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Abstract 

 

Quantification of enzymatic activities still heavily relies on experimental assays, which can be 

expensive and time-consuming. Therefore, methods that enable accurate predictions of enzyme 

activity can serve as effective digital twins. A few recent studies have shown the possibility of 

training machine learning (ML) models for predicting the enzyme turnover numbers (kcat) and 

Michaelis constants (Km) using only features derived from enzyme sequences and substrate 

chemical topologies by training on in vitro measurements. However, several challenges remain 

such as lack of standardized training datasets, evaluation of predictive performance on out-of-

distribution examples, and model uncertainty quantification. Here, we introduce CatPred, a 

comprehensive framework for ML prediction of in vitro enzyme kinetics. We explored different 

learning architectures and feature representations for enzymes including those utilizing pretrained 

protein language model features and pretrained three-dimensional structural features. We 

systematically evaluate the performance of trained models for predicting kcat, Km, and inhibition 

constants (Ki) of enzymatic reactions on held-out test sets with a special emphasis on out-of-

distribution test samples (corresponding to enzyme sequences dissimilar from those encountered 

during training). CatPred assumes a probabilistic regression approach offering query-specific 

standard deviation and mean value predictions. Results on unseen data confirm that accuracy in 

enzyme parameter predictions made by CatPred positively correlate with lower predicted 

variances. Incorporating pre-trained language model features is found to be enabling for achieving 

robust performance on out-of-distribution samples. Test evaluations on both held-out and out-of-

distribution test datasets confirm that CatPred performs at least competitively with existing 

methods while simultaneously offering robust uncertainty quantification. CatPred offers wider 

scope and larger data coverage (~23k, 41k, 12k data-points respectively for kcat, Km and Ki). A 

web-resource to use the trained models is made available at: https://tiny.cc/catpred  
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Introduction  

 

Continued advances in genomics and metagenomics tools have spearheaded an unprecedented     

pace in the discovery of new genetic sequences1. While the growth of newly deposited genetic 

sequences within genomic databases2 maintain an exponential rate, the rate of annotated protein 

sequences in UniProt1 follows a linear trendline. This means that a gap is rapidly opening between 

raw sequence reads vs. annotated sequences (Figure 1). To meet this challenge, artificial 

intelligence (AI) algorithms have emerged as promising alternatives for the automated assignment 

of functions of uncharacterized proteins3. These models offer the promise for high quality 

automated functional annotation of sequenced genomes3–5. Recently developed methods such as 

CLEAN5, DeepECtransformer6 and ProteInfer4 have enabled accurate Enzyme Commission (EC) 

number recapitulation by leveraging pretrained protein Language Models7,8 (pLM) and deep 

learning algorithms. However, quantification of enzyme activity is still largely dependent on costly 

and time-consuming biochemical assays. Such approaches cannot keep up with the torrent of raw 

sequence reads leaving most computationally identified enzymes uncharacterized in terms of their 

kinetics despite significant progress in high throughput screening capacity 9,10. Therefore, 

predictive models that enable quantitative annotation of enzyme kinetics could be enabling for 

enzyme characterization in the same manner that recent fold prediction algorithms7,11 have become 

for structure prediction. Even approximate estimates of enzyme kinetics on a given substrate can 

be very important for a diversity of tasks ranging from starting point enzyme selection in directed 

evolution for protein engineering12,13, biosynthetic or biodegradation pathway pre-screening14,15, 

or initialization in the parameterization of kinetic models of 

metabolism16. Enzyme engineering efforts often rely on 

evolutionary methods such as directed evolution that aim to 

rachet up enzyme activity and/or selectivity. The selection 

process of the starting enzyme that undergoes directed 

evolution can be informed based on computationally derived 

enzyme kinetic estimates. De novo enzyme kinetic parameter 

prediction can also inform pathway assembly algorithms17 

aimed at designing entire retro-biosynthetic routes for 

biochemical synthesis. Kinetic parameter predictions can be 

used to avoid alternatives with poor enzyme turnover or 

enzymes that exhibit strong product inhibition accelerating 

the discovery of more catalytically efficient routes. Finally, 

kinetic models, by relating enzyme kinetics to the 

concentration of metabolites and enzyme levels within a cell, 

can be used to both describe and redesign metabolism18. 

Advances in automated functional annotation of proteins have enabled building metabolic models 

with a genome-wide coverage of cellular metabolism19,20. However, efficient kinetic 

parameterization to match observed fluxomic, proteomic and/or metabolomic datasets remains a 

Figure 1. Growth of (a) genetic and (b) protein 
sequences over the past two decades as 
deposited in the World Genome Sequence 
(WSG) database and the UniProt database 
respectively.  
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bottleneck21. The use of reliable estimates for in vitro enzyme kinetic properties could accelerate 

convergence by serving as initializations of enzyme parameters22.  These are but a handful out of 

the many applications that reliable enzyme parameter prediction could impact.   

 

The catalytic turnover number and the Michaelis constant are key parameters of the 

Michaelis-Menten kinetics which is the universally accepted biochemical assay for quantitative 

assessment of enzyme function23. The turnover number, kcat, is the speed of an enzyme, the 

maximal number of molecules of substrates converted to products per active site per unit time. The 

Michaelis constant, Km, is equivalent to the concentration of a substrate at which the enzyme 

operates at half of its maximum catalytic rate qualitatively describing the binding affinity between 

the enzyme-substrate pair. Since enzymes have evolved to cater a wide array of cellular functions, 

they catalyze diverse chemical transformations and hence operate with a broad range of kcat and 

Km values24. In the presence of competitive or non-competitive inhibitors, the equivalent value of 

Km can be obtained using inhibition constants (Ki). Databases such as BRENDA25 and SABIO-

RK26 contain hundreds of thousands of in vitro kinetic measurements manually curated from 

primary research literature (Supplementary Table S1). Several previous studies have focused on 

developing ML models for kcat and Km prediction by using these database entries as training data27–

