
i
i

i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Gene Expression

HyperGen: Compact and Efficient Genome
Sketching using Hyperdimensional Vectors
Weihong Xu1,∗, Po-Kai Hsu2, Niema Moshiri1, Shimeng Yu2, and Tajana
Rosing1

1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA.
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Genomic distance estimation is a critical workload since exact computation for whole-genome
similarity metrics such as Average Nucleotide Identity (ANI) incurs exhibitive runtime overhead. Genome
sketching is a fast and memory-efficient solution to estimate ANI similarity by distilling representative k-
mers from the original sequences. In this work, we present HyperGen that improves accuracy, runtime
performance, and memory efficiency for large-scale ANI estimation. Unlike existing genome sketching
algorithms that convert large genome files into discrete k-mer hashes, HyperGen leverages the emerging
hyperdimensional computing (HDC) to encode genomes into quasi-orthogonal vectors (Hypervector, HV)
in high-dimensional space. HV is compact and can preserve more information, allowing for accurate ANI
estimation while reducing required sketch sizes. In particular, the HV sketch representation in HyperGen
allows efficient ANI estimation using vector multiplication, which naturally benefits from highly optimized
general matrix multiply (GEMM) routines. As a result, HyperGen enables the efficient sketching and ANI
estimation for massive genome collections.
Results: We evaluate HyperGen’s sketching and database search performance using several genome
datasets at various scales. HyperGen is able to achieve comparable or superior ANI estimation error
and linearity compared to other sketch-based counterparts. Compared to other sketch-based baselines,
HyperGen achieves comparable sketching speed and up to 4.3× faster in database search. Meanwhile,
HyperGen’s sketch size is on average 1.8-2.7× smaller.
Availability: A Rust implementation of HyperGen is freely available under the MIT license as an open-
source software project at https://github.com/wh-xu/Hyper-Gen.
Contact: wexu@ucsd.edu

1 Introduction
In recent years, the burgeoning field of genomics has been revolutionized by
the advent of high-throughput sequencing technologies (Soon et al., 2013),
leading to exponential growth in genomic data (Stephens et al., 2015).
This deluge of data presents a significant challenge for traditional genomic
analysis methods, particularly in terms of computational efficiency and
storage requirements. Calculating the Average Nucleotide Identity (ANI)
similarity of genome files is the key step for various downstream workloads
in genome analysis, such as large-scale database search (Chaumeil et al.,

2022), clustering (Parks et al., 2020), and taxonomy analysis (Hernández-
Salmerón et al., 2023). Traditional BLAST-based methods (Kurtz et al.,
2004; Lee et al., 2016) rely on alignment to perform accurate ANI
calculations. However, the alignment process is computationally expensive
and requires hours or days to calculate ANIs. The slow speed of alignment-
based approaches has become a major bottleneck for large-scale genome
analysis.

Several state-of-the-art works have tried to speed up large-scale genome
analysis by approximating the genome similarity using more efficient data
structures. These works can be categorized into two types: mapping-
based and sketch-based approaches as follows. FastANI (Jain et al., 2018)
and Skani (Shaw and Yu, 2023) are two representative mapping-based

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://github.com/wh-xu/Hyper-Gen
mailto:wexu@ucsd.edu
https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

2 Xu et al.

algorithms for ANI estimation. FastANI is built upon the Mashmap sequence
mapping algorithm (Jain et al., 2017) and achieves a significant speedup
compared to the alignment-based baseline (Kurtz et al., 2004). Skani uses
the sparse chaining to increase mapping sensitivity, further improving
accuracy and efficiency of ANI estimation. However, both FastANI and
Skani suffer from high memory consumption. For example, Skani needs to
store indexing files with a storage size comparable to the original dataset.
FastANI encounters out-of-memory issues on large datasets as reported
in (Shaw and Yu, 2023).

In this work, we focus on the “genome sketching,” which is regarded
as a promising solution to address the aforementioned challenges because
it significantly reduces storage size while providing satisfactory accuracy
of estimation (Hernández-Salmerón et al., 2023). Unlike alignment-based
or mapping-based tools (Kurtz et al., 2004; Lee et al., 2016; Jain et al.,
2018; Shaw and Yu, 2023) that require expensive computation or large
memory space, sketch-based approaches (Ondov et al., 2016; Brown
and Irber, 2016; Baker and Langmead, 2019, 2023) only preserve the
most essential features of the genome (called the “sketch”). The sketch’s
compact representation enables rapid and efficient ANI approximation
for genome files. Mash (Ondov et al., 2016) and Sourmash (Brown and
Irber, 2016) represent groundbreaking efforts to use MinHash (Broder,
1997) and FracMinHash (Hera et al., 2023) to estimate genomic similarity,
respectively. Dashing 2 (Baker and Langmead, 2023) utilizes the SetSketch
data structure (Ertl, 2021) and incorporates multiplicities to realize a
memory-efficient genome sketch and accurate estimation of ANI.

1.1 Motivation

By transforming raw genome data into more compact data structures,
genome sketching represents a paradigm shift in bioinformatics, paving the
way for more scalable and rapid genomic analyses in the era of big data.
Although previous sketch-based tools (Ondov et al., 2016; Brown and Irber,
2016; Baker and Langmead, 2023) demonstrate a significant reduction in
runtime and file sizes, our goal in this work is to create a more concise and
informative sketching algorithm based on hyperdimensional computing
(HDC) (Kanerva, 2009). Recent studies on HDC have demonstrated the
effectiveness of using HDC to accelerate bioinformatics workloads, such
as pattern matching (Zou et al., 2022; Kang et al., 2023) and spectral
clustering (Xu et al., 2023).

We take advantage of recent DotHash (Nunes et al., 2023), which
shows superior space and computation efficiency for the Jaccard similarity
estimation. DotHash leverages the HDC-based random indexing (Sahlgren,
2005; Kanerva et al., 2000) and is originally designed for fast set intersection
estimation. The main difference between DotHash and MinHash lies in the
format of generated sketch: MinHash represents a sketch as a hash set with
discrete values, while DotHash represents a sketch with a nonbinary vector
of high dimension. DotHash’s vector representation of the sketch achieves
faster processing speed since it can fully exploit the low-level hardware
parallelism (such as CPU’s Single Instruction Multiple Data (SIMD) and
GPU) optimized for vector processing.

