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ABSTRACT

A thorough understanding of ecosystem functioning in the Arctic Ocean, a region under severe
threat by climate change, requires detailed studies on linkages between biodiversity and
ecosystem stability. The identification of keystone species with special relevance for ecosystem
stability is of great importance, yet difficult to achieve with established community assessments.
In the case of microbes, metabarcoding and metagenomics offer fundamental insights into
community structure and function, yet remain limited regarding conclusions about the role of
individual species within the ecosystem. To overcome this limitation, we have developed an
analytical approach based on three different methods: Co-Occurrence Networks, Convergent
Cross Mapping, and Energy Landscape Analysis. These methods enable the identification
of seasonal communities in microbial ecosystems, elucidate their interactions, and predict
potential stable community configurations under varying environmental conditions. Combining
the outcomes of these three methods allowed us to define 19 keystone species that are
representative for the different trophic modes sustaining the local food web. They may serve as
indicator species for ecosystem functionality under the impact of environmental change. Our
research reveals a clear seasonal pattern in the composition of the phytoplankton community, with
distinct assemblages characterizing the carbon fixation (light) and consumption (dark). Species
interactions exhibit strong seasonality, with significant influence of summer communities on winter
communities but not vice versa. During spring, two distinct groups are present. consumers
(heterotrophs), strongly linked to polar night, and photoautotrophs (mainly Bacillariophyta),
initiating growth (photoautotrophic Bacillariophyta). These groups are not causally related,
suggesting a "winter reset” with selective effects that facilitates a new blooming period, allowing
survivors of the dark phase to emerge. Investigating the fragility of these ecological systems
using Energy Landscape Analysis we demonstrate that winter communities are more stable than
summer communities. In summary, the ecological landscape of the Fram Strait,a passage, that
acts as a gateway between the Arctic Ocean and the Atlantic Ocean, can be categorized by two
distinct phases: a production phase governed by specialized organisms that are highly responsive
to environmental variability, and a heterotrophic phase dominated by generalist species with
enhanced resilience.

Keywords: Cross Convergence Mapping, Co-Occurrence Network, Energy Landscape Analysis, Keystone species, Eukaryotes

1 INTRODUCTION

The Arctic Ocean and climate change

The Arctic Ocean is a unique ecosystem, undergoing a major transition due to the ongoing repercussions
of climate change. Over the past two decades, Arctic surface temperatures have risen at a rate more than
twice the global average (Meredith et al., 2019). This temperature amplification is linked to feedback
mechanisms triggered by reductions in sea ice and snow cover, which exacerbate warming trends. In
particular, the Arctic sea ice extent has been declining throughout the year, with the most pronounced
decline occurring in September (Meredith et al., 2019). These environmental changes have a wide range of
consequences, including profound shifts in biodiversity (Sala et al., 2000), and thus have a fundamental
impact on ecosystems of the Arctic Ocean.

There are first signs that the geographical ranges of temperate species are shifting northwards (Kraft et al.,
2013)), while polar fish and ice-associated species are experiencing a reduction in their habitat due to
changing environmental conditions in the Arctic Ocean. These ecological changes have impact on the entire
ecosystem and jeopardize its stability (Meredith et al., 2019). The complex relationship between biodiversity
and ecosystem stability, particularly in the Arctic Ocean, remains poorly understood. Consequently, the
rapid changes in Arctic sea ice and environmental conditions urgently require an improved understanding
of the mechanisms governing the resilience and stability of biological processes and ecosystem functions
in the Arctic Ocean.

Marine ecosystem functioning and primary production
Within marine ecosystems, primary production is a key service supporting the food web, the survival and
growth of marine organisms (Eppley and Peterson, 1979; Lin et al., |2003). The extent of primary production
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and its species composition has implications on biodiversity, the abundance and community structure at
higher trophic levels, but also carbon sequestration. In the Central Arctic Ocean (CAO), sea-ice algae rather
than phytoplankton account for much of the primary production (Gosselin et al., [ 1997; Fernandez-Méndez
et al.,[2015). This distinct ecosystem feature is supported by a highly productive microalgal community
that thrives in sea ice, accompanied by a remarkably diverse heterotrophic community ranging from
bacteria to metazoans (Bluhm et al., [2017). These sea ice algae have the potential to initiate pelagic
blooms beneath the ice (van Leeuwe et al., 2022). Historically, it was widely accepted that phytoplankton
production beneath sea ice in the CAO was negligible (Arrigo et al., [2012). Typically, phytoplankton
growth starts mainly within the marginal ice zone in spring, co-occurring with increased solar radiation
and meltwater-induced stratification (Clement Kinney et al.,2020). However, over the past three decades,
increasing evidence has documented the occurrence of under-ice blooms in the Arctic Ocean, challenging
this prevailing view (Strass and Nothig, [1996; Fortier et al., 2002; |Leu et al., 2011; |Assmy et al., 2017).
Furthermore, phytoplankton in the water column below the ice shows significant differences from the
microalgal communities in the sea ice (Hardge et al., 2017). Recent decades have seen a remarkable
increase in the abundance of pelagic phytoplankton in the Arctic Ocean, a direct consequence of ongoing
environmental change, coincident with increasing primary production by more than 50% (Arrigo et al.,
2015; Lewis et al., 2020; Nothig et al., [2020). Emerging evidence highlights the potential of biodiversity to
enhance the stability of ecosystem processes, particularly in the face of dynamic environmental change
(Duftyl, 2009; |Cardinale et al., 2012; Hooper et al.,[2012; Mori et al., 2013). Nevertheless, the underlying
mechanisms driving this phenomenon remain a subject of debate and limited understanding (Loreau and
De Mazancourt, 2013). In natural ecosystems, species interactions are subject to variation as a result of
changes in environmental conditions, which can cause a transition from one stable state to another (Ives and
Carpenter, [2007)). The persence of nearly 2,000 phytoplankton taxa and 1,000 ice-associated protists in the
Arctic (Bluhm et al., 2011)) indicates the relevance of identifying keystone species for ecosystem stability.
These species are crucial for primary production and ecological stability and may serve as indicator species
for monitoring the consequences of environmental change in Arctic marine ecosystems (Frey, [2017; Barber
et al., 2015; Richter-Menge and Farrell, 2013). Recent findings indicate that high temperatures in natural
ecosystems may affect ecological stability, whereas the consequences of alterations to biodiversity remain
variable (Zhao et al., 2023)). Understanding biological and ecological dynamics in a region of ongoing, and
accelerating, change is substantially fostered by novel statistical approaches. Techniques are now accessible
to monitor and investigate ecosystem dynamics, enabling examination of the impact of ecological variables
on structural stability. For instance, co-occurrence networks (CON) determine and visualise how species
coexist within communities or ecosystems (Priest et al., 2023; Ma et al., 2016). Cross-convergence mapping
(CCM) helps to identify causality in complex ecosystems, while energy landscape analysis (ELA) aids in
building ecological models that simulate and predict how ecosystems respond to disturbances or changes
of the environmental parameters (Sugihara et al., 2012; Suzuki et al., 2020, 2021]).