30. Li. et. al28 developed DLKcat, by training a deep learning model on a dataset of 16,838 kcat 

values of both natural and engineered enzymes across various species. They used a convolutional 

neural network (CNN) architecture to extract features of enzyme-sequence motifs and a graph 

neural network (GNN) to extract substrate features using their 2-dimensional (2-D) connectivity 

graphs. Kroll. et. al. trained a gradient-boosted tree model, TurNup27, using language model 

features of enzymes’ amino acid sequences along with reaction fingerprints for kcat prediction using 

a dataset of 4,271 kcat measurements. Although TurNup was trained on much smaller dataset, they 

achieved a better generalizability compared to DLKcat on test enzyme sequences dissimilar to 

training sequences (out-of-distribution test examples)27. More recently, Yu et. al. developed 

UniKP30 for ML prediction of kcat, Km and kcat/Km values by training on previously curated 

datasets28,29. They trained a tree-ensemble regression model by utilizing pre-trained language 

models8 for extracting features of both enzymes and substrates. UniKP demonstrated an improved 

performance for kcat prediction compared to DLKcat on in-distribution tests, however, no out-of-

distribution examples were tested. Currently, TurNup is the only prediction framework that is 

systematically evaluated on out-of-distribution tests for kcat prediction and outperforms DLKcat in 

this aspect presumably due to the use of pre-trained language model features.  

 

Unlike kcat values that are not directly relatable to the physical properties of the substrate, 

Km values have been shown to be correlated with their molecular mass and hydrophobicity31. Kroll 

et. al.29 developed a Km prediction model using a gradient-boosted tree algorithm by training on 

11,675 in vitro measurements of natural enzyme-metabolite pairs. They used a protein Language 

Model (pLM), UniRep32,21 for extracting numerical representations of the enzyme and a task 

specific graph neural network derived fingerprints combined with the molecular mass and 
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hydrophobicity properties as features for metabolites. Yu et. al.30 also trained a Km prediction model 

within the UniKP framework using the same training dataset utilizing a more recently developed 

pLM, ProtT58 for extracting enzyme sequence features. They demonstrated a similar performance 

as Kroll et.al30. Notably, both these existing models for Km prediction are only evaluated on in-

distribution sequences (i.e., test enzyme sequences that are not explicitly excluded from those of 

training datasets). Relatively fewer ML models are available for Ki prediction of enzyme-inhibitor 

pairs with most of them focused at predicting IC50 values of drug-target pairs33,34.  

 

Existing studies for machine learning in vitro kcat and Km values either use BRENDA25, 

SABIO-RK26, UniProt1 or a combination of these to curate their training datasets from known 

measurements of kinetic parameters. However, there is a lack of complete annotations in the 

databases for all entries leaving significant gaps in the amount of learnable data. For example, even 

though there exist about 87k, 176k and 46k entries for kcat, Km and Ki measurements, respectively 

in BRENDA (Release 2022_2), many are not annotated with the corresponding enzyme sequences 

and/or substrate information. Owing to this, training datasets used by existing works vary 

significantly depending on how they handle entries with missing information. This has prompted 

most studies to use small, filtered subsets of the available data to mitigate this effect. For example, 

TurNup for kcat prediction is trained only on 1,192 enzyme types (unique EC numbers) while the 

current biochemical databases contain kcat values for over 3,000 enzyme types (Supplementary 

Table S2). Many studies have also imposed arbitrary exclusion criteria with the goal of reducing 

the effect of noisy measurements27,29. While such filtering may in part reduce the effect of noise, 

it could also potentially lead to information loss, biasing, and overfitting to the training datasets 

especially when high-dimensional deep learning architectures are used. Filtered-out entries often 

correspond to infrequently occurring metabolite entries. Since they correspond to a large fraction 

(i.e., up to ~ 40-70%, Supplementary Table S3) of available data entries, their omission can become 

a missed opportunity for ML algorithms to learn on rarely seen data and expand coverage of 

generalizable latent spaces. Another notable source of incongruency between different datasets is 

the mapping process adopted of substrate names to their respective chemical connectivity 

information using SMILES35 strings. Existing studies use either of, or a combination of 

PubChem36, KEGG37 or ChEBI38 databases to map substrate names to the respective database 

identifiers and subsequently retrieve SMILES strings leading to divergent results in some cases 

thus precluding a fair comparison across machine learning frameworks. This motivates the need 

for both systematic data curation pipelines and standardized training datasets with expanded 

enzyme and substrate scope.    

 

ML models trained on noisy datasets can lead to potentially unreliable predictions 

especially when challenged with inputs significantly different from those that the model is trained 

on. Predictive models that display good performance on enzyme sequences that are under-

represented in training datasets require that the models have learnt generalizable information 

encoded in latent spaces instead of overfitting to nuances/noise present in the training data.  
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Existing ML models for kcat or Km prediction use traditional regression approaches by minimizing 

the mean-squared-error between training data and thus output deterministic (single valued) enzyme 

parameter predictions. These predictions lack any confidence metric information. In contrast, 

probabilistic regression approaches can output predictions as gaussian distributions (including a 

mean and a variance) which has the potential to offer guardrails on the reliability of predictions. 

Such methods have been recently explored in the molecular property prediction domain where 

similar challenges with datasets exist39.  

 

Here we introduce the comprehensive ML framework, CatPred, for enzyme kinetic parameter 

prediction that addresses many of the aforementioned challenges. We first assembled an expanded 

set of benchmark datasets, CatPred-DB, for training and evaluating ML models using in vitro 

kinetic measurements of kcat, Km and Ki extracted from both BRENDA and SABIO-RK databases. 

Using these datasets, we train deep learning models utilizing features of different levels of 

complexity – enzyme sequence level (using sequence-attention and pLM features), and enzyme 

structure level equivariant graph neural network (E-GNN)40 derived features. Substrate 

representation by CatPred relies on a graph neural network approach previously shown to be 

promising for a wide range of molecular property prediction tasks41. By leveraging a probabilistic 

regression approach39 that simultaneously learns to output means and variances of predictions, 

CatPred provides confidence estimates to its predictions. We systematically evaluated the 

predictive performances of CatPred on test datasets containing both in-distribution and out-of-

distribution enzyme sequences (different from sequences encountered during training). Our results 

show that pLM derived features are necessary for achieving good predictive performances on out-

of-distribution enzymes. CatPred performs favorably in a range of benchmarks compared to 

existing approaches while also offering uncertainty quantifications to its predictions. 
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Results 

 

Generation of benchmark datasets CatPred-DB of in vitro enzyme kinetic parameters 

