2.3.1 Main effects 338 

 339 

Upon uploading the phenotypic response file, CHiDO automatically recognizes the 340 

environment (E) and genotypic line (L) data to make them available as random effects, 𝐸𝑗 and  341 

𝐿𝑖, respectively. These random effects can be added as terms in the model assembly section to 342 

capture the inherent variability in phenotypic responses due to environmental and genetic 343 

differences. Therefore, a base model with no additional omics data can be represented as 344 

 345 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑗 + 𝐿𝑖 + 휀𝑖𝑗   [3] 346 

 347 

where 𝑦𝑖𝑗 is the phenotypic observation (target trait) of the ith genotype (i = 1, …, L) in the jth 348 

environment (j = 1, …, J), 𝜇  is the overall mean and 휀𝑖𝑗 is the error term capturing the non-349 

explained variability by the other model terms. 350 

 351 

When an omic data set 𝐎 is uploaded, CHiDO attempts to compute its specific vector of 352 

effects 𝐨 = {o𝑘}, transforming the data into a covariance matrix 𝛀 that captures the similarities 353 

among the pairs of entries for the different factor values (e.g., genotypes, environments, 354 

genotypes-in-environments, etc.) For instance, if a file containing p (𝑚 = 1, … , 𝑝) genetic 355 

markers 𝑿 = {𝑥𝑖𝑚} is uploaded, CHiDO attempts to modeling the vector of genomic effects g =356 

{g𝑖} as described for the G-BLUP model by constructing a genomic relationship matrix G whose 357 

entries describe genomic relationships between pairs of genotypes.  For a given factor f (e.g., 358 

genotype, environment, genotype-environment combination) with T levels (t = 1,…, T), the 359 

generalized form of the vector of effects associated to an omic-type o can be calculated as a 360 

linear combination between M covariates 𝑂𝑡𝑚 and their corresponding effects 𝜏𝑚 (e.g., SNP 361 

markers, weather covariates, soil features, multispectral, Near InfraRed NIR, etc.) 362 

 363 

𝑜𝑡 = ∑ 𝑂𝑡𝑚𝜏𝑚

𝑀

𝑚=1

 364 

 365 

Using this form, we can describe general main effects for a given factor. For example, 366 

modeling the genomic effect of the 𝑖𝑡ℎ (i = 1, 2, …, L) genotype using marker information 𝑋 =367 

{𝑥𝑖𝑙} on p molecular markers and their corresponding effects 𝑏𝑙 (l = 1, 2, …, p) we have 368 

 369 
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𝑜𝑖 = ∑ 𝑥𝑖𝑙𝑏𝑙

𝑝

𝑙=1

 370 

 371 

 Similarly, for modeling the effect of the 𝑗𝑡ℎ environment based on Q weather covariates 372 

𝑊 = {𝑊𝑗𝑙} and their corresponding effects 𝛾𝑙 (l = 1, 2, …, Q) we have 373 

𝑜𝑗 = ∑ 𝑤𝑗𝑙𝛾𝑙

𝑄

𝑙=1

 374 

 375 

For an omic data observed at the particular/specific level -compound- (e.g. genotype-in-376 

environment combinations; the  𝑖𝑡ℎ genotype in the 𝑗𝑡ℎ environment), such as those derived from 377 

high-throughput phenotyping platforms, the information 𝑍 = {𝑧𝑖𝑗𝑙} on s features (e.g., images) 378 

can be modeled also as a linear combination considering their corresponding effects 𝛿𝑙 (l = 1, 379 

2,…, s) as follows 380 

𝑜𝑖𝑗 = ∑ 𝑧𝑖𝑗𝑙𝛿𝑙

𝑠

𝑙=1

 381 

 382 

In addition, the information of covariance structures relevant to the factors of study (e.g., 383 

genotype, environment, etc.), can be also included in the models. For example, genetic effects 384 

based on the pedigree matrix A, or the environmental effects based on an environmental kinship 385 

matrix C. In these cases, it is necessary to specify the factor ID in the phenotypic matrix to 386 

connect with the associated covariance structure. Hence, the alignment of the data will be 387 

conducted as previously described, and also similar distributional assumptions (normality) as 388 

before will be considered such that 389 

 390 

𝐨 = {o𝑡}~𝑁(𝟎, 𝛀σ𝛀
2 ) 391 

 392 

where 𝛀 is the corresponding covariance structure whose entries describe similarities between 393 

