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Abstract

Range shifts in plant disease distributions are sensitive to scaling processes, but few crop
case studies have included these predictions under climate change. High-quality wines are
increasingly produced in topographically heterogeneous river valleys, whereby disease models
that capture steep relief gradients become especially relevant. Here we show how non-linear
epidemiological models more accurately reflect the threat of an emerging grapevine pathogen
in areas with significant spatial gradients. By comparing the results of simulations using
climate data with different spatial resolutions, we identify an increased risk of Pierce’s disease
(PD), caused by the vector-borne bacterium Xylella fastidiosa, in wine regions globally. Over
100,000 vine presence records worldwide were analysed with respect to their closer risk-grid
cell, observing an increase from 21.8% to 41.2% of the area at risk in European vineyards,
from 5.6% to 47.2% in South Africa and to a lesser extent in other wine-growing regions. This
general trend has been preceded by an accelerating rate of increase in risk within wine-growing
areas. Our analysis demonstrates the importance of microclimatic conditions, highlighting
previously unresolved risk zones in areas close to rivers and valleys, and the insufficiency of
lower resolution data sets to capture complex climatic variations.

Introduction

Climate plays a pivotal role in shaping the distribution and dynamics of agricultural pests and
pathogens [1–5], with implications for global food security [6, 7]. As our climate undergoes
unprecedented changes due to anthropogenic activities, agriculture faces multifaceted threats
ranging from alterations in temperature and precipitation patterns to increased frequency of
extreme weather events [8]. Such shifts create novel environments that may favour the proliferation
of certain pests or pathogens while posing challenges to the survival of others [3, 9]. The consequences
of these changes extend beyond immediate agricultural landscapes, reverberating through global
food systems and posing significant challenges to the sustainability and resilience of food production
[10].

Understanding the intricate relationships between climatic conditions, the pathosystem compo-
nents, and the subsequent epidemiological dynamics is essential for developing effective strategies
to mitigate and manage emerging agricultural challenges, especially in the face of changing environ-
mental conditions. However, modelling disease epidemics is a complex task , as they are emergent
phenomena resulting from non-linear interactions between disease components that also exhibit
non-linear responses to changes in environmental variables [11–13]. Thus, while climate primarily
determines the potential geographic range of each organism in the pathosystem, the development
of epidemic outbreaks depends on favourable host-pathogen-vector-climate interactions that drive
transmission chains.

It has long been recognised that ecological phenomena typically depend on the scale of description,
particularly with regard to the effects of climate [14]. Climatic databases with finer spatial
resolution are continuously being developed with the goal of allowing more accurate predictions
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[15]. Some recent studies have shown that the local climate experienced by individuals might
deviate substantially from regional averages, with implications for the population dynamics of a
forest herb [16]. Likewise, the choice of climate data affects the predictions of species distribution
models (SDMs) [17]. In particular, the spatial resolution of the data can influence the predictions
of invasion risk for some species [18]. It is therefore clear that the resolution of climate data will
have a significant impact on predicting the risk of plant diseases and pests.

Among emerging pathogens Xylella fastidiosa (Xf) is considered one of the most dangerous
phytopathogenic bacteria worldwide [19, 20]. It is naturally transmitted by xylem sap-feeding
insects, such as sharpshooters and spittlebugs, and exhibits a broad host range that encompasses
economically important crops such as grapevines, citrus, almonds and olive trees [20, 21]. The
consequences of Xf diseases are devastating: about 200 million citrus trees are infected annually in
Brazil [22], there are loses over $100 million annually in the grape industry in California [23] and
approximately 21 million olive trees have been killed by the bacterium on the Apulia region in Italy
[24]. Assuming massive spread throughout Europe, Xf has been projected to potentially contribute
up to €5.2 billion of annual losses in the olive sector alone [25]. Overall, Xf diseases pose a major
threat to agrosystems worldwide, highlighting the need for precise and predictive models to guide
effective management practices.