 

CatPred-DB consists of a set of comprehensive benchmark datasets for training ML 

models, one each for kcat, Km and Ki in vitro measurements. We used data from the BRENDA 

release 2022_2 and data from the SABIO-RK as of November 2023. Initially, we parse the 

databases to identify entries containing essential information, including at least one kinetic 

parameter value (kcat, Km, or Ki), the enzyme type (EC number), the organism of enzyme’s origin, 

kcat dataset

Number of CatPred-DB entries in thousands

(a)

3-Phosphoglycerate

2-Phosphoglycerate

Phosphoglycero-

mutase

MRPVYFLSDF…

Km = 0.65mM 

kcat = 384 s-1

Example entry in CatPred-DB

Km dataset

Enzyme sequences 

present in existing datasets

New enzyme sequences 

introduced in CatPred-DB

(c) kcat dataset
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Figure 2. (a) CatPred-DB is a comprehensive collection of benchmark datasets for kcat, Km and Ki 
including in vitro measurements of enzymatic reactions curated from BRENDA and SABIO-RK databases. 
For each enzymatic reaction, the datasets contain complete annotations of the molecules involved in the 
reaction, the enzyme sequence, the AlphaFold2.0/ESMFold predicted enzyme structure and the 
associated kinetic parameters. (b) Bar plot of the number of entries in the CatPred-DB - kcat and Km 
datasets grouped by their Enzyme Classification (EC level 1). Each bar is divided into two differently 
colored portions corresponding to enzyme sequences newly introduced in CatPred-DB (blue) and to 
enzyme sequences present in existing datasets (magenta). The percent entries on top of each bar show 
the newly added sequences. (c) The enzyme sequence latent space plots of CatPred-DB’s kcat and Km 
datasets visualized using the ESM-2 protein Language Model (pLM) embeddings. The sequence 
embeddings are converted to k-nearest neighbor graphs (k=10) and visualized using the TMAP56 and 
Faerun57 libraries. Each point in the latent space plots corresponds to a single enzyme sequence and is 
colored according to whether it has been newly introduced in CatPred-DB (blue) or is present in existing 
datasets (magenta).  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.10.584340doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.10.584340
http://creativecommons.org/licenses/by/4.0/


and the names of reactants and products. To maintain the accuracy of organisms’ names, we retain 

entries only if they are listed in the NCBI Taxonomy database42. We then mapped each entry to the 

enzyme’s amino acid sequence identifier using the UniProt database (Methods for details). We 

excluded entries that lack one or more of these annotations or if any of these annotations are 

incomplete. Finally, each substrate name is used to obtain a canonical SMILES string that 

corresponds to the 2D atom connectivity. If there exist multiple measurements of any parameter 

belonging to an enzyme-sequence and substrate-SMILES pair, then the maximum (for kcat) and the 

geometric mean (for Km and Ki) value, respectively is retained. The selection of the maximum 

value for kcat value is carried out because it likely maps to the optimal growth conditions (i.e., 

temperature, pH, etc.). In contrast, Km and Ki values are more directly associated with the enzyme-

substrate/inhibitor affinities rather than on the experimental conditions. The use of the geometric 

average implies an arithmetic averaging of the logarithmically transformed values used in the 

training process. The selection of a unique value for the enzymatic parameters is needed to 

safeguard against the ML method attempting to learn significantly different outputs for the same 

inputs which can result in instabilities during training.  

 

CatPred-DB contains 23,197 kcat, 41,174 Km and 11,929 Ki measurements spanning 

thousands of unique enzymes, organisms, and substrates (Table 1). Each entry in CatPred-DB is 

also mapped to a predicted 3D-structure of the corresponding enzyme using AlphaFold-2.0 

database11. In the absence of a 3D structure in the AlphaFold database, we used ESMFold7 to carry 

out structure prediction. The coverage statistics of CatPred-DB contrasted with other efforts28–30 

are summarized in Table 1. Notably, CatPred-DB has a significantly expanded enzyme sequence 

space (up to 60% new sequences introduced) in comparison to the existing ML datasets for kcat 

and Km. New sequences span widely across enzyme classes with no biases for specific EC classes 

(Figure 2b). Moreover, kcat and Km entries in CatPred-DB have broader coverages compared to 

existing ML datasets across all the enzyme families as per the EC level 1 (Figure 2c). Therefore, 

we envision that the enhanced sequence and EC classification coverage would make CatPred-DB 

a useful resource to the community for aiding systematic development and benchmarking of ML 

models for enzyme kinetic parameter prediction.  

 

Table 1 Coverage statistics of CatPred-DB vs. other datasets of in vitro enzyme kinetic parameter measurements.  

 

Dataset 
CatPred-DB Existing datasets 

kcat Km Ki kcat (Li. et. al.28) Km (Kroll et. al.29) 

Entries 23,197 41,174 11,929 17,010 11,722 

Unique organisms 1,685 2,419 652 849 N/A 

Unique Enzyme 

Classes (EC) 
2,657 3,550 1,306 1,692 3,690# 

Unique enzyme 

sequences 
7,183 12,355 2,829 3,219 6,990 

Unique substrates 12,290 10,535 7,146 2,696 1,566 

# Predicted Enzyme Classification (EC) numbers using CLEAN 
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Overview of CatPred training framework 

CatPred relies on the enzyme sequences/3D-structures along with the SMILES string of the 

corresponding substrates (reactants) as inputs and outputs machine-learned in vitro kinetic 

parameters. We used a concatenated SMILES string of all the reactant molecules for kcat prediction. 

For Km or Ki prediction, the SMILES string corresponding to the relevant substrate is used. During 

training, the two sets of inputs are first transformed into their respective feature spaces through 

separate feature learning modules (Figure 3a).  For enzyme feature learning, CatPred makes use 

of three approaches that successively add to the detail of description: (1) Sequence Attention (Seq-

Att) (2) protein Language Model (pLM) features, and finally (3) 3D-structure features (Figure 3c). 