pairs of levels (genotypes, environments, genotype-in-environments, etc.), and σ𝛀
2  is the 394 

associated variance component. In this case, 𝛀 might represent the pedigree matrix (A) whose  395 

entries describe genetic similarities between pairs of individuals. Also, 𝛀 can represent an 396 

environmental kinship matrix (C) whose entries describe environmental similarities between 397 

pairs or environments. If a covariance structure derived from soil information (S) is available, it 398 

can be also introduced into the models in a similar manner. 399 

 400 

  Models including only main effects can be easily constructed by adding the information 401 

of the different omics into the linear predictor. For example, a linear model created using two 402 

omics, one generic of type o with T-levels (t = 1, 2, …, T) and M covariates, and another based 403 

on p genetic markers for L individuals (i = 1, …, L) can be represented by 404 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583604doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583604
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 405 

𝑦𝑖𝑡 = 𝜇 + 𝑔𝑖 + 𝑜𝑡 + 휀𝑖𝑡   [4] 406 

 407 

CHiDO's capacity to handle different omic types of variable dimension extends to the 408 

creation and alignment of distinct covariance matrices for each associated dataset. This is done 409 

by calculating the matrix cross-product that reflects/expands the specific relationships across the 410 

levels of that omic type according to the matrix phenotypic responses. For this, on each of the 411 

different F omics 𝐎𝑓 (f = 1, 2, …, F) it is necessary to compute the incidence matrix Z𝑓 that 412 

connects phenotypes with the T different levels of the omics (e.g., genotype, family, 413 

environment, mega-environment, farm, herd, genotype-in-environment combination, etc.) Then, 414 

the resulting aforementioned covariance matrices are aligned and/or expanded across all 415 

phenotypic records by computing Z𝑓𝛀Z𝑓
′   with the tcrossprod(tcrossprod(Z𝑓,𝛀), Z𝑓) instruction. 416 

 417 

2.3.2 Multiplicative interactions 418 

 419 

Interactions between different omics are modeled by calculating the Hadamard product of 420 

their corresponding covariance structures. For example, the interaction between the covariance 421 

matrices G and 𝛀  denoted by (𝐆#𝛀), represents the interaction between genotypes (using 422 

molecular marker information X) and any other related omic -O-. The corresponding covariance 423 

matrix of this interaction term is represented with 𝐁𝐆#𝛀 = Zg𝐆Zg
′ ∘ ZΩ𝛀ZΩ

′ , and modeled as  424 

𝐠 × 𝐨~𝑁(𝟎, 𝐁𝐆#𝛀σ𝐆#𝛀
2 ) 425 

 where Zg and  ZΩ are the corresponding incidence matrices that connect the phenotypic 426 

observations with the different levels of the omics (e.g., genotypes, environments, genotype-in-427 

environment, families, etc.) 428 

 429 

For any given covariance matrix of the main and interaction effects, CHiDO performs the 430 

spectral decomposition using the eigen() function to retrieve its eigenvalues and eigenvectors. 431 

The eigenvalues reveal the magnitude of variance in the omic data along the directions defined 432 

by their corresponding eigenvectors. For G×E predictions, this information could provide 433 

insights into the major factors that contribute towards trait variation. This factorization is 434 

conveniently implemented to save computing time when fitting different linear predictors and 435 

prediction scenarios in BGLR R-package. Each time the BGLR function is used, and the 436 

covariance matrices are provided, it internally computes the eigen-value decomposition before 437 

starting the model fitting. Using datasets with a large number of phenotypic observations (n) this 438 

procedure might be time consuming, especially in those cases where the cross-validations 439 

involve exhaustive scenarios and/or folds. Thus, by providing the resulting factorization of these 440 

matrices a considerable amount of time and resources are saved avoiding extra computational 441 

burden. 442 

 443 

2.3.3 Cross-validation schemes 444 
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 445 

Prior to implementing prediction models in real-world applications such as GS, it is necessary to 446 

evaluate their usefulness integrating different omics to deliver accurate and reliable results. 447 