Previous research has provided insights into the potential geographic range of Xf subspecies
through SDMs [26, 27]. These models, however, have led to overestimates of risk by failing to
account for the distribution and abundance of potential vectors necessary for disease transmission
[28]. A quite different approach to mapping PD risk has been developed based on climate-driven
epidemiological models with the option to integrate vector’s distribution information and the
specificity of the Xf subsp. fastidiosa strain responsible for PD (hereafter XfPD) [29]. This model
correctly identifies areas in the United States with recurrent PD outbreaks and forecasts increasing
epidemic risk in Mediterranean islands and coastlines with ongoing climate change.

Although risk maps based on hourly temperature data from the ERA5 have allowed fine
adjustments in the calibration of the thermal response to Xf infection, these achievements have
entailed losses in spatial resolution (0.1º spatial resolution) [29, 30]. Such limitation is particularly
significant when dealing with vector-borne plant diseases like PD, where the interactions between
the pathogen, vector, and host plants exhibit non-linear responses to climatic conditions. Subtle
variations in temperature, humidity, or precipitation at the local scale thus can have profound
effects on the reproduction and life cycles of the organisms involved and, hence, on the dynamics of
disease transmission.

Topographical heterogeneity is a recognised issue in invasion biology, but has received little
attention in crop science. Vineyards are increasingly located in valleys, ridges, hillsides and
riverbanks usually with altitudinal and microclimatic gradients in short transects. They are
therefore a remarkable example of a crop subject to scaling problems when studying ecological or
epidemiological processes at regional and global scales. In this work, we address this spatial resolution
limitation by modelling the risk of PD using high-resolution climate data from the CHELSA dataset
[31]. The study period was deliberately chosen to include real data on temperature increases due
to ongoing climate change. Our study shows a greater global risk of PD and a higher rate of risk
increase, underscoring the urgency of reevaluating global strategies to prevent the spread of the
pathogen with international trade in plant diseases.

Results

Global differences in PD risk between coarse and fine-grain climate data

We computed the risk of PD using the previously developed climate-driven epidemiological model
[29] coupled with the CHELSA dataset [31], which features key climate variables (e.g. temperature
and precipitation) at a high spatial resolution of 1 km and daily temporal resolution covering
the period 1979-2016. The resulting spatial and temporal patterns of disease risk in the main
wine-growing regions were compared with previous risk projections derived from the ERA5 dataset
[32], characterised by an intermediate spatial resolution of 10 km and hourly temporal resolution
[29]. Briefly, the model simulates the initial dynamics of the disease influenced by climatic variables
and the presence of vectors, giving rise to a risk index, r, which represents the normalised growth
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rate of the infected population, where r = 1 is the maximum rate achieved at optimal climatic
conditions (see Methods). Negative risk indices project an exponential decrease of the infected
population (no risk), whereas positive values give rise to an outbreak, with higher values accounting
for major incidence and potential severity. Risk categories emerge naturally from this formalism
as No Risk (r ≤ −0.1) Transition (−0.1 < r ≤ 0.1), Low Risk (0.1 < r ≤ 0.33), Moderate Risk
(0.33 < r ≤ 0.66) and High Risk (r > 0.66). Risk projections in Europe use the climatic suitability,
s, of the main European vector, P. spumarius (see Methods), while for the rest of the world it is
assumed that there are no risk-limiting effects due to the vector (s = 1), but only due to climatic
conditions.

When contrasting model results derived from high- and medium-resolution data for the latest
available time (2016), the disparity in risk projections extends beyond regional differences, showing
a global increase in risk indices across wine-growing areas (Fig. 1 and Supplementary Fig. 1).
Overall, these increases (Fig. 2) in the extension of PD risk areas ranged from 100,000 to 1 million
km2 across viticulture regions worldwide. Transitions from no-risk to risk zones covered an area
one order of magnitude larger than those in the opposite direction –from risk to no-risk (Fig. 2
and Table 1). In total, a surface of 4.6 million km-2 changed its risk category with the CHELSA
database, representing about a 16% of the land area studied. In contrast, the largest decreases in
the risk indices occurred mainly in the Southern Hemisphere, although with few exceptions most of
these decreases remained within the risk zones (Fig. 1), while similar land expansions were observed
to increase their risk category (low to moderate or moderate to high) (Fig. 2 and Table 1). The
largest changes in risk indices occur in ecotones on both sides of the r = 0 line, as is clearly seen in
the south-eastern United States, in coastal areas (e.g., southern Australia and northern California)
due to higher resolution that better distinguishes between land and coast, and finally in the river
valleys and slopes of mountain systems (Fig. 2 and Table 1).