This is carried out to properly delineate the respective contribution to improved prediction of more 

sophisticated encodings. For substrate feature learning, CatPred utilizes the extensively 

benchmarked Directed Message Passing Neural Networks41 (D-MPNN). D-MPNNs transform 

SMILES strings to 2D-graphs of atoms with bond connectivity and learn their aggregated 

representations using graph convolution operations41 (Figure 3b). For the derivation of sequence 

attention (Seq-Attn) features, the amino-acid sequences of enzymes are encoded into numerical 

representations using the rotary positional embeddings43 akin to the encoding layer used for 

training the ESM-2 pLM7. The encoded numerical representations are then transformed using self-

attention layers44 to capture dependencies and relationships across the length of enzyme sequences 

(Figure 3a). The pLM features are extracted by using the ESM-27 (Evolutionary Scale Modeling) 

model pretrained on the Uniref50 dataset. The 3D structural features are extracted using the 

Equivariant Graph Neural Networks (E-GNN40) that operate on amino acid residue graphs. We 

integrated E-GNN from Greener et. al.45 that has been pre-trained using a supervised contrastive 

learning for embedding protein structures into a low-dimensional latent space (Figure 3a). The pre-

trained E-GNN’s latent space clusters the embeddings of similar protein structures together 

whereas separating dissimilar ones away from one another 45. We reasoned /that using these E-

GNN derived embeddings as features within CatPred can complement the sequence-attention and 

pLM features. Enzyme features learnt through these modules (Seq-Attn, pLM, E-GNN) are 

concatenated along with the substrate features from D-MPNNs and used to predict the respective 

targets (log10-transformed kinetic parameters). CatPred uses a probabilistic regression approach46 

and therefore provides kinetic parameter predictions as distributions characterized by both a mean 

and a standard deviation, rather than single value predictions. Specifically, the concatenated 

enzyme and substrate features are fed into a fully connected neural network which outputs a mean 

and variance for each input (Figure 3c). The network is trained using a negative log likelihood 

(NLL) loss function with respect to the CatPred-DB’s  

For each dataset in CatPred-DB, the CatPred framework is used to train ML models that 

minimize a negative log-likelihood loss46 (Methods for details) of the predicted distributions to the 

corresponding target values. Each CatPred-DB dataset is randomly split into 80-10-10 proportions 

for training-validation-testing, respectively. Because CatPred involves using both enzyme 

sequences/structures and substrate SMILES as inputs, the splitting is carried out so as no enzyme-
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substrate pair is repeated across different partitions. Adjustable hyper-parameters in the framework 

are either fixed to default values or optimized by evaluating trained CatPred models on the 

validation sets (Methods). The optimized hyperparameters are used to train the final models 

CatPred-kcat, CatPred-Km and CatPred-Ki using the training and validation sets and evaluated on 

the testing sets (see below). Production models trained on the full datasets are made available for 

easy access through the Google Colab interface which can be used without the requiring any local 

installation or specialized hardware (Figure 3d).  

Evaluation of trained CatPred models 

Figure 3 CatPred framework for training probabilistic regression models for enzyme kinetic parameter 
prediction using substrate and enzyme features. (a) Enzyme feature learning is carried out using three 
different modalities with increasing level of detail. The Sequence-Attention (Seq-Att) module learns 
features of amino-acid embeddings using multi-head attention layers. The pLM module uses features 
extracted from a pre-trained protein Language Model (pLM). The Equivariant Graph Neural Network (E-
GNN) module extracts features of 3d structures of enzymes by employing equivariant graph neural 
networks on their amino-acid level graphs. (b) Substrate feature learning is carried out using Directed 
Message Passing Neural Networks (D-MPNN) that extract molecular representations by leveraging 2D 
atom-bond connectivity graphs. (c) CatPred models are trained on CatPred-DB datasets utilizing both 
substrate and enzyme feature learning modules with a probabilistic regression approach. The enzyme 
and substrate features are input to a fully connected neural network that predicts the kinetic parameters 
as outputs in the form of Gaussian distributions characterized by their respective means (𝜇) and variances 

(𝜎2). (d) CatPred production models are made available through the Google-Colab interface for ease of 

access. The inputs are the substrate SMILES and either enzyme sequence or structure along with a 
choice of kinetic parameter for prediction. The interface then loads the respective trained models and 
outputs uncertainty quantified kinetic parameters in terms of a predicted mean and standard deviation 
(SD).  
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 Trained CatPred models were evaluated on two test sets – (1) “held-out” test set and (2) 

“out-of-distribution” test set. The evaluation criterion is based on the coefficient of regression (R2) 

which quantifies the fraction of data variance in the regression target that is captured by the 

predicted values. For each kinetic parameter, the held-out test sets are constructed to be randomly 

selected 10% in size subsets of the complete CatPred-DB dataset.  As implied by their definition, 

the held-out test sets do not contain any enzyme-substrate pairs used for training the models. The 

out-of-distribution test sets are further subsets of the held-out test sets (approximately 12 to 15% 

thereof) with not only specific enzyme-substrate but all enzyme sequences (nearly) identical 

excluded from the training set (Figure 4a). By construction, any enzyme sequence in the out-of-

distribution set is at most 99% identical (Methods) to any sequence in the training set. Therefore, 

prediction metrics achieved on the held-out test sets reflect the prediction fidelity for unseen 

enzyme-substrate pairs. Out-of-distribution test sets provide a more stringent prediction challenge 

by assessing prediction performance on unseen enzymes (even excluding enzymes within 99% in 

sequence identity).  

We find that CatPred models that use substrate features along with both Seq-Attn and pLM 

features have the best performance across all three enzymatic parameters (Figure 4b). Notably, 

using only the substrate features leads to a reasonable performance for both Km and Ki prediction 

(R2 of 0.465 and 0.525) at par with previous studies29. Even though inclusion of Seq-Attn features 

alone only slightly improves prediction performance, the combined addition of both Seq-Attn and 

pLM features leads to best “in-class” performance for kcat, Km and Ki prediction with R2 values of 

0.607, 0.648 and 0.637, respectively (Figure 4b). These metrics are at least as good or better than 

all existing ML models for predicting kcat
27,28,30 and Km

29,30 values respectively. It is worth noting 

that CatPred models that use 3D-structural features extracted from the E-GNN in addition to Seq-

Attn and pLM features do not improve the prediction performance compared to only using Seq-

Attn and pLM. The achieved R2 values were 0.607, 0.648 and 0.639 on the held-out test sets 

respectively for kcat, Km and Ki (Figure 4b).  