In this study we establish a mathematical methodology to reveal ecological relationships, identify key
species, and develop scenarios of their long-term resilience using time series data. Additionally, we
aim at identifying species that play a crucial role in maintaining stable communities within the Arctic
eukaryotic planktonic food web. Furthermore, we seek to define keystone species that can serve as indicators
for monitoring the consequences of environmental change in Arctic marine ecosystem stability. Using
network analysis techniques like co-occurrence networks and cross convergence mapping, along with
energy landscape analysis, our objective is to understand which factors determine the stability of Arctic
marine ecosystems. This approach will improve our understanding of the effects of climate change on this
ecosystem.
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2 METHODS
2.1 Data
Sampling

Samples were collected with Remote Access Samplers (RAS; McLane) deployed in conjunction with

oceanographic sensors over four annual cycles (01.08.2016 to 31.07.2020) at 30 m depth at the F4 mooring
(79.0118N 6.9648E) of LTER HAUSGARTEN and FRAM in the Fram Strait (Soltwedel et al., [2005]).
The RAS samplers contained 48 sterile bags, each collecting water samples of 500 mL at programmed
sampling events every two weeks. The samples were preserved by adding 700 ul of mercuric chloride
(7.5% wiv) to the bags prior to sampling. The samples collected from 2016 to 2018 reflects the pool of
up to two samples collected one hour apart in two individual bags. Since 2018, we have been pooling
samples taken 7 to 8 days apart from two consecutive weeks. Following RAS recovery, water samples were
filtered onto Sterivex filter cartridges with a pore size of 0.22 ym (Millipore, USA). Filters were stored at
-20°C for later. DNA extraction and sequence analysis (see Supplementary Material - Methods)), resulting
in amplicon sequence variants (ASVs). We normalised raw ASV counts for CON and CCM using the
Hellinger transformation but did not for the energy landscape analysis; hence a different normalisation is
introduced in the framework (Suzuki et al., [2021)).

Mooring and satellite data

Temperature, salinity and oxygen concentration were measured with a CTD-O_2 attached to the RAS.
Physical oceanography sensors were manufacturer-calibrated and processed as described under (von Appen
et al., [2021). Raw and processed mooring data are available at PANGAEA https://doi.org/10.
1594 /PANGAEA. 904565, https://doi.org/10.1594/PANGAEA. 940744, https://do1i.
pangaea.de/10.1594/PANGAEA.941125 and
https://doi.org/10.1594/PANGAEA.946447. For chemical sensors, the raw sensor readouts
are reported. The fraction of Atlantic and Polar Water were computed following (von Appen et al.,|2018])
for each sampling event and reported along with distance below the surface (due to mooring blowdown).
Sea ice concentration derived from the Advanced Microwave Scanning Radiometer sensor AMSR-2
(Spreen et al., 2008) were downloaded from the Institute of Environmental Physics, University of Bremen
(https://seaice.uni-bremen.de/sea-ice—concentration—amsr—eamsrZ2). Sentinel
3A OLCI chlorophyll surface concentrations were downloaded from https://earth.esa.int/
web/sentinel/sentinel-data—-access. For all satellite-derived data, we considered grid points
within a radius of 15km around the moorings. Surface water Photosynthetically Active Radiation (PAR)
data, with a 4 km grid resolution, was obtained from AQUA-MODIS (Level-3 mapped; SeaWiFS, NASA)
and extracted in QGIS v3.14.16 (http://www.ggis.org).

Similar to (von Appen et al., 2021)), we considered eigth environmental variables : mixed layer depth (MLD
in m), water temperature (temp °C), polar-water fraction (PW _frac %), chlorophyll concentration from

in situ sensor (chl_sens ~ g [~1), PAR (i mol photons m~2d 1), Salinity (PSU), oxygen concentration
(02_conc pmol I~1) and sampling depth (depth m).

2.2 Co-Occurrence Network

The abundance of species over the full observation period were converted into temporal profiles by
employing Fourier transformation techniques to time-series signals. These temporal profiles rely on the
14 Fourier coefficients. We chose 14 coefficients because they reflect the majority of observed species
abundance peaks within the four years. To investigate the similarity of temporal profiles between species
pairs, we performed pairwise correlations between the individual temporal profiles, where pairs with higher
Pearson correlation value show also a similar temporal profile. Pairs with at least 0.7 (p<0.05) Pearson
correlation were then visualised in an undirected graph. Only positive correlations were retained to later
focus on co-operative relationships. To identify strongly connected components that reflect the existing
communities of co-occurring species, we applied the Louvain community detection algorithm (Blondel et al.,
2008]) on the entire graph. The entire process was implemented using the CCM and net workx packages in
Python; visualization was performed using Cytoscape with the Edge-weighted Spring-Embedded Layout
(Shannon et al., | 2003). The whole co-occurrence network construction is described in the Supplements
[Supplementary Material - Methods| Co-Occurrence Network.
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2.2.1 Distance between Clusters

To measure the distance between previously defined Louvain communities (clusters), we applied UMAP
on time signals obtained after Fourier decomposition of the abundance data. From this we generated a
three-dimensional embedding space. Centroids for each cluster were calculated within this space (see
ISupplementary Material - Results|Figure S4,S5,56). The network distance between clusters was determined
as the Euclidean distance between their centroids. Subsequently, a distance matrix was created and distances
were rounded to integers, with only significant connections retained in the pruned matrix.