However, DotHash still suffers from two major limitations that hinder its
application to genome sketching. First, DotHash is only applicable to non-
genome data since it lacks an effective k-mer sampling strategy to generate
genomic sketches. Second, DotHash uses high-precision floating point
number to represent random vectors, exhibiting large runtime overhead
and slow speed.

1.2 Contributions

In this work, we propose HyperGen, a novel tool for efficient genome
sketching and ANI estimation. HyperGen exploits the emerging HDC
(similar to DotHash (Nunes et al., 2023)) to boost genomic ANI calculation.
Specifically, we optimize DotHash’s efficiency by converting the sketch

generation process into a low bit-width integer domain. This allows us
to represent the genome sketch using the high-dimensional vector (HV)
at the cost of negligible runtime overhead. Based on the HV sketch, we
propose an approach to estimate the Jaccard similarity using vector matrix
multiplication. We also introduce a lossless compression scheme using
bit-packing to further reduce the sketch size.

We benchmark HyperGen against several state-of-the-art tools (Jain
et al., 2018; Ondov et al., 2016; Baker and Langmead, 2023; Kurtz et al.,
2004). For ANI estimation, HyperGen demonstrates comparable or lower
ANI estimation errors compared to other baselines across different datasets.
For generated sketch size, HyperGen achieves 1.8× to 2.7× sketch size
reduction as compared to Mash (Ondov et al., 2016) and Dashing 2 (Baker
and Langmead, 2023), respectively. HyperGen also enjoys the benefits of the
modern hardware architecture optimized for vector processing. HyperGen
shows about 1.7× sketch generation speedup over Mash and up to 4.3×
search speedup over Dashing 2. To the best of our knowledge, HyperGen
offers the optimal trade-off between speed, accuracy, and memory efficiency
for ANI estimation.

2 Methods

2.1 Preliminaries

Fast computation of Average Nucleotide Identity (ANI) is pivotal in genomic
data analysis (microbial genomics to delineate species), as ANI serves as a
standardized and genome-wide measure of similarity that helps facilitate
genomic data analysis. Popular approaches to calculate ANI include:
alignment (Kurtz et al., 2004; Lee et al., 2016), mapping (Jain et al., 2018;
Shaw and Yu, 2023), and sketch (Ondov et al., 2016; Brown and Irber,
2016; Baker and Langmead, 2019, 2023). However, alignment-based and
mapping-based methods involve either time-consuming pairwise alignments
or memory-intensive mappings. In the following sections, we focus on the
sketch-based ANI estimation with significantly better efficiency.

2.1.1 MinHash and Jaccard Similarity
Existing sketh-based approaches (Ondov et al., 2016; Brown and Irber, 2016;
Baker and Langmead, 2019, 2023) do not directly compute ANI. Instead,
they compute the Jaccard similarity (Ondov et al., 2016), which is used to
measure the similarity of two given k-mer sets. Then the Jaccard similarity
is converted to ANI as shown in Eq. (8). The conversion between Jaccard
similarity and ANI is trivial, so most efforts in previous works (Ondov
et al., 2016; Brown and Irber, 2016; Baker and Langmead, 2019, 2023) are
to find more efficient and accurate ways to estimate Jaccard similarity.

Without loss of generality, we denote k-mer as consecutive substrings
with length k of the nucleotide alphabet, e.g.

∑k ∈ {A,G,C, T}k .
Sk(X) denotes the set of k-mers sampled from genome sequence X based
on a given condition. Therefore, the Jaccard similarity for two sequences,
A and B, can be computed as follows:

Jk(A,B) =
|Sk(A) ∩ Sk(B)|
|Sk(A) ∪ Sk(B)|

, (1)

where Jk(A,B) ∈ [0, 1] is the Jaccard similarity indicating the overlap
between k-mer sets of two sequences. Note that HyperGen uses canonical
k-mers by default.

A straightforward idea to sample k-mer sets in Eq. (1) is to keep all
k-mers. However, this incurs prohibitive complexity since all unique k-
mers need to be stored. The resulting complexity isO(L) for a sequence of
length L. To alleviate the complexity issue, Mash (Ondov et al., 2016) and
its variants (Liu and Koslicki, 2022; Jain et al., 2017) use MinHash (Broder,
1997) to approximate the Jaccard similarity by only preserving a tiny subset
of k-mers. In particular, Mash keeps N k-mers that have the smallest hash

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

3

values h(·). In this case, the Jaccard similarity is estimated as:

Ĵ(A,B) = P(min
a∈A

h(a) = min
b∈B

h(b)). (2)

Here, using MinHash helps to reduce the sketch complexity fromO(L) to
a constantO(N). The sampled k-mer set Sk(X) that stores N smallest
k-mer hash values is regarded as the genome file sketch required for ANI
estimation.

2.1.2 Jaccard Similarity using DotHash
A recent work (Nunes et al., 2023) demonstrates that the speed and memory
efficiency of Jaccard similarity approximation can be improved by using
the DotHash based on Random Indexing (Sahlgren, 2005). The key step to
compute Jaccard similarity in Eq. (1) is computing the cardinality of set
intersection |A ∩B| while the cardinality of set union can be calculated
through |A ∪B| = |A|+ |B| − |A ∩B|.

In DotHash, each element of the set is mapped to a unique D-
dimensional vector in real number using the mapping function ϕ(x). Each
set is expressed as an aggregation vector a ∈ RD such that

a =
∑
a∈A

ϕ(a), (3)

where the aggregation vector sums all the elements’ vectors generated by
the mapping function ϕ(x). One necessary constraint for function ϕ(x) is:
the generated vectors should satisfy the quasi-orthogonal properties:

ϕ(a) · ϕ(b) =
{
0, if a ̸= b,

1, if a == b.
(4)

DotHash (Nunes et al., 2023) uses a pseudo random number generator
(RNG) as the mapping function ϕ(x) because the RNG can generate
uniform and quasi-orthogonal vectors in an efficient manner.