Importantly, CatPred models retained strong prediction performance even on “out-of-

distribution” test sets for Km (R2 = 0.536) and somewhat less accurate for kcat and Ki (R2 = 0.390 

and 0.409 respectively) (Figure 4b). We observe that while adding Seq-Attn features leads to 

improved performance for kcat and Km predictions, the improvements are not as pronounced on 

out-of-distribution sets. This suggests that even though the self-attention layers in Seq-Attn can 

successfully encode enzyme sequences by extracting local and global patterns, they cannot account 

for higher-order relationships across sequences that are necessary for generalization to unseen 

protein sequences. ESM-2 pLM can capture such features and have already proven capable of 

encoding evolutionarily rich semantics of protein sequences7,47 explaining their good performance 

on out-of-distribution samples.  
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We found that adding Seq-Attn+pLM features leads to a reduction in the R2 value for Ki 

prediction on out-of-distribution test sets when compared to adding only Seq-Attn features. This 

seemingly surprising finding is likely due to overfitting on the relatively small Ki dataset 

(approximately four-fold smaller than Km dataset, see Table 1) using high dimensional pLM 

features. This calls for an expansion to the size of the Ki dataset in the future. It is worth noting 

that CatPred performs (R2 = 0.39) comparably with TurNup (R2 = 0.40) on out-of-distribution 

Figure 4 (a) CatPred-DB dataset sizes used for training, held-out test and out-of-distribution test are shown 
as Venn diagrams. (b) Coefficient of determination (R2 ) values obtained by trained CatPred models for kcat, 
Km and Ki prediction on held-out and out-of-distribution test sets. (a) by the models on (hold out) test sets 
(solid bars) and on (out-of-distribution) samples (patterned bars) are shown. The out-of-distribution samples 
are subsets of the full test-sets extrscted so as no enzyme sequence in the subset is more than 99% similar 
to any training sequence. ‘Substrate Only’ refers to CatPred models trained using only the substrate 
features; ‘Substrate+Seq-Attn’ (Sequence Attention) refers to CatPred models trained using substrate 
features and the Seq-Attn features; ‘Substrate+Seq-Attn+pLM’ (protein Langugae Model) refers to CatPred 
models trained using substrate features along with both the Seq-Attn and pLM features; ‘Substrate+Seq-
Attn+pLM+EGNN’ (Equivariant Graph Neural Networks) refers to CatPred models trained using substrate 
features along with Seq-Attn+pLM and EGNN features. 
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samples for kcat prediction. To the best of our knowledge, CatPred is the only available predictive 

model for Km and Ki prediction that is evaluated on out-of-distribution samples.  

Recently, Kroll et al.27 reported that the DLKcat model for kcat prediction showed a 

diminishing performance as a function of the similarity of test enzyme sequences to those of the 

training set indicating that the DLKcat model might have “memorized” the training dataset instead 

of “learning” meaningful patterns. They showed that the DLKcat model exhibited poor predictive 

performance (R2 = -0.61) on sequences that are significantly dissimilar compared to those in the 

training set. Motivated by the need to avoid such a prediction behavior, we systematically assessed 

the reduction in prediction performance of CatPred models as the test sets become more and more 

dissimilar to the training set. This analysis revealed that CatPred models for Km prediction maintain 

robust performance with an R2 value of 0.48 even on out-of-distribution test sets with sequence 

similarities less than 40% when pLM features are enabled (Figure 5b). Prediction by CatPred for 

kcat values remain reasonable (i.e., R2 = 0.33) even down to a seq. id. cutoff of 40% (Figure 5a) 

with the contribution of pLM encodings being even more pronounced. This suggests that the 

CatPred models for kcat and Km (with pLM features) have learnt generalizable enzyme attributes 

that go beyond sequence similarities. In contrast, for CatPred-Ki the benefit of using pLM features 

is not realized presumably due to overfitting caused by the relatively small training set size. 

However, using only Substrate and Seq-Attn features, a good predictive performance is reached 

for Ki with an R2 value of 0.42 even on the test set with <40% similarity to training sequences 

(Figure 5c). Also, for CatPred models using E-GNN features, the corresponding R2 values on the 

out-of-distribution test sets were 0.389, 0.538 and 0.454 for kcat, Km and Ki respectively (Figure 

4b) indicating no significant improvement over using only Seq-Attn+pLM features. Therefore, the 

production CatPred models accessible through our Google Colab interface (Figure 3d) are based 

Figure 5 Evaluation of trained CatPred models on out-of-distribution sets with decreasing enzyme 
sequence similarities to training sequences for (a) kcat (b) Km and (c) Ki respectively. Each group on X-axis 
indicates the coefficient of determination (R2 ) obtained on subsets of held-out tests selected using a 
maximum percent sequence identity cutoff (Max. % seq. id. cutoff) to training sequences. ‘Substrate Only’ 
refers to CatPred models trained using only the substrate features. ‘Substrate+Seq-Attn’ (Sequence 
Attention) refers to CatPred models trained using substrate features and the Seq-Attn features. 
‘Substrate+Seq-Attn+pLM’ (protein Language Model) refers to CatPred models trained using substrate 
features along with both the Seq-Attn and pLM features. 
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on Substrate+Seq-Attn+pLM for kcat and Km and only Substrate+Seq-Attn for Ki. Also, all further 

mentions of CatPred-models throughout the manuscript refer to these models unless otherwise 

explicitly specified. 

In the analyses described above we used R2 as the sole metric of prediction quality. We 

have repeated almost all assessments and Figures using the mean absolute error (MAE) metric 

(Supplementary Figure S1) obtaining the same trendlines. However, neither R2 nor MAE provide 

immediate feedback to the user as to whether the predicted value for the enzyme parameter is likely 

to be “order of magnitude” accurate or not. Motivated by the need to provide such a metric, we 

introduced a new metric termed p1mag defined as the percent of test predictions that are within one 

order (+/-) of magnitude error. We choose the relatively large window of acceptance of one order 

of magnitude as enzyme kinetic parameters span multiple orders of magnitude. Table 2 shows the 

performance evaluation of CatPred models in terms of R2, MAE and p1mag. Results indicate that 

approximately 80%, 87% and 70% of held-out test predictions fall within an order of magnitude 

error for kcat, Km and Ki predictions, respectively. They drop to 63.5%, 82.7% and 58.6% when 

evaluated on the out-of-distribution test sets. The p1mag metric provides a confidence level metric 

evaluated for an entire subset of measurements. We next describe how one could directly use the 

variances predicted by the probabilistic regression model in CatPred to infer confidence values for 

each prediction separately. Reliable confidence estimates can help segregate predictions with small 

errors from those with larger ones.  