Cross-validation studies are a common, time-tested method to perform such evaluation. Hence, 448 

after the models are created and saved in CHiDO, users can select from a range of cross-449 

validation (CV) schemes (based on their specific research objectives) how to train and evaluate 450 

the performance of their model(s).  451 

 452 

These CV schemes mimic real life prediction problems that breeders face at different stages 453 

along the breeding pipeline for the development of improved genotypes. As discussed, CV1 454 

considers the prediction of ‘newly’ or untested genotypes in environments where other genotypes 455 

were already observed. CV2 (or incomplete field trials) mimics the prediction of already tested 456 

genotypes observed in other environments but not in the target environment (where other 457 

genotypes were also already tested). CV0 (or forward prediction) emulates the prediction of 458 

already tested (in other environments) genotypes in novel environments where no phenotypic 459 

records on any of the lines have been collected. CV00 is similar to the previous scheme with the 460 

main difference that the genotypes to predict have not been observed at any of the environments 461 

in the training sets. This last prediction scenario is the most challenging and probably the most 462 

interesting for breeders. 463 

 464 

The manner to create the different partitions representing training and testing sets depends on the 465 

prediction problem (cross-validation scheme). Here, the folds are defined by the user according 466 

to the selected CV scheme to partition the phenotypic data (training/testing). For instance, in a k-467 

fold cross-validation setting such as in CV1 and CV2, the dataset D is divided into k mutually 468 

exclusive subsets (𝐷1, 𝐷2, … , 𝐷𝑘), with each subset serving as a testing set -one at a time- while 469 

the remaining subsets are aggregated to form the training set. Under CV2 scheme, the 470 

phenotypes are randomly assigned to the folds, while under the CV1 scheme extra care is taken 471 

to assign genotypes to folds ensuring that all the phenotypic records from the same individual 472 

appear in the same fold. On the other hand, under CV0 and CV00 each environment naturally 473 

becomes a fold and care is taken to ensure similar training sample sizes to those in the previous 474 

schemes (CV2 and CV1) according to Persa et al., (2021). When performing the different CV 475 

schemes, CHiDO loops the folds until all folds are considered as testing or prediction sets using 476 

the BGLR function. 477 

 478 

Since the models are fitted under the Bayesian framework, the users can define additional 479 

training hyper-parameters for BGLR such as the number of iterations and the burn-in rate. These 480 

parameters influence the convergence and stability of the Bayesian models. As mentioned above, 481 

the cross-validations are executed using the BGLR() function, which applies the user-defined 482 

settings. The eigenvalues and eigenvectors for each omic-matrix, carrying the information of the 483 
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different model terms, are incorporated into the ETA object to compose the readable linear 484 

predictor for BGLR. 485 

 486 

 487 

2.3.4 Metrics 488 

 489 

Upon completion of the BGLR analysis, CHiDO employs the model outputs to calculate several 490 

metrics essential for evaluating the performance of the different linear models. Custom functions 491 

have been developed within the CHiDO framework to facilitate these calculations, ensuring 492 

accuracy and efficiency in metric derivation.  493 

 494 

Prediction accuracy (PA) measured on a trial basis: It is obtained by computing the Pearson’s 495 

moment correlation 𝜌 between predicted and observed (phenotypic) values within each 496 

trial/environment/year/location/etc. This metric helps to determine how well a given model can 497 

predict phenotypic traits based on the multi-omics data associated to the provided model terms. 498 

The formula for PA in the jth environment (or grouping factor) is given by 499 

 500 

𝜌𝑗 =
∑ (�̂�𝑖𝑗 − �̂̅�𝑗)

𝑛𝑗

𝑖=1
(𝑦𝑖𝑗 − �̅�𝑗)

√∑ (�̂�𝑖𝑗 − �̂̅�𝑗)
2𝑛𝑗

𝑖=1
√∑ (𝑦𝑖𝑗 − �̅�𝑗)

2𝑛𝑗

𝑖=1

 501 

 502 

where �̂�𝑖𝑗 and 𝑦𝑖𝑗 are the predicted and the observed values of the ith genotype at the jth 503 

environment, �̂̅� and �̅�𝑗 are their corresponding means, and 𝑛𝑗  represents the number of 504 

observations at the jth environment. 505 

 506 

For an easier assessment of the model’s performance across environments, the weighted mean 507 

correlation is computed accounting for the uncertainty and the sample size of the environments 508 

according to Tiezzi et al. (2017) as follows: 509 

𝜌𝜑 =

∑
𝜌𝑗

𝑉(𝜎𝑗)
𝐽
𝑗=1

∑
1

𝑉(𝜎𝑗)
𝐽
𝑗=1

 510 

where 𝑉(𝜎𝑗) =
1−𝜌𝑗

2

𝑛𝑗
 corresponds to the sampling variance. 511 

 512 

Root Mean Squared Error (RMSE): Quantifies the average magnitude of prediction error, 513 

measures a model's precision, and penalizes large errors to a greater extent by squaring the 514 

difference between predicted and observed values. The formula for RMSE for the jth 515 

environment is given by: 516 

 517 
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𝑅𝑀𝑆𝐸𝑗 = √
1

𝑛
∑ (�̂�𝑖𝑗 − 𝑦𝑖𝑗)