2.3 Convergent Cross Mapping

Convergent Cross Mapping (CCM) identifies potential causal relationships between variables in time series
data. It quantifies how knowledge of the time series of one species allows predicting the time series of an
another species. We first built a CCM network from all pairwise combinations. From this, we extracted the
in- and outgoing edges between nodes that are also connected in the co-occurrence network. We used the
implementation of Normalized Mutual Information (NMI) from https://github.com/polsys/
ennemi by Petri Laarne and the Convergent Cross Mapping by Implementation from Javier, Prince
https://github.com/PrinceJavier/causal_ccm (Javier et al.,2022) to measure the strength
of the causal relationship considering also non-linear relations. We could show that the implementation of
Normalized Mutual Information (NMI) results into similar findings as the original implementation based
on Pearson correlation (Veilleux, |1979; [Sugihara et al.,|2012)) (see [Supplementary Material - Methods)).

Using a permutation approach (Ma et al., 2016) on the connectivity of the network we calculated significance
values for the edge weights, quantifying whether the respective NMI values are greater than expected
for random edges (see [Supplementary Material - Results). The whole CCM network construction and
validation are described in [Supplementary Material - Methods| and [Supplementary Material - Results|
(Convergent Cross Mapping) of the Supplementary Information.

2.3.1 Aggregation on cluster level

We simplify the network of interactions between single species into a network of interactions between
clusters. For this, we assign a weight to a directed edge between two clusters by calculating the arithmetic
mean of normalized mutual information (NMI) of all (directed) edges connecting species belonging to the
respective clusters. This process effectively reduces the number of items in the node cloud, representing
clusters through a unified composite node.

2.4 Energy Landscape Analysis

Energy Landscape Analysis is a method based on statistical physics. From data for many points in time,
which contain species abundance and environmental variables, an energy landscape is reconstructed.
This energy landscape is a function that maps species abundance and environmental variables to an
energy value. In analogy to the potential energy in physics, a (local) minimum of this energy landscape
indicates a stable community state. Here, we reconstruct the energy landscape function based on the
complete time series of ASV abundance together with the available environmental data. We use the
reconstructed function to determine the stability of observed communities, and in particular the seasonal
clusters determined by the co-occurrence network, and we predict the most stable community compositions.
Moreover, because this function also depends on environmental variables, we can also predict how stable
a given community is under perturbed environmental conditions. Understanding the existence and the
nature of stable community states and how they change in response to environmental shifts is crucial for
comprehending the resilience and adaptability of ecosystems in the face of various ecological challenges.
Details of our analysis, including parameters and thresholds applied, are described in in[Supplementary|
IMaterial - Methods| (Energy Landscape Analysis). Our analysis focused on the Top 100 ASVs within each
cluster. Outliers were excluded solely for the purpose of plotting.

2.5 Keystone Species Definition

After collecting attributes from a co-occurrence analysis and distinguishing between mutualistic influence
and occurrence just by chance, we calculated the stable states for different clusters using ELA. This
information was merged to define keystone species. We defined a keystone species as a species with 1)
a significant influence on other organism in the network (significant NMI value), ii) a high centrality
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(closeness) value within its co-occurrence community and iii) present in at least one stable state as predicted
by energy landscape analysis. A significant high centrality value was determined by comparing each
centrality value of a single node to the average centrality values of all nodes from the graph using a one
sided, one-sample t-test with Benjamini-Hochberg correction for multiple testing (similar to (Guimera and;

Nunes Amaral, 2005}, Joyce et al., [2010).

2.6 Season Definition

Here we have defined the seasons as follows, based on the availability of light (PAR), the seasons and the
month.

Month Light Cluster
0O5LW

Summer

Autumn

Figure 1. Cluster definition: The names of the cluster are based on the light availability, categorised in
transition areas between dark and light(T), high light (H) and low light (L) based on the PAR parameter
and the season spring (S), summer(S), autumn (A) and winter (W). Each season consist of three months.
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3 RESULTS

We examined a dataset of 1,019 eukaryotic ASVs and eight environmental parameters compiled over four
years at mooring site F4 in the West Spitsbergen Current (WSC) in Fram Strait. The aim was to characterize
species communities, analysing causal relationships between ASVs and to identify keystone and resilient
species with respect to the impact of various environmental conditions.

To accomplish this, we established a novel computational pipeline, coupling co-occurrence analysis with
convergence cross mapping and energy landscape analysis. This allowed us to identify causal interactions
among species in a co-occurring community and to identify stable community states across different
environmental conditions.

3.1 Co-Occurrence Network reveals seasonal dynamics

The co-occurrence network (CON) comprised five connected components, with a major component
accounting for 99% (905) of all nodes, which are connected by 8,429 edges. In the following, our analysis
is restricted to this major connected component. The resulting undirected graph notably displays a clear
seasonal cyclic pattern (Figure 2] A).

The network was partitioned using the Louvain community detection algorithm (Blondel et al., 2008),
revealing ten discrete community clusters (Figure [2] B) labeled by the season in which the majority of
clusters members had their maximum abundance (Table|[I)). To further group the clusters, we submerge
each three month period to one season. Two clusters were assigned to the transition autumn period (01TA
and 02TA), three clusters were associated with the low light winter period (03LW, 04LW and OSLW) and
three clusters with the transition spring period (06TS, 07TS and 08TS). Finally, clusters 09 and 10 were
allocated to the high light summer season (09HS, 10HS).
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Figure 2. Co-Occurrence Networks and community composition of microeukaryotes at mooring F4
from 2016-08-01 to 2020-07-31.

Each network node represents an ASV, and each edge represents a similar temporal pattern of two ASVs.
The edge weights correspond to the Pearson correlation coefficients determined from the comparison of
the individual ASV temporal profiles. ASVs are connected if the coefficient is » > 0.7, p < 0.05. A: Node
color reflect the month in which the ASV exhibit maximal abundance, calculated from the maximum
abundance mode for each year ranging from January to December. B: In this representation, nodes are
coloured based on the community membership that was determined by the Louvain community detection
algorithm. C: The relative abundance of the top 10 taxonomic classes by cluster CHS’ denotes high light
summer clusters, 'LW’ represents low light winter clusters, *TS’ corresponds to transition spring clusters,
and "TA’ indicates transition autumn). The percentage of relative abundance is expressed, with colour
shades illustrating the assignment to auto- (green), mixo- (orange) or heterotroph (purple) .
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Figure 3. Convergence Cross Mapping Networks of microeukaryotes at mooring F4 from 2016-08-01
to 2020-07-31.