Table 2 The performance metrics obtained by CatPred models as quantified using the coefficient of 
regression (R2), the mean absolute error (MAE), and the percent of predictions within test sets that are 
within one order of mangintude error (p1mag). Prediction metrics obtained on both held-out test sets and out-
of-distribution sets are listed.  

 CatPred-kcat CatPred-Km CatPred-Ki 

 Held-out 
Out-of-

distribution 
Held-out 

Out-of-

distribution 
Held-out 

Out-of-

distribution 

R2 

(higher is better) 
0.608 0.390 0.648 0.536 0.552 0.461 

MAE  

(lower is better) 
0.703 1.002 0.548 0.649 0.997 1.050 

p1mag 

 (higher is better) 
79.4% 63.5% 87.6% 82.7% 67.1% 56.4% 
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Uncertainty estimates for predictions using CatPred models 

Regression models described in the earlier section for training ML models of kcat and Km relied on 

a mean-squared error loss function27–30. This approach precludes quantifying the level of 

uncertainty of predictions for individual enzyme-substrate pairs. The metrics such as R2, MAE or 

f1mag are assessed for the entire evaluation set (i.e., held-out or out-of-distribution) and not for 

individual predictions. Either lack of measurements or noisy data can adversely affect predictions 

for enzyme-substrate pairs. This implies that not all predictions would have the same fidelity. 

Figure 6 (a) CatPred uses as inputs enzyme and substrate features and outputs kinetic parameters as 
Gaussians distributions characterized by a mean and a variance. When training an ensemble of models, 
‘Model 𝑖’ corresponds to the 𝑖th set of randomly initialized weights. (b) Uncertainty prediction pipeline in 

CatPred. An ensemble of N independent models (each with a unique set of randomly initialized weights) is 
trained for each prediction target kcat, Km and Ki. Each model outputs a mean and a variance for a given set 
of inputs. The final prediction is the arithmetic average of ensemble means and the final uncertainty is the 
sum of aleatoric and epistemic contributions. (c) Schematic depicting the two kinds of uncertainties: aleatoric 
and epistemic. Aleatoric uncertainty is higher in areas with larger spread of the regression target variable, 𝑦, 

with respect to the input latent space 𝑥ҧ. Epistemic uncertainty is higher in areas with absence of knowledge 

of  𝑦 within the training data. The circles in plots refer to training data and the red line denotes the mean 

prediction by trained models. The performance metrics achieved by (d) CatPred-kcat, (e) CatPred-Km and 
(f) CatPred-Ki models on sub populations of the held-out tests binned in order of their predicted uncertainty 
values (sum of aleatoric and epistemic uncertainty). Each colored bar denotes a sub population of the held-
out set with uncertainty less than the 100th (Blue), 75th (Dark Green), 50th (Light Green), and 25th (Light yellow) 
percentile respectively. Within each figure, the subplots show the obtained co-efficient of regression (R2), 
mean absolute error (MAE) and percent of predictions within one oder of magnitude error (p1mag). 
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Using a probabilistic description allows CatPred to quantify the uncertainty in prediction for 

individual enzyme-substrate pairs. There are two sources of encountered uncertainty (i.e., aleatoric 

and epistemic39). Aleatoric uncertainty arises from noise in the training data due to randomly 

occurring experimental error.  This leads to uncharacteristic fluctuations in the value of the output 

even for small changes in the input (Figure 6c). Epistemic uncertainty arises due to the lack (or 

insufficiency) of training data in certain regions of the input space (Figure 6c). Aleatoric 

uncertainty can be captured using the probabilistic regression approach used in CatPred (Methods 

for details). By training the neural networks using a negative log likelihood (NLL) loss function, 

each CatPred model estimate is a Gaussian distribution characterized by a mean and a variance 

(Figure 6a). Epistemic uncertainty on the other hand, requires estimating the variance in prediction 

from an ensemble of identical neural network models trained using different initializations (Figure 

6b). Individual models in the ensemble would provide dissonant predictions for inputs 

corresponding to regions with insufficient training data (Figure 6c). The extent of the disagreement 

thus quantifies the associated epistemic uncertainty.  For each kinetic parameter prediction made 

by CatPred, the combined uncertainty (sum of aleatoric and epistemic contributions) is provided 

(Figure 6b). The aleatoric uncertainty is quantified as the square root of the arithmetic mean of 

ensemble variances (Figure 6b) whereas the epistemic uncertainty is the sample standard deviation 

of the ensemble means (Figure 6b, also see Methods). It is important to note that because the model 

training is performed using log10-transformed kinetic parameter values, the corresponding 

standard deviations estimated are also on a log10-scale (Methods for details). A similar uncertainty 

description framework was used before in molecular property prediction39.   

We first verified if the predicted uncertainty values are consistent with the absolute errors 

for predictions made by the CatPred trained models on held-out test sets. The goal was to ensure 

that the predicted uncertainties can be used to discriminate between high from low confidence 

predictions. To this end, the held-out test sets were partitioned in four subsets each consisting of 

predictions with uncertainty values less than the 100th, 75th, 50th and 25th percentile, respectively. 

This means that each subset becomes progressively enriched with predictions of higher confidence. 