Using the quasi-orthogonal properties, the cardinality approximation
for set intersection is transformed into the dot product of two aggregation
vectors:

|A ∩B| = E[a · b]

= E

∑
a∈A

∑
b∈B

ϕ(a) · ϕ(b)

=

∑
a∈A

∑
b∈B

1(a == b)

=
∑

x∈A∩B

1,

(5)

where those vectors not in the set intersection (a ̸= b) have no contribution
to the inner product due to their quasi-orthogonality as in Eq. (4). DotHash
effectively aggregates all elements in a set to form an aggregation vector
with D dimension. The computational and space complexity of cardinality
estimation for set interaction is reduced fromO(N) toO(D). Moreover,
the computation process of DotHash is highly vectorized and can be easily
boosted by existing hardware architecture optimized for general matrix
multiply (GEMM).

2.2 Proposed HyperGen Sketching

The aforementioned DotHash provides both good accuracy and runtime
performance (Nunes et al., 2023). However, we observe two major
limitations of DotHash: 1. Although DotHash can be used to calculate the
cardinality of set intersection, it cannot be applied to genomic sketching
because DotHash lacks a k-mer sampling module that identifies the useful
k-mers; 2. The computation and space efficiency can be further optimized

Hash

RNGBinary
Hypervectors

-mer
Hash Set

Seed

Aggregate

Hash

-mer
Hash Set

-mers Sketch

(a)

(b)

Sketch
Hypervector

-mers

Set Size =

Hypervector dim. =

Set Size =

Fig. 1: Algorithm overview for (a) Mash-like sketching and (b) HyperGen
sketching for genome sequences. Mash stores the genome sketch in a k-mer
hash set with O(N) complexity while HyperGen aggregates N k-mer
hashes into a D-dimensional sketch HV withO(D) complexity.

because the previous DotHash manages and processes all vectors in floating-
point (FP) numbers. The mapping function ϕ(x) incurs significantly
overhead.

We present HyperGen for genomic sketching applications that addresses
the limitations of DotHash. Fig. 1 shows the algorithmic overview for (a)
Mash-like sketching and (b) HyperGen sketching schemes. The first step
of HyperGen is similar to Mash, where both Mash and HyperGen extract k-
mers by sliding a window through given genome sequences. The extracted
k-mers are uniformly hashed into the corresponding numerical values by a
hash function h(x). To ensure low memory complexity, most k-mer hashes
are filtered and only a small portion of them are preserved in the k-mer
hash set to work as the sketch (or signature) of the associative genome
sequence. The key difference is that HyperGen adds a key step, called
Hyperdimensional Encoding for k-mer Hash, to convert k-mer hash values
into binary hypervectors (HVs) and aggregate to form the D-dimensional
sketch HV. To distinguish itself from DotHash, the random vector in
HyperGen is named HV. Algorithm 1 summarizes the flow of generating
sketch hypervector in HyperGen. In the following sections, we explain the
details of HyperGen.

2.2.1 Step 1: k-mer Hashing and Sampling
Mash uses MinHash that keeps the smallest N hash values as the genome
sketch. In comparison, HyperGen adopts a different k-mer hashing
and sampling scheme. Specifically, HyperGen performs a sparse k-mer
sampling using FracMinHash (Hera et al., 2023) (instead of MinHash
in Mash). Given a hash function h :

∑k 7→ [0,M] that maps k-mers
into the corresponding nonnegative integer, the sampled k-mer hash set is
expressed as Line 2-4 in Algorithm 1:

Sk(A) = {h(x) | ∀x ∈ A : h(x) ≤
M

S
}, (6)

where M is the maximum hash value while S denotes the scaled factor that
determines the density of sampled k-mers in the set. FracMinHash has been
widely adopted in other tools, such as Sourmash (Brown and Irber, 2016)
and Skani (Shaw and Yu, 2023), due to its excellent performance. The
advantage of using FracMinHash over MinHash (Broder, 1997) is that it
ensures an unbiased estimation of the Jaccard similarity of k-mer sets with
very dissimilar sizes (Hera et al., 2023), providing better approximation

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

4 Xu et al.

AGACTT

Binary
Hypervectors-mer

Hash Set 0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 0 1 1 1 0

-mers

2

1 0

0 0

1 0

1 1

-2 0 -2 2 0 4 0

Sketch
Hypervector

AGACTC

0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 1 0 1 1 0

0

1 0

0 0

1 0

0 0

-4 0 0 0 0 4 0

AGA
GAC
ACT
CTT

CTC

AGA
GAC
ACT

Step 1: -mer
Hashing and Sampling

Step 2: Hyperdimensional
Encoding for -mer Hash

Fig. 2: Sketch hypervector generation and set intersection computation in
HyperGen. Each k-mer with size k = 3 first passes through a hash function
h(x). The k-mers (A = AGACTT and B = AGACTC) are hashed
to hash set. Then each k-mer hash value is converted into the associated
orthogonal binary HV. The set intersection between two k-mer hash sets is
computed using the cosine similarity of aggregated sketch HVs.

Algorithm 1: Generation of sketch hypervector in HyperGen
Input: Genome sequence X , Scaled factor S, Maximum hash

value M , HV dimension D, Pseudo random number
generator RNG

Output: Sketch HV H for sequence X

/* Sampling k-mers using FracMinHash */

1 Sk ← {}
2 for k-mer x ∈ X do
3 if h(x) < M

S
then

4 Sk ← h(x) ∪ Sk

/* Hyperdimensional encoding for k-mer hash */

5 H← 0

6 for seed ∈ Sk do
// Binary HV encoding for k-mer hash

7 hv ← 0

8 for i← 1 to D/64 do
9 rnd← RNG(seed)

10 seed← rnd

11 hvi∗64...(i+1)∗64 ← rnd

// Binary HV aggregation

12 for i← 1 to D do
13 Hi ← Hi + (hvi × 2− 1)

quality than MinHash and its variants (Ondov et al., 2016; Jain et al., 2017).
However, FracMinHash usually produces a larger hash set compared to
Mash (Hera et al., 2023), requiring more memory space. Step 2 in HyperGen
alleviates the increased memory issue.