Each node in the CCM network represents an ASV, and each edge represents the causal influences. The
edge weight corresponds to the normalized mutual information determined from the comparison of the
individual ASV and their predicted representation in the shadow manifold. ASVs are connected if the
smoothed p-value of the weight is p < 0.05. A: Node color reflects the month in which the ASV exhibits
maximal abundance, calculated from the maximum abundance mode for each year ranging from January
to December. B: In this representation, nodes are coloured based on the community membership that
was determined by the Louvain community detection algorithm. "HS’ labels denote high light summer
clusters, 'LW’ represents low light winter clusters, "TS’ corresponds to transition spring clusters, and *TA’
indicates transition autumn clusters. C: The normalised mutual information aggregated across the edges
between the clusters, visually represented by thickness of the arrows corresponding to their respective
values. Corresponding colour visually represent the clusters. D: Interaction analysis between taxonomic
clusters. For each of the ten clusters, the interactions between ASV groups are examined at class level,
considering ’Syndiniales’, ’Dinophyceae’, *Bacillariophyta’ and "MAST’. The cluster assignments are
marked by different colors. The thickness of the arrows denotes the strength of the interaction, while the
shapes represent the various taxa groups at the class level.
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Table 1. Co-occurrence network clusters. Ten labeled clusters with their assigned season based on month
in which the ASV exhibit maximal abundance, calculated from the maximum abundance mode (majority
vote) for each year ranging from January to December, the number of ASVs per cluster, and the number of
significant edges in network graph.

| Cluster | MaxMonth | Season | Number of ASVs | Number of edges |

01TA 9 Autumn 168 1024
02TA 11 Autumn 20 78
03LW 12 Winter 75 509
04LW 2 Winter 45 166
O5SLW 12 Winter 73 466
06TS 3 Spring 50 382
07TS 3 Spring 154 3062
08TS 4 Spring 62 260
09HS 6 Summer 83 492
10HS 7 Summer 175 1113

3.2 Community composition

We explored the taxonomic community per cluster to explore the seasonal associations of each specific
taxonomic group. Alpha biodiversity, measured by Shannon entropy, decreases from summer through
autumn and winter, gradually decreasing towards spring (Supplementary Material - Results| Figure ST).
The beta biodiversity, measured by Bray-Curtis distance (Supplementary Material - Results| Figure S2),
between the winter and spring clusters (O3LW, 04LW, OSLW and 06TS) is notably lower than the most
other scores, except that between 01TA and 10HS. Cluster 02TA exhibits on average a higher beta diversity
compared to all other clusters, which can be explained by the fact that 02TA is the smallest cluster in terms
of the number of ASVs (Supplementary Material - Results| Figure S2).

In our study, we found distinct taxonomic compositions within various clusters. Photosynthetic organisms
like Ochrophyta and Haptophyta dominate the light phases (Oldenburg et al., 2024). In late spring (cluster
08TS) phototrophs make up more than 75% of ASVs, while during summer (clusters O8TS and 09HS)
and early autumn (10HS) they still comprise over 25% of all ASVs. Mixotrophs are highly abundant
in most clusters, while they clearly dominate during the late autumn transition (cluster 02TA). Through
the complete dark period (clusters 03LW, 04LW and 0SLW) as well as in early spring (06TS and 07TS),
heterotrophs, particularly Syndiniales, are dominant wiht a clear peak of abundance (more than 90% of
ASVs) in mid winter (cluster 04LW). During early spring (cluster 06TS) when sunlight appears again,
mixotrophs increase in their abundance, highlighting the nuanced trophic dynamics during the annual
cycle. This comprehensive analysis at taxa level provides insights into the composition of these clusters,
shedding light on the prevalence and distribution of specific classes within distinct seasonal communities

(Figure 2] C).
3.3 Convergent Cross Mapping identifies Community Interactions

Mutual influence between ASVs was estimated via Convergent Cross Mapping (CCM). This method
allows predicting causal relationships within and between seasonal clusters based on the underlying ASV
dynamics. We project the weights derived from Convergent Cross Mapping (CCM) onto the co-occurrence
network, resulting in a directed graph consisting of 16,858 directed edges and 905 nodes. Here, a directed
edge indicates that knowledge of the dynamics of the source node allows for prediction of the dynamics of
the target node.

A comparative analysis of edge weights within the CCM network was conducted. The connectivity
derived from the co-occurrence network was compared with theoretical edge weights and randomly
permuted connections. To perform this comparison, a two-sided Kolmogorov-Smirnov test was used.
The theoretical edge weights were derived from all possible connections between pairs of nodes in the
co-occurrence network, excluding the existing true links (Section [3.3)). The findings clearly show that there
is a stronger mutualistic influence (higher NMI values) between co-occurring species compared to random
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or to unconnected nodes (Supplementary Material - Results| Figure S8 and S9 and Table S1 and S2). The
significance level was set at a nonparametric p-value of less than 0.05 calculated similar to|Ma et al.| (2016).
Trimming edges with non-significant NMI values (Supplementary Material - Results|Figure S10), produced
a network graph consisting of 3,654 edges and 637 nodes, divided into 14 disconnected components, with
the largest module encompassing 603 nodes (Fig. 3| A,B).

Of the total 13,204 edges eliminated during trimming, 18.79% represent connections between species
reaching their peak abundance in March. This selective removal has a profound impact on the network
structure, (Figure 3] A). In contrast to the co-occurrence network, the causal interaction network “breaks”
during spring season, as demonstrated in Figure 3| A (months March and April). The winter cluster 05LW
and the spring cluster 06TS collapse (see Figure |3| B), meaning that nodes disintegrate and large parts
of the clusters are no longer connected to the rest of the network. This suggests that the corresponding
connections in the co-occurrence network are not a result of causal interactions, but rather result from other
factors, possibly caused by the prevailing environmental conditions. Analysis of the betweenness centrality
reveals that species of Picozoa, Leegaardiella, Acantharea, Dinophyceae, MAST-1, and Syndiniales serve
as essential hub nodes throughout the seasonal cycle in the network, highlighting their crucial function in
maintaining network stability.

3.4 Community Interaction

Analyzing cluster interactions revealed distinct patterns. We measure distance of clusters by “network
distance”, a metric designed to evaluate the separation between clusters. This measure is computed by
assessing the distance between the centroids of clusters within the dimension-reduced UMAP embedding
space (Supplementary Material - Results|). Distances between clusters thus determined range between 1 and
7. Proximate clusters (a network distance of two to four), exhibited notably higher connectivity compared
to clusters situated further apart (distance five to eight). Figure |3| C provides a visual and quantitative
representation of these interactions. Subsequent analysis revealed a prevalence of connections at a network
distance of two (44% of total connections), followed by distances of three (29% of total connections), and
four (26% of total connections) (Supplementary Material - Results| Figure S4,S5,S6).