Performance metrics R2, MAE and p1mag are calculated separately within each subset (Figure 6 (d) 

–(f)). We perform these analyses on CatPred production models i.e., based on Substrate+Seq-

Attn+pLM for kcat and Km and only Substrate+Seq-Attn for Ki. We observe that the prediction 

metrics monotonically improved when held-out subsets with smaller predicted uncertainties are 

assessed (Figure 6 (d) –(f)). We note that R2 values for the (25th percentile) set are improved to 

0.78, 0.76 and 0.61 for CatPred-kcat, CatPred-Km and CatPred-Ki models, respectively. Similarly, 

the MAE drops by approximately ~36% for the 25th percentile set compared to the 100th percentile 

set. This trend is also reflected by the increase in p1mag values (Figure 6 (d) – (f)) showing that 

more than 90% of predictions in the highest confident subset (i.e., 25th percentile subset) are within 

an order of magnitude error for kcat and Km prediction. We also carried out this analysis for the out-

of-distribution tests and we observed similar trends (Supplementary Figure S2). These results 

imply that the probabilistic description of CatPred correctly assigns lower standard deviations for 

predictions associated with higher confidence evaluation sets.  
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Google Colab web interface for using CatPred 

We developed an easy-to-use interface on 

Google Colab (https://tiny.cc/catpred) for 

accessing CatPred. This interface allows 

for remote computations in a web 

browser without requiring any local 

installation. The input to CatPred is the 

amino-acid sequence of the enzyme and 

the substrate SMILES string. In the case 

of kcat prediction, the substrate SMILES 

string must contain the concatenation of 

the SMILES strings associated with all 

reactants. As discussed previously this is 

needed as we discovered that not only the 

primary substrate but also the co-

substrates (such as secondary substrates, 

cofactors etc.) contain information 

relevant to kcat prediction. Unsurprisingly, 

this is not the case for Km and Ki where 

only substrate connectivity information is 

needed. Once the enzyme parameter of 

interest is chosen and the inputs are 

entered, they are validated for correct 

formatting. If the enzyme sequence 

contains characters other than the natural 

amino-acid alphabet or if the SMILES 

string is invalid, then an error prompt is 

displayed asking for re-entry of inputs. 

Once the inputs are validated, the relevant 

enzyme parameter prediction value along 

with the estimated uncertainty 

(contributions from aleatoric and 

epistemic) are output on the screen.  On average, the computation takes ~20 seconds on CPU and 

~10 seconds on GPU. Figure 7a pictorially illustrates the inputs and outputs for predicting the Km 

value of a Hexokinase (from Homo sapiens) acting on its native substrate D-Glucose. The output 

value 5.58mM is within 7% error from the experimentally reported value of 6.3mM48. In addition, 

CatPred interface also checks if given inputs already occur in the databases BRENDA and/or 

SABIO-RK to alert the user. If the check passes, then the database entries corresponding to the 

inputs are listed (Figure 7b). 

Figure 7 Google Colab interface for making predictions using trained 
CatPred models. (a) The inputs are the ‘amino acid’ sequence of enzyme 
and the ‘SMILES’ string of substrate. The predicted output shows the kinetic 
parameter value (Predicted Km value of a Hexokinase enzyme with the D-
Glucose substrate in the example shown) and the estimated uncertainty. 
The contributions to prediction uncertainty (in terms of Standard Deviation: 
SD in log10-scale) from aleatoric and epistemic uncertainties are also 
shown. (b) Inputs entered are also searched against entries of the BRENDA 
and SABIO-RK database. The example input matches with one entry in 
BRENDA which is shown. 
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Discussion 

Knowledge of enzyme kinetics is central to the understanding of individual enzymes, 

metabolic pathways, and dynamic behavior of living cells24,49,50. However, experimental 

determination of enzyme kinetic parameters on a large-scale is an arduous and cost prohibitive 

task. Although several ML models have been developed before, there is no unified web resource 

for the prediction of kcat, Km and Ki parameters, using standardized training sets, with performance 

evaluated on out-of-distribution data, and with uncertainty prediction for individual queries. By 

leveraging rich feature representations and training on expanded and standardized datasets, 

CatPred achieves performance at least at par with existing studies despite the expanded scope of 

model coverage. 

Prediction quality by CapPred is predominantly limited by the experimental uncertainty in 

the datasets (i.e., aleatoric uncertainty) as shown in Figure 6. This is confirmed by the fact that ML 

models trained using different inputs and network architectures arrive at similar metrics of 

prediction (R2 = 0.65 by UniKP30 and R2 = 0.61 by CatPred for kcat prediction). Data uncertainty 

could be ameliorated by directly accounting for environmental conditions such as pH, temperature. 

Recently, Yu et. al.30 trained a kcat prediction ML model that explicitly considers pH and 

temperature as inputs and obtained a better accuracy of prediction compared to a baseline model. 

However, the datasets used for training using pH and temperature were quite small (~600 

datapoints) indicating that these trained models may not be broadly applicable. Such limitations 

pertaining to datasets call for a systematic effort to generate (and open source) high-quality 

measurements of enzyme kinetic parameters with complete annotations and broad coverage of 

enzyme functions. Training on high quality datasets could give rise to model predictions with 

higher accuracies and lower uncertainties.  

We did not find any improvements of prediction performance upon addition of enzyme 3D-

structural features extracted using the pretrained E-GNN on top of sequence attention and pLM 

features. This observation is unsurprising given that the protein language models have previously 

shown to encode not only sequence but also structural information51. Previous works also show 

that ML models using structural features in addition to pLM features show little improvement over 

those using pLM features alone52. Instead of using entire 3D structures, a targeted description of 

enzyme-substrate binding regions with information of active-site amino acids could potentially be 

more informative53. Further improvements could focus on incorporating more mechanistic 

descriptions of enzyme kinetics such as active site and transition state modeling. Different graph 

neural network architectures can have significant impact on ML model performances. More 

detailed studies are needed to exhaustively explore these possibilities in context of improving 

enzyme kinetic parameter prediction.  
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Methods 

Dataset curation 

The BRENDA database version 2022_2 was downloaded in json format from their website. The 

SABIO-RK database was downloaded from their website in sbml format. The downloaded 

databases were processed using in-house Python scripts. All entries of the downloaded databases 

were parsed while discarding entries that do not have the essential annotations of (1) UniProt 

identifier for enzyme sequence (or) Organism name and EC number (2) Name of substrate(s) (3) 

Numerical value of a kinetic parameter (kcat, Km or Ki). For entries with a valid Organism name 

and EC number but no Uniprot-id, Uniprot API search is used to find out all enzyme entries with 

the given Organism and EC combination. If the search returned a unique enzyme Uniprot-id, the 

entry was updated with the identified Uniprot-id. Entries belonging to engineered or mutated 

enzymes were discarded. The Uniprot-identifiers were next used to obtain enzyme sequences and 