2.2.2 Step 2: Hyperdimensional Encoding for k-mer Hash
In Fig. 1-(a), after the k-mer hashing and sampling process, Mash-like
sketching algorithms (such as Mash (Ondov et al., 2016), Sourmash (Brown
and Irber, 2016), and Mash Screen (Ondov et al., 2019)) directly use the
sampled k-mer hash set as the sketch to compute the Jaccard similarity for
given sequences.

In Fig. 1-(b), HyperGen adds an additional step, called
Hyperdimensional Encoding for k-mer Hash (Line 5-13 in Algorithm 1),
before the sketch is generated. This step essentially converts the discrete and
numerical hashes in the k-mer hash set to a D-dimensional and nonbinary
vector, called sketch hypervector. In particular, each hash value in the

k-mer hash set is uniquely mapped to the associated binary HV hv as Line
6-11 of Algorithm 1. HyperGen relied on recursive random bit generation
to produce binary HVs of arbitrary length: the k-mer hash value is set as the
initial seed of the pseudo RNG(seed) 7→ rnd function. For each iterative
step, a 64b random integer rnd is generated using seed. The generated
integer rnd is not only assigned to the corresponding bits in hv, but is also
set as the next seed.

The hash function RNG(·) that maps the k-mer hash value to the binary
HV hv is the key component of HyperGen because it determines the speed
and quality of genome sketch generation. The following factors should be
considered when selecting a good RNG(·) function: 1. The function needs
to be fast enough to reduce the additional overhead for sketch generation.
2. The generated random binary HVs need to be able to provide enough
randomness (i.e., the binary HVs are as orthogonal as possible). This is
because binary HVs are essentially random binary bit streams that need to be
nearly orthogonal to each other to satisfy the quasi-orthogonal requirements.
3. The sketches results should be reproducible (i.e., the identical bit streams
can be generated using the same seed). We adopt a fast and high-quality
pseudo RNG1 in Rust language (Matsakis and Klock, 2014), which passes
two randomness tests: TestU01 and Practrand (Sleem and Couturier, 2020).
In this case, we can use the pseudo RNG to stably generate high-quality
and reproducible binary HVs.

Fig. 2 shows an example of generating the sketch HVs with dimension
D = 8 for two genome sequences based on k-mer size k = 3 and k-mer
hash set size N = 4. Each sampled k-mer hash value in the hash set
is converted to the corresponding binary HV hv ∈ {0, 1}D using the
function RNG(x). Then, all N binary HVs are aggregated into a single
sketch HV H ∈ ZD based on the following point-wise vector addition:

H =

N∑
i=1

2× hvi − 1, (7)

where the binary HV hv ∈ {0, 1}D is first converted to {−1,+1}D .
hvi denotes the i-th binary HV in the set. Then all binary HVs in the
set are aggregated together to create the corresponding sketch HV. The
aggregation step reduces the space complexity of the sketch fromO(N) to
O(D). Compared to Mash-liked sketching approaches (Ondov et al., 2016;
Hera et al., 2023; Brown and Irber, 2016), HyperGen is more memory
efficient because the sketch HV format is more compact withO(D) space
complexity, which is independent of the k-mer hash set size N . Meanwhile,
HyperGen’s hyperdimensional encoding step helps to achieve better ANI
similarity estimation quality (see Section 3).

2.2.3 Step 3: ANI Estimation using Sketch Hypervector
The generated sketch hypervector can be used to efficiently estimate the
ANI similarity. HyperGen estimates ANI value using the same approach
in (Ondov et al., 2016). The ANI under the Poisson distribution is estimated
as:

ANI(A,B) = 1 +
1

k
· log

2 · Jk(A,B)

1 + Jk(A,B)
, (8)

where Jk(A,B) denotes the Jaccard similarity between genome sequence
A and sequence B while k is the k-mer size.

Therefore, ANI estimation in HyperGen becomes calculating Jaccard
similarity based on sketch HVs. Eq. (1) shows that the intersection size
and the set size of two k-mer hash sets are the keys to calculating the
Jaccard similarity. For hvi ∈ {−1,+1}D , the cardinality of a set Sk(A)

1 https://github.com/wangyi-fudan/wyhash

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://github.com/wangyi-fudan/wyhash
https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

5

is computed as follows:

|Sk(A)| =
∥HA∥22

D
=

∑N
i=1∥hvi∥22

D
=

N ·D
D

= N, (9)

which shows the set cardinality can be computed based on the L2 norm of
sketch HV. The computation of set intersection in HyperGen is similar to
DotHash (Nunes et al., 2023)’s Eq. (5) because HVs in HyperGen share
the same quasi-orthogonal properties as DotHash. Then, Eq. (5) becomes:

|Sk(A) ∩ Sk(B)| =
HA ·HT

B

D

=

∑
i hv

i ·
∑

j hv
j

D

=

∑
i

∑
j D · 1(hvi == hvj)

D

=
∑
i

∑
j

1(hvi == hvj)

=
∑

x∈Sk(A)∩Sk(B)

1.

(10)

With Eq. (9) and Eq. (10), HyperGen first estimates the following
Jaccard similarity using the derived sketch HVs:

Jk(A,B) =
|Sk(A) ∩ Sk(B)|

|Sk(A)|+ |Sk(B)| − |Sk(A) ∩ Sk(B)|

=
HA ·HT

B

∥HA∥22 + ∥HA∥22 −HA ·HT
B

.

(11)

Then ANI in Eq. (8) can be easily calculated.

2.3 Software Implementation and Optimization

HyperGen is developed using the Rust language, and the code is
available at https://github.com/wh-xu/Hyper-Gen. We present the following
optimizations to improve the computing speed and efficiency of HyperGen:

2.3.1 Sketch Quantization and Compression
Although the sketch HV has a compact data format with high memory
efficiency, there still exists data redundancy in sketch HVs that can be
utilized for further sketch compression. Our experimental observation
is that the value range of sketch HVs is distributed within a bell curve
(see Supplementary Fig. 1). Rather than store the full-precision sketch
hypervector (e.g., INT32), we perform lossless compression by quantizing
the HV to a lower bit width. The quantized bits are concatenated together
using bit-packing.