Next, we compared the temporal progression of the area at risk using both high and mid-
resolution data over the entire available time span (1986-2016), considering that the risk for each
year is computed based on the preceding seven years. We found a notable global surge in the
rate increase of the area at risk within viticulture zones worldwide, practically doubling previous
estimates (Supplementary Fig. 2). These results point to an accelerated pace at which the risk of
PD is growing, compatible with the predictions of different global warming scenarios [33].

Pierce’s Disease risk surges in previously unresolved microclimates

River valley vineyards are renowned for their high quality wines, such as Douro, Napa and Rhone
and many others. It is therefore important to understand the risk of PD with climate change at a
more detailed level. In our analysis, we have identified rivers and valleys as specific relief areas
where a greater increase in PD risk is observed when employing CHELSA’s finer- scale climate
data (Fig. 3). In some important wine-growing areas of southern Europe, we observed an abrupt
emergence of risk zones previously classified as no-risk when using lower resolution climate data
(Fig. 3). Such pronounced differences in risk patterns are highlighted for example in the fairly
steep valleys and hillsides along the Douro River in Portugal, where the specific microclimatic
conditions were previously obscured by the coarser resolution of the ERA5 data. These findings
are particularly significant for PD, as vineyards are often located in close proximity to rivers or
valleys and their surroundings, creating microclimates that attenuate cold winters (black dots in
(Fig. 3)). A gradual increase in the climatic suitability for PD in some river basins may thus favour
the spread of the pathogen from coastal to interior areas of the continents, allowing interconnection
between areas that would otherwise remain isolated. Coastal areas close to cool water masses may
also undergo an increase in risk when using higher resolutions data, as exemplified in California
(Fig. 3 e,f).

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583743
http://creativecommons.org/licenses/by/4.0/


Figure 1: Difference in risk projections based on CHELSA (high-resolution, 1 km) and ERA5
(mid-resolution 10 km) datasets in global viticulture areas. (A) Europe (B) South America (C)
United States (D) Australia (E) South Africa.
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Figure 2: Changes in risk categories between CHELSA (high-resolution, 1 km) and ERA5 (mid-
resolution 10 km) projections in global viticulture areas. (A) Europe (B) South America (C)
United States (D) Australia (E) South Africa. Risk category increase refers to changes from low to
moderate risk or from moderate to high risk. Likewise, risk category decrease refers to changes
from moderate to low risk or high to moderate risk.
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Table 1: Changes in Pierce’s Disease Risk Zones in Different Viticulture Regions. The table
illustrates transitions between risk and no-risk categories, as well as transitions among risk categories,
highlighting the dynamic shifts in risk patterns across viticulture areas in Europe, the USA, South
Africa, South America, and Australia. Risk increase refers to changes from low to moderate risk or
from moderate to high risk. Likewise, risk decrease refers to changes from moderate to low risk or
high to moderate risk.

Risk to no-risk (km2) Transition to risk (km2) Risk decrease (km2) Risk increase (km2) No risk to risk (km2) Total changes (km2)