The average effects of two linked clusters revealed that summer has a greater influence on winter than the
inverse association. This suggests that predicting community composition in winter, based on the preceding
summer community, is more reliable than vice versa (Figure [3|C).

For each seasonal cluster, ee investigate in detail the mutual influence of four taxonomic groups selected
from the top ten classifications (Figure [2] C): Bacillariophyta, Syndiniales, Dinophyceae, and MAST
(MArine STramenopile; all MAST-X variants were classified under MAST). Bacillariophyta primarily
comprises photo-autotrophic species (Mann et al., 2017), while Syndiniales include parasitic species, most
of them characterized by their heterotrophic lifestyle (Suter et al.,|2022). Dinophyceae are known for their
diverse array of species and ecological roles, from symbionts to planktonic autotrophs (Lin et al., 2022).
MASTs are heterotrophic protists and contribute substantially to protist abundances in the ocean. They play
a crucial role in marine ecosystems and are one of the dominant eukaryotes in the Arctic Ocean (Thaler
and Lovejoy, 2014 |Lin et al., [2022).

These four taxonomic groups are primarily distinguished by their unique lifestyles and ecological roles
as primary producers, consumers, parasites, or endosymbiotic interactors. These distinctions form the
basis for our analysis of their contributions to the ecosystem. Hence, by summarizing the members of each
group into single nodes, we analyzed their cross-interactions using the information obtained from the CCM
network.

The strength and direction of interactions between these taxonomic groups varied over the annual cycle
(see Figure 3] D). Notably, during the spring-summer and summer-fall transition periods, clusters 02TA
and 06TS displayed fewer and weaker connections compared to other clusters. This suggests dynamic
changes in community structure during these periods, with ecological interactions between individual
species either yet to be established or no longer present. At the start of the polar night (cluster 03LW), we
detected the most substantial influence from the dinoflagellates (shown by the thickest arrow in Figure [3| D)
to the pico-eukaryotic heterotrophic groups Syndinales and MAST, suggesting a crucial ecological role of
dinoflagellates for the establishment of the winter community. Overall, the strength of the links between
the taxonomic groups decreases as the polar night progresses and has its minimum at the peak of the polar
night in December (Cluster 0SLW). The lack of strong connections between taxonomic groups during
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the deepest polar night indicates that there are only a few ecologically significant interactions within the
eukaryotic microbial community.

During polar day, as the sunlight becomes more intense, the connections between taxonomic groups become
stronger and reach their peak during the zenith of the polar day (Cluster 10HS). Notably, Bacillariophyta
(i.e. diatoms) showed the most robust connections during the polar day, owing to their role as predominat
phototrophic biomass producer and form the foundation of the marine food web. However, towards the end
of the growth period, the impact of MAST on Dinoflagellates becomes more pronounced (as shown by the
thicker arrow), indicating an essential involvement of this pico-eukaryotic heterotroph in the ecosystem
during the later growth phase. This is also a signature of the transition from primary production to recycling.

3.5 Community and Environment Interactions

For a more detailed understanding of which environmental conditions align with seasonal community
clusters, we conducted a correlation analysis (Figure ). Cluster 10HS displayed a significant positive
correlation with Photosynthetically Active Radiation (PAR) (0.67) and temperature (0.49), but a significant
negative correlation with Mixed Layer Depth (MLD) (-0.61). This cluster thrives in environments with high
light and temperature levels but less deeper mixed layers. Cluster 03LW exhibits the opposite behavior,
showing a moderately positive correlation with MLD (0.23) and polar water fraction (PW _frac) (0.24)
while displaying an inverse relationship with PAR and temperature (-0.35 and -0.36, respectively).

3.6 Energy Landscape Analysis determines stability of microbial communities

We performed energy landscape analysis to study how stable the observed communities are under the
prevailing environmental conditions. We focus on four clusters representing the four seasons (01TA for
autumn, 03LW for winter, 08TS for spring and 10HS for summer). For each of these clusters, we determined
the energy landscape, which is a highly complex function that depends on the abundances of all ASVs
and the environmental parameters (see Figure[S)). To approximately visualise this landscape, we plot an
interpolated smooth surface as a function of the two most significant NMDS dimensions. In addition, for
each time point in the time series data, we evaluate the energy landscape function and represent each energy
value by a point in the three-dimensional diagram, where the z-axis represents the energy value.

For the landscape reconstructed for cluster 01TA (Figure [5] A) the communities observed in autumn
display lower energy values than communities observed in other seasons. This demonstrates that the
autumn communities exhibit a high stability. For the winter cluster 03LW (Figure [5|B), the picture is less
clear. Whereas the interpolated energy landscape has a more pronounced minimum, the energy values
of the observed communities are not clearly separated. As a tendency, the summer communities have a
high energy value, demonstrating that summer communities are unstable in winter conditions. However,
spring and autumn communities exhibit comparable energy values as winter communities, which indicates
that stable community structures in winter conditions are not clearly defined. This trend is even more
pronounced for the spring cluster 08TS (Figure [5| C). Here, the interpolated energy landscape shows a
broad and shallow minimum, and the energy values of the all observed communities, regardless of the
season in which they are found, are very similar. This suggests that under spring conditions community
structures are not very stable and that community compositions show a high plasticity. As a consequence,
many different communities may exist under spring conditions. This explains the observation of the CCM
analysis, which demonstrated that knowledge of the composition of winter communities does not allow
to predict the composition of spring communities. Finally, the energy landscape in summer (Figure [5| D)
shows a pronounced minimum, in which the observed summer communities are also found. This indicates
that summer conditions support well-defined community structures which exhibit a high degree of stability.
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Figure 4. Environmental data and their correlation Louvain clusters. A): Environmental data for
F4 from 2016-08-01 to 2020-07-31. The x-axis represents the time period, while the y-axis indicates
the following parameters: Mixed Layer Depth (MLD) [m], Temperature [°C], Chlorophyll Fluorescence