2𝑛

𝑖=1
 518 

 519 

 520 

 521 

Variance Components: This metric measures the portion of variance explained by each model 522 

term associated to an omic with respect to the overall phenotypic variability. This estimation is 523 

critical for understanding which main or interaction effects influence the most the phenotypic 524 

expression/variability of target traits. It is computed considering a full data analysis (i.e., no 525 

missing values are generated on the phenotypic information). 526 

 527 

The variance component of each term is computed as the percentage of the total variance 528 

explained, which for the fth (f=1, 2, …, F) omic 𝐎𝑓 it corresponds to the ratio between the current 529 

variance component and the sum of all the F variance components plus the unexplained residual 530 

variance 𝜎𝜀
2 531 

 532 

%�̃�𝐨𝑓
2 =

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
× 100 =

�̃�𝐨𝑓
2

∑ �̃�𝐨𝑓
2𝐹

𝑓=1 + �̃�𝜀
2

× 100 533 

 534 

Here, under a given model, the specific variance refers to the variance attributable to the 535 

particular model term fth and total variance is the sum of variances of all terms, including the 536 

residual variance. The total variance corresponds to the 100% of the phenotypic variability. 537 

 538 

3 RESULTS AND DISCUSSION 539 

 540 

Dealing with prediction analyses for breeding applications, usually an important amount of time 541 

(~85%) is dedicated to the data preparation (quality control, alignment, cross-validation 542 

scenarios, etc.) and the remaining time (~15%) is for the development and implementation of 543 

these models. Therefore, the availability of low-code, no-code (LCNC) applications such as 544 

CHiDO can help breeders save time and obtain expedited results by automating and assisting 545 

with many of these tasks, allowing them to focus on specific research questions derived from 546 

initial quick analyses. 547 

  548 

In this paper we discussed the reason for CHiDO's development, the technical and statistical 549 

methods applied, and its potential benefits to breeders. The CHiDO platform is a significant 550 

contribution to empower breeders and democratize access to modern solutions by enabling the 551 
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modeling of different interaction types such as the G×E interaction without the need for in-depth 552 

programming knowledge. Increasing access to advanced analytics and prediction tools can not 553 

only accelerate research for new improved varieties/individuals, but also enable broader 554 

participation in agricultural research. CHiDO reflects a growing trend towards more accessible 555 

and flexible computational tools in genomics, as evidenced by recent literature advocating for the 556 

democratization of data science (Shang et al., 2019). 557 

 558 

The practical implications of the CHiDO platform extend significantly beyond the immediate 559 

sphere of plant breeding. By enabling more accurate and efficient selection processes, CHiDO 560 

contributes to the development of crops with improved yields and environmental resilience. This 561 

capacity is particularly crucial in the context of climate change and the increasing demands for 562 

sustainable agricultural practices. The forthcoming introduction of interactive graphics for model 563 

evaluation further underscores CHiDO's potential to enhance understanding and application of 564 

complex genomic data in breeding strategies. 565 

 566 

LCNC platforms such as CHiDO are becoming increasingly popular and offer various benefits 567 

for researchers (Sufi, 2023). Some benefits include 1) ease of adoption through a reduced 568 

learning curve, 2) accelerated development speed, and 3) circumventing resource scarcity, 569 

among many others listed in (Sufi, 2023; Yan, 2021). Despite these benefits, LCNC solutions are 570 

not without their challenges. Some notable drawbacks to LCNC are recurring costs and vendor 571 

lock-in. Similarly, developers can learn how to use the platform effectively but are bound to the 572 

limitations of said platform without the potential to extend its functionalities as opposed to 573 

custom developed alternatives. 574 

 575 

We are addressing these drawbacks in CHiDO by ensuring the platform remains a free-to-use 576 

service and providing users the ability to submit issues or product feature requests on GitHub 577 