Europe 1.91e+04 6.37e+04 3.58e+04 6.28e+04 2.04e+05 3.85e+05

USA 3.93e+04 1.37e+05 1.46e+05 2.37e+05 2.36e+05 7.95e+05

South Africa 2.26e+04 5.53e+04 3.56e+05 1.05e+05 2.77e+05 8.15e+05

South America 2.49e+05 3.79e+04 1.76e+05 1.50e+05 1.90e+05 8.03e+05

Australia 5.81e+04 8.49e+04 1.28e+06 1.55e+05 2.15e+05 1.79e+06

Finally, to obtain a comprehensive assessment of the impact of microclimatic conditions on the
risk of PD establishment, we collated a dataset of over 100,000 Vitis vinifera presence locations
worldwide from GBIF [34], with a predominant concentration of points from Europe (Supplementary
Fig. 3). Each data point was assigned a risk index based on the ERA5 and CHELSA projections,
respectively, using the nearest pixel from each database. This approach revealed an increase in the
risk indices associated with the vine locations (Fig. 4 A-D), mostly showing shifts towards higher
risk indices (Fig. 4 A,E) from no risk to risk, or increases in risk category (low to moderate or
moderate to high), while a negligible number of points decreased in risk category (Fig. 4 E). Such
behaviour was common to all key viticulture regions studied, although the extent of increases differed
between continents, with substantial expansion of vineyard areas at risk in Europe and South
Africa (Table 2). Overall, our results emphasise the global relevance of microclimatic conditions in
influencing the risk landscape for PD in viticultural areas (Table 2).

Table 2: Comparison of grapevine presence locations at risk in key viticulture regions using
CHELSA and ERA5 datasets

Nº points risk CHELSA (%) risk ERA5 (%)

Europe 96102 41.2 21.8

USA 792 69.8 66.3

South Africa 36 47.2 5.6

South America 112 77.7 74.1

Australia 186 51.6 45.7
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Figure 3: Effect of microclimatic conditions of rivers and valleys on Pierce’s Disease of grapevines.
Comparison of the risk predicted using ERA5 mid-resolution dataset (A,C,E) and CHELSA high-
resolution dataset (B,D,F). (A-B) North-western Iberian Peninsula. (C-D) Sourthern France and
North-eastern Spain. (E-F) Western United States. Black dots represent grapevines (Vitis vinifera)
presence data obtained from GBIF (see Methods).
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Figure 4: Impact of high-resolution climate data on the risk of Pierce’s Disease for grapevines
worldwide. (A) Difference in risk indices in Europe, which accounts for the 96% of the points in the
dataset. (B) Comparison of the risk indices derived from CHELSA and ERA5 datasets. Points with
perfect agreement would lie in the solid black diagonal curve. (C) Histogram of risk indices derived
from ERA5 (blue) and CHELSA (orange). (D) Histogram of the differences in risk indices between
CHELSA and ERA5 datasets. (E) Changes in risk categories when using high-resolution climate
data (CHELSA) with respect to mid-resolution data (ERA5). Risk category increase refers to
changes from low to moderate risk or from moderate to high risk. Likewise, risk category decrease
refers to changes from moderate to low risk or high to moderate risk.

Discussion

Our study sheds light on the relevance of the spatial scale of observation in the intricate interplay
between microclimatic conditions and the risk of PD for grapevines on a global scale. The use
of high-resolution climate data reveals previously unrecognised local areas with microclimates
conducive to the establishment of PD worldwide. Contrary to the simplistic assumption that higher
resolution data might yield only marginal distinctions at regional levels, our study demonstrates
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that slight variations in climate data at local scales can lead to a global surge in disease risk.
These increases not only affect the spatial distribution of risk, but also its temporal dimension, as
suggested by the rate of increase in the surface area at risk. In the case of PD, we show that this
rate nearly doubles when high-resolution climate data is considered compared to previous estimates
obtained with mid-resolution data. Thus, our findings indicate a critical need for the use of local or
high-resolution climate data in the assessment of disease risk, especially in areas characterised by
diverse topography and even when only attempting to global estimates.

Such observed differences arise from the non-linear nature of disease dynamics and the response of
the pathosystem components to environmental shifts [9, 11]. Therefore, models dependent on broader
climate data may not capture the complexities of microclimates, resulting in an underestimation of
disease risk. While this is not inherently negative, recognising these limitations helps to assume
such risk estimates as a conservative lower bound until proven otherwise . Acknowledging these
constraints is crucial for refining our understanding of disease dynamics and ensuring that our risk
assessments are sufficiently cautious in the absence of more reliable data. Likewise, data coarsening
procedures should be avoided, if possible, when modelling climate-driven disease dynamics, even in
spite of computational efficiency. This recommendation applies not only to disease risk predictions
but to all those in which non-linear functions depending on climate variables are present, such as
species distribution models or phenological models [35].