2.3.2 Fast HV Aggregation using SIMD
The inner loop of binary HV aggregation step in Algorithm 1 incurs
significant runtime overhead when a large HV dimension D is applied. We
develop a parallelized HV aggregation using single instruction, multiple
data (SIMD) instruction to reduce the impact of increased HV aggregation
time. As shown in Supplementary Fig. 2, the HV aggregation optimized by
SIMD only takes negligible portion of the total sketching time.

2.3.3 Pre-computation for HV Sketch Norm
The L2 norm of each sketch hypervector, ∥H∥2, is precomputed during
sketch generation phase. The L2 norm value is stored along with the sketch
hypervector to reduce redundant computations for the ANI calculation
phase.

3 Evaluation and Results

3.1 Evaluation Methodology

3.1.1 Genome Dataset and Hardware Setting
The evaluation is conducted on a machine with a 16-core Intel i7-11700K
CPU with up to 5.0GHz frequency, 2TB NVMe PCIe 4.0 storage, and 64GB
of DDR4 memory. Unless otherwise specified, all programs are allowed
to use 16 threads with their default parameters. Five genome datasets in
Supplementary Table 2 are adopted for benchmarking. The datasets include:
Bacillus cereus, Escherichia coli, NCBI RefSeq (Jain et al., 2018), Parks
MAGs (Parks et al., 2017), and GTDB MAGs (Parks et al., 2018). These
datasets vary in terms of # of genomes, lengths, and sizes.

3.1.2 Benchmarking Tools
We compare HyperGen with five state-of-the-art tools, including
Mash (Ondov et al., 2016), Dashing 2 (Baker and Langmead, 2023),
FastANI (Jain et al., 2018), and ANIm (Kurtz et al., 2004). Mash, and
Dashing 2 are sketch-based tools for ANI estimation. In comparison,
FastANI uses a mapping-based method while ANIm adopts the most
accurate alignment-based method to calculate the ANI values. ANIm
results are regarded as the ground truth. Specifically, we use NUCleotide
MUMmer (Kurtz et al., 2004) to generate the alignment results and then
convert the alignment data into the corresponding ground-truth ANIs.
HyperGen (similar to Mash and Dashing 2) is an ANI approximation tool
for the high ANI regime. We follow previous work (Ondov et al., 2016)
and only preserve ANI values > 85. The versions and commands used
are summarized in Supplementary Table 1. HyperGen uses k-mer size
k = 21, scaled factor S = 1500 as suggested in previous works (Shaw
and Yu, 2023; Hera et al., 2023; Brown and Irber, 2016). Our analysis in
Section 3.2.1 shows that the HV dimension D = 4096 achieves a good
balance between ANI estimation error and sketching complexity. So we
set it as the default parameter.

3.1.3 Evaluation Metrics
ANI Precision. One of the critical metrics for evaluating the effectiveness
of a genome sketching tool is the precision of ANI estimation. We use
three metrics to evaluate the ANI approximation errors: 1. mean absolute
error (MAE), 2. root mean squared error (RMSE), and 3. mean percentage
absolute error (MPAE). We also adopt the Pearson correlation coefficient
to assess the linearity of the ANI estimate with respect to ground truth.
Computation and Memory Efficiency. An ideal genome sketching scheme
should be able to generate compact sketch files at the cost of short runtime,
especially for large-scale genomic analysis. To compare the computation
and memory efficiency of evaluated tools, we measure and report the
wall-clock runtime and sketch sizes during database search.

3.2 ANI Estimation Quality

In this section, we study the quality of ANI estimation by performing the
following pairwise ANI experiment. First, 100 genome files are collected
from each dataset. Then, each batch of 100 genome files is used to calculate
the pairwise 100× 100 ANI matrix.

3.2.1 HyperGen ANI Quality using Different Parameters
We first evaluate the impact of HyperGen’s two algorithmic parameters:
scaled factor S and HV dimension D on the final ANI estimation errors
and linearity. The experimental results are depicted in Fig. 3, where the
scaled factor S and the HV dimension D vary from 800 to 2000 and
from 256 to 16384, respectively. It shows that: for all scaled factors,
the ANI approximation errors decrease significantly as D increases from
256 to 4096. This is because a larger HV dimension can produce better
orthogonality, which is helpful to reduce the approximation error of the set

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://github.com/wh-xu/Hyper-Gen
https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

6 Xu et al.

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.2

0.4

0.6

0.8

1.0

M
AE

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.6

0.8

1.0

1.2

1.4

R
M

SE

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.2

0.4

0.6

0.8

1.0

M
PA

E

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.90

0.95

1.00

Pe
ar

so
n

S 800 1000 1200 1500 2000S 800 1000 1200 1500 2000

Dataset Bacillus cereus Escherichia coli

Fig. 3: Error metrics (MAE, RMSE, MPAE) and ANI linearity (Pearson
coefficient) as a function of scaled factor S and HV dimension D.
Table 1. Error and linearity metrics for pairwise ANI estimation. (Underline:
the best among sketch-based algorithms. Bold: the best among all algorithms.)

Dataset: Bacillus cereus

Algorithm k MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 0.312 0.368 0.334 0.999
Mash 21 0.399 0.591 0.430 0.981
Dashing 2 21 0.500 0.650 0.537 0.981
HyperGen 21 0.380 0.619 0.408 0.980

Dataset: Escherichia coli

Algorithm k MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 0.680 1.152 0.705 0.899
Mash 21 0.456 0.686 0.470 0.930
Dashing 2 21 0.464 0.704 0.479 0.930
HyperGen 21 0.407 0.606 0.419 0.941

intersection according to the theory in (Nunes et al., 2023). But increasing
the HV dimension larger than D = 4096 does not yield a significant error
reduction or linearity improvement.