(https://github.com/jarquinlab/CHiDO). In addition to this, we are evaluating the potential 578 

release of CHiDO's backend logic as an R package or API for more advanced users to extend 579 

CHiDO's functionalities or integrate the tools with other packages when scripting.  580 

 581 

In addition to the aforementioned features, future updates to CHiDO aim to enhance its 582 

functionality to cover a broader array of plant and animal breeding prediction scenarios, with the 583 

potential to extend these to public health applications such as personalized medicine. However, 584 

working on these proposed developments below detailed while maintaining an optimum 585 

functionality of the software will require of the investment of resources. We will seek for 586 

funding opportunities and partnerships to secure the needed resources to continue these and other 587 

future developments.  588 

 589 

A few of the key additions we would like to integrate are modules for sparse testing designs, 590 

estimation of G×E markers using weather data -enabling a focused analysis on the relevance of 591 
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genetic markers and ECs influencing target traits-, hybrid prediction via general and specific 592 

combining ability (GCA, SCA) terms and their corresponding interactions. Separately, CHiDO 593 

will incorporate options for selecting from multiple artificial intelligence (AI/ML) algorithms to 594 

facilitate the modeling of complex, non-linear relationships within multi-omics datasets. The use 595 

of Deep Learning and ML algorithms (e.g., RandomForest) is already being evaluated for their 596 

robustness in capturing intricate G×E interactions (Crossa et al., 2019), potentially leading to 597 

more accurate genomic selections. The launch of CHiDO online, alongside comprehensive 598 

documentation, is poised to democratize access to these advanced tools, stimulating worldwide 599 

collaboration and further research. 600 

 601 

Ultimately, CHiDO stands at the forefront of integrating multi-omics data for plant breeding, 602 

representing a critical advancement in computational tools within agriculture. Its development is 603 

timely, addressing the urgent need for innovative solutions in plant breeding to meet the global 604 

challenges of food security and sustainability. 605 

 606 
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FIGURES AND TABLES 757 

 758 

Table 1. List of all R packages used in the creation of CHiDO. 759 

 760 

Package Function in CHiDO URL 

shiny Main framework for displaying and 

organizing the web application 

https://CRAN.R-

project.org/package=shiny 

shinydashboard Simplified the creation of dashboards within 

the Shiny framework 

https://CRAN.R-

project.org/package=shinydash

board 

gridExtra Align widgets, plots, and data in grid-like 

format 

https://CRAN.R-

project.org/package=gridExtra 

dplyr Perform data processing and transformations 

in a consistent manner 

https://CRAN.R-

project.org/package=dplyr 

DT Handle and render tabular objects using R 

and/or JavaScript syntax 

https://CRAN.R-

project.org/package=DT 

ggplot2 Generate graphics of cross-validation results 

and evaluation metrics 

https://ggplot2.tidyverse.org 

shinyjs Integrating JavaScript into Shiny application 

to extend functionalities of UI 

https://CRAN.R-

project.org/package=shinyjs 

shinyjqui Enable animation effects needed for the drag-

and-drop interface in the model assembly 

page 

https://CRAN.R-

project.org/package=shinyjqui 
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 775 

Figure 1. Overview of the different components and functionalities within the CHiDo platform 776 
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 798 

A 

 

B

 

C 

 

D

 

Figure 2. User interface for CHiDO; (A) The Add Omics Data page is where users upload their 799 

files and define metadata for each of them such that the platform can treat them as separate 800 

omics; (B) The Model Assembly page lets users create multiple models using the uploaded data 801 

as main effects or combining them with interaction terms; (C) Users can tune training and 802 

validation parameters, apply quality control on the genomic data, as well as selecting the 803 

different cross-validation schemes to employ; and (D) the View and Download Results page 804 

allows users to view prediction outputs and evaluation metrics in tabular and graphical formats 805 

before downloading them to the user’s local environment. 806 
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 815 

Figure 3. Workflow diagram for CHiDO. This diagram demonstrates the logic implemented in 816 

the application to create and train linear models using arguments and data provided by the user. 817 
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 833 

Figure 4. Example of prediction accuracy results by model, and by cross-validation scheme. 834 
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 846 

Figure 5. Example of the model root-mean-square error (RMSE) by environment, and by cross-847 

validation scheme. 848 

 849 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583604doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583604
http://creativecommons.org/licenses/by-nc-nd/4.0/