Despite the valuable insights gained, our analysis heavily relies on the quality and resolution of
the climate data from the CHELSA dataset [36]. While this dataset offers information at a high
spatial resolution, the temporal dimension is limited to a daily frequency, which forces to apply
an approximation to infer hourly data. Furthermore, the data may still be subject to biases or
uncertainties inherent to the nature of the methodology employed in their construction . On the
other hand, vector presence data is only accurately obtained for Europe, while an homogeneous
presence is assumed in other viticulture areas. Additionally, the study primarily focuses on the
effect of temperature conditions and the presence of potential vectors to determine the risk of Xf
establishment, which may not encompass all possible contributing factors. Other variables, such
as soil characteristics or vineyard management practices were not explicitly considered in this
analysis, leaving room for additional complexities in the disease dynamics. Furthermore, the study
predominantly examines the risk at a global scale, and the applicability of the findings to specific
local contexts may vary.

Future research should aim to address the aforementioned limitations and provide a more
comprehensive understanding of the multiple interactions influencing PD development in viticulture
regions. Other factors influencing disease spread, such as human behaviour, land use changes, and
ecological shifts, should also be explored, offering a more comprehensive and holistic view of the
interplay between environmental conditions and disease vulnerability. The acceleration in the rate
at which the risk of PD is growing calls for more research into control strategies to mitigate its
impact on grapevine crops worldwide.

Although PD is currently restricted to North America and recently introduced in Taiwan [37],
Mallorca (Balearic Islands, Spain) [38, 39] and Israel [40], since the mid-1990s climatic conditions
are increasingly conducive to the establishment of PD in southern Europe [29]. For example, with
the increase in the resolution of climate data our model predicts the recent detection of PD in
Portugal [41], which was not anticipated using the ERA5 data [29]. In a short time, it is foreseeable
that there will be more epidemic outbreaks in vineyards in southern Europe if the entry of infested
plants is not controlled. This not necessarily have to be vines but can also include other plants
such as almond trees or ornamental plants [42].

Overall, our study contributes to the growing body of knowledge on the impact of climate
on agricultural pests and pathogens, emphasising the importance of considering microclimatic
conditions for a more deep understanding of disease dynamics. Future research should focus on
developing comprehensive models that integrate high-resolution climate data, considering both the
global and local factors that influence disease dynamics. This holistic approach will enable a more
accurate prediction of disease risk, allowing for the development of targeted management strategies
and the enhancement of global food security.
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Methods

Climate data

Climate data was downloaded from two datasets for our analysis: the ERA5 dataset [30, 32] and
the CHELSA dataset [31, 36]. ERA5 offers mid-resolution climate data with a spatial resolution
of 10 km and hourly temporal resolution, while CHELSA provides high-resolution data with a
spatial resolution of 1 km and daily temporal resolution. Both datasets exhibit global coverage and
encompass crucial climate variables, such as temperature and precipitation. For our simulations,
we used the mean hourly temperature data from ERA5 dataset and the maximum and minimum
daily temperature data from CHELSA dataset.

Vector climatic suitability

Vector climatic suitability data was obtained from [27], in which a Generalised Additive Model
(GAM) is employed to calibrate the relationship of P. spumarius global occurrence with moisture
index and maximum temperatures during summer index estimated from 1979 to 2013 using the
CHELSA dataset.

Vineyard data

To assess the risk of Pierce’s Disease in locations where grapevines are present, we collected
a comprehensive dataset of over 100,000 Vitis vinifera presence data records from the Global
Biodiversity Information Facility (GBIF) [34, 43]. We note that while the dataset spans the globe,
96% of the points are located in Europe (Supplementary Fig. 3).