It is also observed that a smaller scaled factor S generally leads to
a worse ANI approximation error when using the same HV dimension
D. The reason behind this is: a smaller S that produces a larger hash
threshold value as in Eq. (2), will generate a denser sampling of k-mers.
This increases the size of sampled k-mer hash set. As a result, more binary
HVs need to be aggregated to the sketch HV. The excessive number of
binary HVs degrades the orthogonality between binary HVs, reducing the
approximation accuracy for set cardinality. To balance between the quality
and complexity of the ANI approximation, we choose S = 1500 and
D = 4096 as the default scaled factor and HV dimension, respectively.

3.2.2 Comparison with Other Sketching Tools
We also compare the quality of the ANI estimation for various tools,
including HyperGen, Mash, Dashing 2, and FastANI. For fair comparison,
the three sketch-based tools (HyperGen, Mash, and Dashing 2) use the
same sketch size. Other parameters are the same as their default parameters.
Specifically, HyperGen uses D = 4096, while Mash and Dashing 2 use a
sketch size of 1024. The k-mer size is k = 21 for HyperGen, Mash, and
Dashing 2.

Table 1 summarizes the ANI error and linearity metrics with respect to
the ground truth values on Bacillus cereus and Escherichia coli datasets. For

Table 2. Sketch size, error, and linearity metrics for database search. (Underline:
the best among sketch-based algorithms. bold: the best among all algorithms.)

Dataset: Bacillus cereus

Algorithm Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI - 0.218 0.296 0.235 0.999
Mash 4.7MB (1.8×) 0.542 0.678 0.586 0.996
Dashing 2 6.7MB (2.6×) 0.576 0.715 0.622 0.993
HyperGen 2.6MB (1.0×) 0.318 0.424 0.342 0.996

Dataset: Escherichia coli

Algorithm Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI - 0.215 0.391 0.221 0.950
Mash 36MB (1.8×) 0.226 0.529 0.231 0.877
Dashing 2 51MB (2.6×) 0.234 0.536 0.239 0.873
HyperGen 20MB (1.0×) 0.153 0.491 0.156 0.851

Dataset: NCBI RefSeq

Algorithm Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI - 0.443 0.522 0.452 0.968
Mash 14MB (1.9×) 0.204 0.251 0.208 0.983
Dashing 2 20MB (2.7×) 0.167 0.189 0.171 0.972
HyperGen 7.4MB (1.0×) 0.135 0.164 0.138 0.991

Dataset: Parks MAGs

Algorithm Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI - 0.457 0.551 0.490 0.998
Mash 65MB (1.9×) 1.090 1.298 1.137 0.990
Dashing 2 93MB (2.7×) 2.163 2.466 2.251 0.921
HyperGen 34MB (1.0×) 1.199 1.340 1.255 0.985

Dataset: GTDB MAGs

Algorithm Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI - 0.436 0.592 0.469 0.976
Mash 533MB (1.9×) 0.584 0.668 0.632 0.980
Dashing 2 770MB (2.7×) 0.994 1.283 1.078 0.892
HyperGen 287MB (1.0×) 1.001 1.124 1.085 0.963

the Bacillus cereus dataset, HyperGen is slightly inferior to the mapping-
based FastANI and yields the lowest or second lowest ANI estimation
errors with a comparable Pearson correlation coefficient compared to the
other sketch-based tools (Mash and Dashing 2). In the Escherichia coli
dataset, HyperGen consistently surpasses all other tools, providing both
lower ANI approximation errors and better linearity. These experiments
demonstrate that HyperGen is able to deliver high ANI estimation quality.

3.3 Genome Database Search

One critical workload that genome sketching tools can accelerate is the
genome database search. Meanwhile, the genome database search can be
extended to multiple downstream applications.

3.3.1 ANI Linearity and Quality
We extensively consider the five evaluated datasets as reference databases.
We run FastANI, Mash, Dashing 2, and proposed HyperGen using the
commands and queries listed in Supplementary Table 2. The execution
consists of two steps: 1. All tools first generate reference sketches for the
target database, 2. The second step is to search for the query genomes
against the built reference sketches. Note that FastANI was unable to
complete the database search on the Parks MAGs and GTDB datasets in
one shot because it requires more memory than the available 64GB and
experienced out of memory issues. We divided FastANI execution into
smaller batches and measured the accumulative runtime.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

7

94 95 96 97 98 99 100
Ground Truth from ANIm

94

95

96

97

98

99

100

Es
tim

at
ed

 A
N

I

NCBI RefSeq

FastANI
MASH
Dashing2
HyperGen

85 88 91 94 97 100
Ground Truth from ANIm

85

88

91

94

97

100

Es
tim

at
ed

 A
N

I

Parks MAGs

FastANI
MASH
Dashing2
HyperGen

87 90 93 96 99
Ground Truth from ANIm

87

90

93

96

99

Es
tim

at
ed

 A
N

I

GTDB MAGs

FastANI
MASH
Dashing2
HyperGen

Fig. 4: Database search ANI comparison for FastANI, Mash, Dashing 2, HyperGen, and ground-truth ANIm on NCBI RefSeq, Parks MAGs, and GTDB
MAGs datasets.

The estimated ANI values generated from each tool in NCBI RefSeq,
Parks MAGs, and GTDB MAGs datasets are visualized in Fig. 4 by
comparing with corresponding ground truth values from ANIm. It shows
that HyperGen produces good ANI linearity compared to the ground truth
results. Quantitative results in terms of numerical error and linearity metrics
are summarized in Table 2.

In datasets Bacillus cereus, Escherichia coli, and NCBI RefSeq,
HyperGen achieves the lowest ANI errors among the three sketching tools.
This suggests that HyperGen delivers more accurate ANI estimations on
most of the evaluated datasets compared to Mash and Dashing 2. Compared
to mapping-based FastANI, HyperGen still shows competitive accuracy. In
Escherichia coli and NCBI RefSeq, HyperGen outperforms FastANI in
terms of most error metrics and produces comparable Pearson coefficients.
This indicates that HyperGen is capable of achieving state-of-the-art error
and linearity for large-scale genome search.