[ g/L], Polar Water Fraction [%], Photosynthetically Active Radiation (PAR) [x mol photons/mQ/d],
Salinity [Practical Salinity Units (PSU)], Oxygen Concentration [¢ mol/L], Depth of measurement [m].
B): Correlations between environmental parameters and seasonal Louvain clusters. The displayed
chart shows the environmental parameters from section a) in relation to seasonal clusters. These clusters
are characterized by the cumulative relative abundance of ASVs. Cluster labels include 01TA’, ’02TA’,
"03LW’, "04LW’, OSLW’, "06TS’, 07TS’, 08TS’, "09HS’, and *10HS’, where "TA’ denotes transition
autumn clusters, LW’ represents low light winter clusters, *TS’ pertains to transition spring clusters, and
"HS’ signifies high light summer clusters. The colour gradient used in the heatmap illustrates the strength of
the correlation visually, with blue shades indicating negative correlations and red shades indicating positive
correlations. It is worth noting that a significance mask has been applied to show only correlations that are
statistically significant.
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Figure 5. Energy landscapes depicting community structure dynamics. The plots display the
reconstructed energy landscape on the NMDS surface for a cluster of each season. Community states,
which are defined by ASV compositions and occupy lower-energy regions, indicate higher stability within
the energy landscapes. A): The transition autumn cluster 01TA. B): The low light winter cluster 03LW. C):
The transition spring cluster O8TS. D): The high light summer cluster 10HS. Environmental landscapes
over the NMDS surface are reconstructed for each of the four example clusters. The z-axis displays the
energy, while the x- and y-axes display the first and second NMDS dimensions. The landscape contours
were estimated using a smoothing spline approach with optimized penalty parameters.
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3.7 Characterisation of microeukaryote keystone species in the Fram Strait

According to our definition (Section a keystone species is highly connected in the co-occurrence
network, has a high influence on other species, and appears in a stable community. Applying this definition
(see Section [2.5|for details) resulted in 19 keystone species across the complete annual cycle within the
measured environmental profile (Table [2). Nine of these keystone species are associated with summer
clusters (seven and two are found in clusters 09HS and 10HS, respectively), five with winter (four and one
in the winter clusters 03LW and 04LW, respectively), four are associated with autumn (cluster 01TA) and
one with spring (cluster 07TS). Remarkably, the nine keystone species from the summer clusters belong
to the taxonomic groups Ochrophyta (5), Dinophyceae (2), and Ciliophora (2). These groups include
Fragilariopsis, Pseudo-nitzschia, and Thalassiosira, which are known to contribute significantly to the
biomass during this season (Von Quillfeldt, 2000) and to serve as prey for higher trophic levels, including
microzooplankton (Cleary et al., 2016} |Yang et al.,|2015). Notably, Fragilariopsis and Thalassiosira exhibit
the highest abundance within this cluster. The keystone species in the winter clusters comprise Syndiniales
(3), Radiolaria (1), and Dinophyceae (1), autumn cluster keystone species are Ochrophyta (2), Chlorophyta
(1) and Syndiniales (1) and the spring keystone species belongs to Radiolaria. The fact that we found only
a single keystone species for the spring cluster indicates that communities in this period are most variable,
which was also suggested by the energy landscape analysis (Section [3.6). These 19 keystone species reflect
all major ecological roles including primary production, consumption, and parasitic interactions. Notably,
the emergence of Chlorophyta as a keystone species during the beginning of autumn suggests a shift in
primary production from Ochrophyta to Chlorophyta, species that may prefer colder temperatures (Tragin
and Vaulot, 2018)) and are better adapted to nutrient limitation (Maat et al., 2014)).

Table 2. ASYV identified as potential keystone species for clusters 10HS, 06TS, 03LW and 01TA. The
taxonomic classifications, clusters, raw abundance, proportion of total raw abundance, cluster abundance,
and proportion of cluster raw abundance are presented in summary form over the 4-year observation
period. The column, significance, indicates if this ASV (Nodes) has at least on significant CCM connection
measured in normalized mutual information.

| Nodes | Phylum | Genus | Species | Cluster | relAbund | Closeness |
euk_asvl2 | Ochrophyta Fragilariopsis Fragilariopsis uc 10HS 0.009 0.356
euk_asv35 | Ochrophyta Fragilariopsis Fragilariopsis_sublineata 10HS 0.007 0.345
euk_asv24 | Ochrophyta Pseudo-nitzschia Pseudo-nitzschia_sp. 10HS 0.006 0.312
euk_asv28 | Ochrophyta Thalassiosira Thalassiosira uc 10HS 0.006 0.317
euk_asv54 | Dinoflagellata | Gyrodinium Gyrodinium_fusiforme 10HS 0.006 0.308
euk_asv52 | Dinoflagellata | Peridiniales uc Peridiniales uc 10HS 0.005 0.345
euk_asv125 | Ciliophora Dadayiella Dadayiella_ganymedes 10HS 0.003 0.356
euk_asvI15 | Ochrophyta Mediophyceae uc Mediophyceae uc 09HS 0.004 0.284
euk_asvI86 | Ciliophora Strombidiidae_H uc | Strombidiidae_H uc_sp. 09HS 0.002 0.313
euk_asv5 Radiolaria RAD-Cuc RAD-C uc_sp. 07TS 0.014 0.307
euk_asv21] | Dinoflagellata | Dino-II-10-and-11 uc | Dino-II-10-and-11 uc_sp. 04LW 0.009 0.291
euk_asv87 | Radiolaria RAD-B-Group-IV uc | RAD-B-Group-IV uc_sp. 03LW 0.002 0.338
euk_asv198 | Dinoflagellata | Dino-II-6 uc Dino-II-6 uc_sp. 03LW 0.001 0.314
euk_asv213 | Dinoflagellata | Gymnodinium Gymnodinium_sp. 03LW 0.001 0.309
euk_asv780 | Dinoflagellata | Dino-I-5 uc Dino-I-5 uc_sp. 03LW 0.000 0.299
euk_asv163 | Dinoflagellata | Dino-I-1 uc Dino-I-1 uc_sp. 0ITA 0.003 0.368
euk_asv118 | Chlorophyta | Chloroparvula Chloroparvula_pacifica 01TA 0.002 0.369
euk_asv330 | Ochrophyta Pelagophyceae uc Pelagophyceae uc_sp. O1ITA 0.002 0.326
euk_asv401 | Ochrophyta Aureococcus Aureococcus_anophagefferens | 01TA 0.001 0.315