AlphaFold-2.0 predicted structures. Substrate name to SMILES mappings for the entire databases 

were retrieved from BRENDA and SABIO-RK and used to populate the parsed entries with 

SMILES strings. For those substrates whose SMILES could not be found on BRENDA and 

SABIO-RK, we utilized the PubChem’s identifier exchange service 

(https://pubchem.ncbi.nlm.nih.gov/idexchange/ ) to obtain SMILES strings. Each SMILES string 

was canonicalized using the Rdkit Python library. Duplicate measurements (i.e., more than one 

measurement for the same pair of enzyme sequence and substrate SMILES) were processed by 

taking the geometric mean of measurements (for Km and Ki) and the maximum of measurements 

(for kcat). This curation process yielded a total of 23,197 kcat, 41,174 Km and 11,929 Ki entries with 

enzyme sequence, enzyme structure, and substrate SMILES. Since the kcat, Km and Ki values span 

several orders of magnitude, the values were log10-transformed to obtain approximately normal 

distributions for each. 

Dataset splitting 

The curated CatPred datasets were split into training (80%), validation (10%) and held-out test 

sets (10%) using scikit-learn Python package. The splitting ensures that entries in test/validation 

splits do not have the enzyme sequence and substrate SMILES pairs seen in training splits. The 

held-out sets are further filtered into subsets based on enzyme sequence identity cutoff to training 

sequences. Enzyme sequences within each dataset (kcat, Km or Ki) are clustered using identity cutoff 

values of 99%, 80%, 60% and 40% using the mmseqs254 Python library.  

Calculation of enzyme sequence latent spaces  

Enzyme sequences were converted into 1280-dimensional numerical representations using the 

mean features of the final layer of the pretrained ESM-2 model (650 million parameter version). 

The calculated representations were then clustered into k-nearest neighbor (kNN) graphs with the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.10.584340doi: bioRxiv preprint 

https://pubchem.ncbi.nlm.nih.gov/idexchange/
https://doi.org/10.1101/2024.03.10.584340
http://creativecommons.org/licenses/by/4.0/


help of Approximate Nearest Neighbors algorithm55 as implemented using the Annoy Python 

library. The cosine-distance metric was used for clustering. A maximum of 50 kNN trees were 

built with k value set to 10. Constructed trees were plotted using the TMAP56 and Faerun57 Python 

libraries. Two separate plots for CatPred-DB-kcat and CatPred-DB-Km were constructed. Within 

each plot, points were colored according to whether the enzyme sequences newly introduced in 

CatPred (i.e., were not present in the existing kcat dataset 28 or Km dataset.29) or not.  

Deep learning architecture 

The CatPred deep learning framework is built upon that used in ref58 and is written in the Python 

programming language. Each enzyme sequence is first transformed into numerical representation 

using a neural embedding layer. For CatPred models using Sequence Attention, the sequence 

embeddings are further enriched with the positional information using Rotary Positional 

Embeddings43 and converted into key, query, values for input to attention layers as described in 

ref44. For CatPred models using protein Language Model features, the ESM2 pretrained model 

(esm2_t33_650M_UR50D) developed in ref.7 is utilized to extract 1280-dimensional features for 

each enzyme sequence. These features are concatenated with the sequence embedding and 

attention features. The concatenated features are pooled using an attentive pooling layer that learns 

a weight for each sequence position and performs a weighted averaging across the sequence length. 

These pooled features are the final enzyme representations. For each substrate, RDKit is used to 

generate an atom-bond connectivity graph using the Rdkit Python library. The atoms are converted 

into features using the corresponding atomic number, number of bonds, formal charge, 

hybridization, aromaticity, atomic mass, number of hydrogens bonded to the atom and chirality. 

Each feature is one-hot encoded and concatenated to form the atom feature vector. Similarly, the 

bonds are converted into features using the bond type (single, double, triple, or aromatic), bond 

conjugation, bond presence in a ring and bond chirality. These bond features are one-hot encoded 

and concatenated to form the bond feature vector. The atom and bond features are transformed 

into molecule features by utilizing the directed-message passing neural network (D-MPNN) as 

described in ref41. Using these, a directed edge feature is constructed for a pair of atoms connected 

by a bond by concatenating the first atom’s feature with the bond’s features. These edge features 

are iteratively updated using a learnable neural network with non-linear activation function to 

aggregate the features of neighborhood atoms41. The final molecular representation is obtained by 

summation of all atom features. The final enzyme and molecular representations are concatenated 

together and input to a fully connected neural network to output two real values representing the 

mean and the variance. The E-GNN pre-trained model and its pre-trained weights as described in 

ref 45 are used without any modification to extract the structural features. For each enzyme 3D-

structure, this yielded a 128-dimensional embedding. (Supplementary Fig. S3) 
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Hyperparameter tuning and training 

The hyperparameters of enzyme feature learning modules are: - the dimension of embedding layer, 

the dimension of rotary positional embeddings, number of attention layers and number of layers 

in attentive pooling. All hyperparameters of substrate feature learning module were set to optimal 

values recommended in ref58. The learning rate was fixed at 0.001 and the batch size was tuned 

accordingly. The number of models in the ensemble when training CatPred models was set to 10. 

The rectified linear unit (relu) activation function was used for all layers except for the output 

layers. All the models were trained in batches using the Adam optimizer and the training dataset 

was fed into the model for 20 epochs. We used minimization of the negative log-likelihood loss 

function as the objective function as described in ref39. Different combinations of listed 

hyperparameters were tried to train models and optimal values are chosen by the performance of 

trained models on the validation dataset. The optimal values so obtained are used to train models 

on the training+validation and training+validation+test datasets for testing and production 

purposes respectively. The production models were trained for 30 epochs. The list of tested 

hyperparameters and the obtained optimal values are listed in a detailed architecture block figure 

Supplementary Fig. S3.  

 

Data availability 

CatPred-DB datasets will be made publicly available upon publication at 

https://github.com/maranasgroup/catpred  

 

Code availability 

All the codes corresponding to the experiments presented in the manuscript will be made publicly 

available upon publication at https://github.com/maranasgroup/catpred  

A web interface for using trained CatPred models is currently available at https://tiny.cc/catpred  
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