3.3.2 Memory Efficiency
The file sizes of the reference sketches generated by Mash, Dashing 2, and
HyperGen, are listed in Table 2. We apply the Sketch Quantization and
Compression technique to HyperGen. As a result, HyperGen consumes the
smallest memory space among the three sketch-based tools. The sketch sizes
produced by Mash and Dashing 2 are 1.8× to 2.6× of HyperGen’s sketch
sizes. This suggests that HyperGen is the most space-efficient sketching
algorithm. Compared to original datasets with GB sizes, a compression ratio
of 600− 1200× can be achieved by only processing the sketch files. This
enables the large-scale genome search on portable devices with memory
constraints. HyperGen’s memory efficiency comes from two factors. First,
the Hyperdimensional Encoding for k-mer Hash step converts discrete
hash values into continuous high-dimensional sketch HVs, which are
more compact than hash values. Second, HyperGen’s Sketch Quantization
and Compression provides additional 1.3× compression through further
removing redundant information in sketch HVs.

3.3.3 Runtime Performance
The wall-clock time spent on two major steps during database search:
reference sketch generation and query search, is illustrated in Fig. 5.
The reference sketching step is mainly bounded by the sketch generation
process, while the search step is bounded by the sketch file loading and ANI
calculation. HyperGen’s reference sketching speed is the 2nd fastest and
slightly (2% to 5%) slower than Dashing 2. The sketching speed of Mash
is 1.4× to 1.5× slower than HyperGen. FastANI is a mapping-based tool
that requires expensive sequence mappings. FastANI’s sketching speed
3.4× to 5.5× slower than HyperGen. For query search speed, HyperGen
has is the fastest one among all benchmarked tools. The search speedup of

Bacillus cereus Escherichia coli NCBI RefSeq Parks MAGs GTDB MAGs
(a) Sketching Time

10
0

10
1

10
2

10
3

W
al

l-c
lo

ck
 T

im
e

(s
ec

)

15.5

100.6

46.8
151.1

1638.9

6.9

44.6

11.9

43.9

437.0

3.9

26.8

7.1

25.2

265.1

4.1

27.3

7.4

25.7

270.6

Bacillus cereus Escherichia coli NCBI RefSeq Parks MAGs GTDB MAGs
(b) Search Time

10
3

10
1

10
1

W
al

l-c
lo

ck
 T

im
e

(s
ec

)

1.
9e

+0
1 1.
5e

+0
2

2.
1e

+0
0 1.

8e
+0

1

2.
9e

+0
1

1.
0e

-0
2 4.
9e

-0
2

2.
3e

-0
2

9.
1e

-0
2 7.

0e
-0

1

3.
9e

-0
2

1.
2e

-0
1

2.
3e

-0
2 1.

8e
-0

1 1.
5e

+0
0

9.
8e

-0
3 4.
5e

-0
2

1.
8e

-0
2

6.
1e

-0
2 3.
5e

-0
1

FastANI MASH Dashing2 HyperGen

Fig. 5: Runtime performance comparison for FastANI (Jain et al., 2018),
Mash (Ondov et al., 2016), Dashing 2 (Baker and Langmead, 2023), and
HyperGen: (a) Reference sketching time, (b) Query search time.

HyperGen over FastANI is 100× to > 3000× because HyperGen does
not need the expensive mapping process. Dashing 2’s sketch search is less
efficient than HyperGen. HyperGen’s search speed is 1.3× to 4.3× of
Dashing 2. Moreover, the speedup of HyperGen is more significant for
larger datasets. Dashing 2 sketch size is about 2.6× of HyperGen’s so
it takes more time to load sketch files. The reduced sketch size helps to
save sketch loading time. Meanwhile, the HV sketch format of HyperGen
allows us to adopt highly vectorized programs to compute ANI with a short
processing latency.

4 Discussion and Conclusion
Fast and accurate estimation of Average Nucleotide Identity (ANI) is
considered crucial in genomic analysis because ANI is widely adopted
as a standardized measure of genome file similarity. In this work, we
present HyperGen: a genome sketching tool based on hyperdimensional
computing (HDC) (Nunes et al., 2023; Kanerva, 2009) that improves
accuracy, runtime performance, and memory efficiency for large-scale
genomic analysis. HyperGen inherits the advantages of both FracMinHash-
based sketching (Hera et al., 2023) and DotHash (Nunes et al., 2023).
HyperGen first samples the k-mer set using FracMinHash. Then, the
discrete k-mer hash set is encoded into the corresponding sketch HV in
hyperdimensional space. This allows the genome sketch to be presented
in compact vectors without sacrificing accuracy. HyperGen software

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

8 Xu et al.

implemented in Rust language deploys vectorized routines for both sketch
and search steps. The evaluation results show that HyperGen offers superior
ANI estimation quality over state-of-the-art sketch-based tools (Ondov
et al., 2016; Baker and Langmead, 2023). Meanwhile, HyperGen delivers
not only the fastest sketch and search speed, but also the highest memory
efficiency in terms of sketch file size.

Future directions of HyperGen include the following aspects. HyperGen
can be extended to support a wider range of genomic applications. For
example, in metagenome analysis, we can utilize HyperGen to perform
the containment analysis for genome files as (Ondov et al., 2019). To
realize this, sketch HVs generated by HyperGen can be used to calculate
max-containment index instead of ANI. The ANI estimation error and
memory requirements of HyperGen can be reduced by considering the
more accurate ANI estimation based on multi-resolution k-mers (Liu and
Koslicki, 2022). On the other hand, the HV representation of sketch allows
us to further accelerate HyperGen in advanced hardware architectures with
high data parallelism. Previous work (Xu et al., 2023) demonstrates that
deploying HDC-based bioinformatics analysis on GPU exhibits at least
one order of magnitude speedup over CPU.

Supplementary data
Supplementary data are available at Bioinformatics online.

Data availability
The source code of HyperGen used in this work is freely
available at https://github.com/wh-xu/Hyper-Gen. All used datasets
can be downloaded from https://gtdb.ecogenomic.org and http://enve-
omics.ce.gatech.edu/data/fastani.