3.8 Predicting community stability in altered environments

One critical ecological question is how marine microbial communities change if they experience different
climatic conditions. We employ energy landscape analysis to assess the stability of observed communities
under environmental conditions different to those they usually experience. This is done by evaluating the
energy landscape function that resulted from the ELA analysis (see Section [2.4) for given communities and
environmental parameters. First, we test the reliability of this approach by evaluating the communities of
the summer (10HS) and winter (03LW) clusters under typical Atlantic summer or winter days. Here, we
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defined “typical” Atlantic days by taking the averages of the environmental parameters during a three-month
period (see Supplementary Material - Methods| Table SO). The energy values remain almost unchanged if
we evaluate the summer cluster communities in a typical summer day and the winter cluster communities in
a typical winter day (see [Supplementary Material - Results|Figure S13). This is to be expected, because the
ASVs in the summer clusters assume their most stable community configuration during the summer months,
and likewise for the winter cluster. When evaluating the cluster communities under the opposite conditions,
i.e. the summer cluster communities with environmental parameters representing a winter day and vice
versa, the energy values are drastically changed (see [Supplementary Material - Results|Figure S13). Those
communities of the summer cluster, which were still present in the winter, exhibit an increased stability
(lower energy) than those present in summer. The Atlantic projection panel (Fig.[Supplementary Material 1
Figure S13 (C) and (E)) display almost opposite oscillatory time courses. Placing communities of
the winter cluster in summer conditions has a more differentiated effect. The communities found in winter
2018 and 2020 are highly unstable in this environment, while communities found in summers appear to
exhibit an increased stability. This observation allows speculating that some ASVs of the winter cluster
might even benefit from warmer summer conditions.

We next investigate a scenario that might result from future temperature increase and a continued melting
of the ice caps. Ice-free summers in the Arctic will allow Atlantic water, and with this Atlantic microbial
communities, to enter polar regions. We therefore analyze how the stability of the communities found in the
summer (10HS) and winter (03LW) clusters changes if they experience typical Arctic conditions. For this,
we defined “typical” Arctic summer and winter days by selecting extreme environmental parameter values
from the central Arctic (see [Supplementary Material - Methods| Table SO). Subsequently, we evaluate the
energy landscape functions as above with the respective environmental parameters. Interestingly, simulating
communities of the summer cluster under Arctic summer or winter conditions results in similar energy
values as placing these communities in Atlantic winter days. Communities found in summer are highly
unstable whereas communities present in winter show, as a tendency, increased stability (Supplementary|
Material - Results| Figure S13 E,G,I - left panel, bottom three), indicating that summer cluster communities
will face challenges to adapt to Arctic conditions. When comparing the ASVs, which are found in at least
one community configuration predicted as stable, we observe that ASVs stable in Arctic environments
are almost completely different from those stable in their natural (Altlantic) environment (Supplementaryl|
IMaterial - Results| Figure S14, Table S9 and S10). Interestingly, one ASV predicted to be stable under
Arctic conditions is the phototroph Chaetoceros brevis, which agrees with the fact that Chaetoceros
species are preferentially found under ice (Booth and Horner, [1997)). To estimate the importance of the
ASVs identified to be stable under natural and Arctic conditions, respectively, we determine their average
closeness centrality (Supplementary Material - Results| Figure S15). Clearly, ASVs stable in their natural
conditions (and in Atlantic conditions) display a significantly (p-value = 6x10~°) higher centrality than
average, while those predicted to be stable under Arctic conditions show a reduced centrality. Likewise,
the average NMI score for outgoing edges, indicating the mean influence of an ASV on other ecosystem
members, is higher than average for ASVs stable under natural (and Atlantic) conditions, but lower than
average for ASVs predicted to be stable under Arctic conditions. The reduced connectivity and weaker
influence on other ecosystem members suggests that species of the summer cluster, when exposed to Arctic
conditions, will play a less important role in determining ecosystem dynamics and stability.

Simulating the effect of Arctic conditions on winter cluster communities reveals that neither communities
present in summer nor winter display a pronounced stability. The only exception appear to be communities
during spring 2020. Remarkably, this period was characterized by unusually low temperatures (Figure 4| A).
In general the ASVs identified as members of stable communities in the original conditions, Altlantic
winter, or Arctic winter show a great similarity, with the majority (17 of 36) found in stable communities
under all three conditions. These observations suggests that communities of the winter cluster might easily
adapt to colder Arctic conditions, which is also supported by the observation that closeness centrality and
averaged NMI scores (for outgoing edges) are almost unchanged for these three groups of organisms.

4 DISCUSSION

In this study, we developed a new method for investigating ecological time series data based on 18S
metabarcoding derived abundance information, by combining three data analysis methods: Co-Occurrence
Networks (CON) (Stephens et al.,[2009), Convergent Cross Mapping (CCM) (Sugihara et al.,|2012), and
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Energy Landscape Analysis (ELA) (Suzuki et al., 2021)). By integrating three methodological approaches,
we aimed to identify and characterize keystone species in the West Spitsbergen Current across different
seasons, environmental parameters and in relation to other organisms. In addition, we examine how these
keystone species are affected by changing environmental conditions, providing insights into potential
responses to Arctic warming and Atlantification. We also investigate how different taxa groups affect other
taxa groups, and how their effects vary with seasonal shifts and environmental factors.

We generated a co-occurrence network using a novel similarity measure based on Fourier decomposition.
This results in a co-occurrence network in which species cluster together, which occurred at similar times
of the year. This approach differs from previous methods that rely directly on the raw time series signals
(Ma et al., 2016; Lima-Mendez et al., 2015; Ma et al., 2020). By utilizing Fourier decomposition, we
generated comprehensive temporal profiles for each ASV, providing a more nuanced understanding of co-
occurrence dynamics. Consequently, the constructed network accurately reflects the temporal dynamics of
each measured species’ abundance, all in all revealing a clear seasonal cycle (see Figure [2). The taxonomic
composition of the communities defined by the partitioning of the co-occurrence network is a reflection
of the prevailing food-web (Dunne et al., 2002): it starts in spring (08TS) with photosynthetic primary
producers such as Bacillariophyta and continues through the summer ( 09HS,10HS), while mixotrophs
gain the upper hand in autumn (01TA,02TA, 03LW), leading to almost exclusively heterotrophic groups
in winter dominated by the heterotrophic Syndiniales (04LW,05LW,07TS). It is notable that the spring
clusters were taxonomically different from the other clusters (Supplementary Material - Results| Figure
S2). This diversity can be explained by the rapid environmental changes during this period. Early spring
clusters have high connections to winter clusters and are dominated by mixotrophic Dinophyceae, while
late spring clusters (02TA) show more similarities to summer clusters (Stoecker et al., 2017). The "late”
spring cluster (O8TS) reflects a bloom of primary producers with Ochrophyta (especially Bacillariophyta
species), the dominant family (Obertegger et al., [2022). It is remarkable that Dinophyceae are present
in almost all seasons, with the exception of the low light period, which is predominantly occupied by
heterotrophic Syndiniales. This indicates that these mixotrophic organisms play a crucial role particularly
in the intermediate phases of spring and autumn (Jassey et al., 2015} Bruhn et al., 2021} |Mitra et al., 2014)).