Climate-driven epidemiological model

We used the model developed in [29], which describes the initial exponential rise (or decrease) of
infected plants at the onset of an epidemic based on the spatial distribution of the vector and
the bacterial growth and survival processes mediated by temperature. The density of vectors at a
given cell controls the number of new plants that will be inoculated with the bacterium, while the
local temperature mediates the growth and survival processes of the in-plant bacterial population,
leading the initial inoculation to an infection or not. These temperature-driven growth and survival
processes are described with the accumulation of two metrics denoted Modified Growing Degree Days
(MGDD) and Cold Degree Days (CDD). The base function to compute the MGDD is proportional
to the Xf temperature-dependent growth rate and is defined by

f(T ) =



0 if T < Tbase

m1 · T − b1 if Tbase ≤ T < T1

m2 · T + b2 if T1 ≤ T < Topt

m3 + b3 if Topt ≤ T < T2

m4 + b4 if T2 ≤ Tmax

0 if T ≥ Tmax

where Tbase = 12 ◦C, T1 = 18, Topt = 28 ◦C, T2 = 32 and Tmax = 35 ◦C; the slopes are m1 = 0.66,
m2 = 1, m3 = −1.25 and m4 = −3 and the intercepts are b1 = −8, b2 = −14, b3 = 4 and b4 = 105.
MGDD are then computed as

MGDD(t) =
1

24

∑
τ∈t

f(T (τ)), (1)

where τ is expressed in hours, t in years and we divide by 24 to obtain MGDD(t) in degree
days. The accumulation period goes from the 1st of April to the 31st of October in the northern
hemisphere and from the 1st of November to the 31st of March in the southern hemisphere.
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CDD are computed between 1st November and 31st March in the northern hemisphere and
between 1st April and 31st October in the southern hemisphere as

CDD(t) =
1

24

∑
τ∈t

(6− T (τ)) for Ti ≤ 6°C. (2)

Altogether, the number of infected hosts is described by the following recurrence relation

I(t) = I(t− 1)eγ(R0−1)F(MGDD(t))G(CDD(t)) , (3)

where γ is the death rate of infected vines, R0 is the basic reproduction number of the disease
and F(·) and G(·) are sigmoidal-like functions that relate the MGDD and CDD metrics to the
probability of developing an infection from a given inoculation. Following [29], R0 in each cell j is
related to the climatic suitability of the vector such that

Rj
0 = R∗

0 · sj = 5 · sj , (4)

γ = 0.2 and the specific form of F(·) and G(·) is given by

F(x) =
1

1 + e−0.012(x−975)
(5)

G(x) = 2 · 107

2 · 107 + x3
(6)

Finally, the risk index is derived as the effective growth rate of the infected population over the
simulated time [29],

rj = max

{
−1,

ln(Ij(T )/I(0))

γ(Rj
0 − 1) · T

}
. (7)

Because the typical time scale of the disease is 5 years (1/γ) [44], we simulate periods of 7 years.
If more years are available to simulate, we perform a re-introduction of the disease as a single
infected plant in each cell after each 7-year period [29].

The code used to run the model is freely accessible at GitHub [45].

Model adaptation to daily temperature data

MGDD and CDD metrics were originally defined using hourly temperature data (Eqs. (1) and (2))
[29]. However, the CHELSA dataset only provide daily granularity. To overcome this limitation, we
use a basic sinusoidal extrapolation relating maximum and minimum daily temperature to hourly
temperatures,

Th =
Tmax + Tmin

2
+

Tmax − Tmin

2
sin(w · h) , (8)

with w = 2π/24 and h ranging from 0 to 23. This approximation was validated in [33] with data
from national meteorological stations in Spain (AEMET) using several locations and years, showing
no differences between the use of hourly or daily temperatures to estimate MGDD and CDD.
Similarly, the use of the approximation was validated across Europe using EURO-CORDEX data.

Data availability

The MGDD, CDD and PD risk data generated in this study, both from ERA5 and CHELSA
datasets, are available at [46]. Presence data on Vitis vinifera are available at GBIF [34].

Code availability

The code for the climate-driven epidemiological model is available in a GitHub repository [45].
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31D. N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann,
H. P. Linder, and M. Kessler, “Climatologies at high resolution for the earth’s land surface areas”,
Scientific Data 4, 170122 (2017).
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O. Braslavská, A. Briede, et al., “European phenological response to climate change matches the
warming pattern”, Global Change Biology 12, 1969–1976 (2006).
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