Conflict of interest
None declared.

Funding
This work was supported in part by the Center for Processing with Intelligent
Storage and Memory (PRISM) SRC grant number 2023-JU-3135, CoCoSys,
centers in JUMP 2.0, an SRC program sponsored by DARPA, and TILOS
AI Research Institute (NSF CCF-2112665).

References
Baker, D. N. and Langmead, B. (2019). Dashing: fast and accurate genomic

distances with hyperloglog. Genome biology, 20, 1–12.
Baker, D. N. and Langmead, B. (2023). Genomic sketching with

multiplicities and locality-sensitive hashing using dashing 2. Genome
Research, 33(7), 1218–1227.

Broder, A. Z. (1997). On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES 1997
(Cat. No. 97TB100171), pages 21–29. IEEE.

Brown, C. T. and Irber, L. (2016). sourmash: a library for minhash sketching
of dna. Journal of open source software, 1(5), 27.

Chaumeil, P.-A. et al. (2022). Gtdb-tk v2: memory friendly classification
with the genome taxonomy database. Bioinformatics, 38(23), 5315–5316.

Ertl, O. (2021). Setsketch: filling the gap between minhash and hyperloglog.
Proceedings of the VLDB Endowment, 14(11), 2244–2257.

Hera, M. R. et al. (2023). Deriving confidence intervals for mutation
rates across a wide range of evolutionary distances using fracminhash.
Genome Research, pages gr–277651.

Hernández-Salmerón, J. E. et al. (2023). Fast genome-based delimitation
of enterobacterales species. Plos one, 18(9), e0291492.

Jain, C. et al. (2017). A fast approximate algorithm for mapping long reads
to large reference databases. In International Conference on Research in
Computational Molecular Biology, pages 66–81. Springer.

Jain, C. et al. (2018). High throughput ani analysis of 90k prokaryotic
genomes reveals clear species boundaries. Nature communications, 9(1),
5114.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors. Cognitive computation, 1, 139–159.

Kanerva, P. et al. (2000). Random indexing of text samples for latent
semantic analysis. In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 22.

Kang, J. et al. (2023). Accelerating open modification spectral library
searching on tensor core in high-dimensional space. Bioinformatics,
39(7), btad404.

Kurtz, S. et al. (2004). Versatile and open software for comparing large
genomes. Genome biology, 5, 1–9.

Lee, I. et al. (2016). Orthoani: an improved algorithm and software
for calculating average nucleotide identity. International journal of
systematic and evolutionary microbiology, 66(2), 1100–1103.

Liu, S. and Koslicki, D. (2022). Cmash: fast, multi-resolution estimation
of k-mer-based jaccard and containment indices. Bioinformatics,
38(Supplement_1), i28–i35.

Matsakis, N. D. and Klock, F. S. (2014). The rust language. ACM SIGAda
Ada Letters, 34(3), 103–104.

Nunes, I. et al. (2023). Dothash: Estimating set similarity metrics for link
prediction and document deduplication. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages
1758–1769.

Ondov, B. D. et al. (2016). Mash: fast genome and metagenome distance
estimation using minhash. Genome biology, 17(1), 1–14.

Ondov, B. D. et al. (2019). Mash screen: high-throughput sequence
containment estimation for genome discovery. Genome biology, 20,
1–13.

Parks, D. H. et al. (2017). Recovery of nearly 8,000 metagenome-assembled
genomes substantially expands the tree of life. Nature microbiology,
2(11), 1533–1542.

Parks, D. H. et al. (2018). A standardized bacterial taxonomy based
on genome phylogeny substantially revises the tree of life. Nature
biotechnology, 36(10), 996–1004.

Parks, D. H. et al. (2020). A complete domain-to-species taxonomy for
bacteria and archaea. Nature biotechnology, 38(9), 1079–1086.

Sahlgren, M. (2005). An introduction to random indexing. In Methods
and applications of semantic indexing workshop at the 7th international
conference on terminology and knowledge engineering.

Shaw, J. and Yu, Y. W. (2023). Fast and robust metagenomic sequence
comparison through sparse chaining with skani. Nature Methods, 20,
1661–1665.

Sleem, L. and Couturier, R. (2020). Testu01 and practrand: Tools for a
randomness evaluation for famous multimedia ciphers. Multimedia Tools
and Applications, 79, 24075–24088.

Soon, W. W. et al. (2013). High-throughput sequencing for biology and
medicine. Molecular systems biology, 9(1), 640.

Stephens, Z. D. et al. (2015). Big data: astronomical or genomical? PLoS
biology, 13(7), e1002195.

Xu, W. et al. (2023). Hyperspec: Ultrafast mass spectra clustering in
hyperdimensional space. Journal of Proteome Research.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://github.com/wh-xu/Hyper-Gen
https://gtdb.ecogenomic.org
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

i
i

i
i

i
i

i
i

9

Zou, Z. et al. (2022). Biohd: an efficient genome sequence search platform
using hyperdimensional memorization. In Proceedings of the 49th Annual

International Symposium on Computer Architecture, pages 656–669.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.05.583605doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.05.583605
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Motivation
	Contributions

	Methods
	Preliminaries
	MinHash and Jaccard Similarity
	Jaccard Similarity using DotHash

	Proposed HyperGen Sketching
	Step 1: k-mer Hashing and Sampling
	Step 2: Hyperdimensional Encoding for k-mer Hash
	Step 3: ANI Estimation using Sketch Hypervector

	Software Implementation and Optimization
	Sketch Quantization and Compression
	Fast HV Aggregation using SIMD
	Pre-computation for HV Sketch Norm

	Evaluation and Results
	Evaluation Methodology
	Genome Dataset and Hardware Setting
	Benchmarking Tools
	Evaluation Metrics

	ANI Estimation Quality
	HyperGen ANI Quality using Different Parameters
	Comparison with Other Sketching Tools

	Genome Database Search
	ANI Linearity and Quality
	Memory Efficiency
	Runtime Performance

	Discussion and Conclusion