We used Co-Occurrence Networks (CON), Convergent Cross Mapping (CCM), and Energy Landscape
Analysis (ELA) to analyze the complex dynamics of Arctic microbial communities. According to traditional
ecological theory, keystone species are often defined as those with the most biomass. It should be noted
that there are different seasonal progressions due to the annual cycle (von Appen et al., 2021; Wietz et al.,
2021). However, this subjective evaluation does not necessarily indicate a central role in the ecosystem.
Here, we use network analysis methods to define keystone species as those with the most significant role
in the interaction network. This approach allows us to identify keystone species not only in summer but
also in winter and other seasons. Our research has shown that indeed some of the keystone species show a
high abundance, for example Fragilariopsis or Chaetoceros. However, in addition to these common species,
there are also other species that may not have been detected using more traditional methods.

However, temporal co-occurrence does not imply interactions. To understand the causal influence between
species we apply Convergent Cross-Mapping to derive a network with directed edges, whose weight
indicate the strength of influence between ASVs. In general, most of the directed inter-cluster links are
found between neighboring clusters. Our analysis revealed that by far not all species pairs, which are
present at the same time, actually influence each other (see Fig.[3)). A striking example is between clusters
06TS and OSLW, which were closely connected in the CON, while there are hardly any connections in the
CCM network (see Fig.[3)). This co-occurrence without apparent causal connections could be explained
by unique environmental conditions shaping both of these clusters, such as polar water influx. Even
more pronounced is the separation of cluster 03LW, mainly heterotrophs, and O8TS, mainly phototrophs,
which are tightly connected by co-occurrence but show not a single causal link in the CCM network .
The organisms in these two clusters are primarily influenced by environmental parameters, particularly
light. Additionally, these photosynthetic and heterotrophic organisms are sometimes preyed upon by the
same predators (Zhao et al., 2022) such as Syndiniales. This explains the simultaneous occurrence and
similar seasonality of these phytoplankton taxa but indicates that they do not have a direct influence on
each other. The lack of mutual influence during the transition from polar night to day is clearly visible
in the CCM network (see Fig. [3). We interpret this gap between winter and spring clusters as a *winter
reset’ (Supplementary Material - Results| Figure S11). This phase is characterized by the predominance
of parasites and Dinophycea. With the emergence of light, a new period of growth of primary producer
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communities begins, shaped by the prevailing environmental conditions. These conditions determine which
species will prevail in the future. By reflecting causal interactions between species, the CCM network even
stronger reflects the cyclic microbiome structure than the co-occurrence network. The cycle begins with
photoautotrophs (cluster O8TS) in early spring and ends with the hetero- and mixotrophs (cluster 01TA)
in late autumn. As light intensity decreases, mixotrophs become more prevalent than photoautotrophs,
leading to a shift towards a heterotrophic lifestyle and a transition from carbon fixation to consumption.
This transition into a low light period is characterized by parasitic species, suggesting an ’eat and be
eaten” scenario. The causal links from fall to winter are significantly less than between other seasons
(except winter to spring). All of these causal links are related to Syndiniales, which can be explained by the
parasitic lifestyle of Syndiniales, foraging upon mixotrophic species that are active during the transition
autumn phase.

We also contrast our approach with two previous studies using Cross Convergence Mapping. While our
approach focuses on the specific interactions within and between clusters, Ushio et al. provides a more
general framework for predicting community diversity based on interaction capacity, temperature and
abundance. The emphasis on mechanistic explanations for observed ecological patterns distinguishes
the two approaches. Our methodology provides a comprehensive understanding of keystone species in a
specific context, while Ushio’s study provides broader insights into the factors influencing community
diversity in different ecosystems. Both studies use similar techniques such as correlation and CCM (Ushio),
2022). Fujita’s study used controlled experiments with six isolated community replicates, subjected to
diverse treatments over 110 days. Regarding Takens’ Theorem and Convergence Cross Mapping, Fujita
et al. used Simplex projection to forecast population size, while our study utilized pairwise Convergence
Cross Mapping on ASV time series signals within clusters to predict potentially keystone species (Fujita
et al., 2023)).

The reconstructed landscape for autumn cluster 01TA shows that autumn communities are highly stable.
However, for the winter cluster 03LW, the energy values of observed communities lack clear separation,
making the situation less straightforward. Communities of the winter clusters which are still present in
summer tend to display high energy values, indicating instability in winter conditions. The spring cluster
08TS shows an even more notable trend, indicating that community structures lack stability and exhibit high
plasticity under spring conditions (Supplementary Material - Results| Figure S12). This variability results
in the coexistence of numerous community compositions during spring. This observation aligns with the
findings of the CCM analysis, which highlight the inability to predict spring community compositions based
on winter data. Finally, the analysis of the energy landscape for summer communities shows a distinct
minimum, indicating well-defined community structures and high stability under summer conditions

(Figure [3)).

Taxonomically, the summer keystone species were mainly composed of five types of Ochrophyta, two
types of Dinophyceae, and two types of Ciliophora. The most abundant species within this cluster were
Fragilariopsis and Thalassiosira. In contrast, the winter keystone species consisted of three Syndiniales, one
Radiolaria, and one Dinophyceae. The autumn cluster comprised two Ochrophyta, one Chlorophyta, and
one Syndiniales. No keystone species were found for the spring period, indicating that it may be the most
variable and selective season, as supported by the energy landscape analysis. Keystone species represent the
ecological roles played by network members in primary production, consumption, and parasitic interactions.
During the beginning of autumn, Chlorophyta emerges as a keystone species, indicating a shift in primary
production from Ochrophyta to Chlorophyta. This shift may be explained by the preference of Chlorophyta
for colder temperatures and a better adaptation to nutrient limitation.

Energy landscape analysis was used to assess the stability of observed communities when exposed to
environmental conditions different from their typical settings. Our results showed that communities
maintained stable configurations during typical summer (for communities of the summer clusters) or winter
(for winter clusters) days, indicating their adaptability to seasonal variations. However, significant changes
in energy values occurred when communities were assessed under opposing conditions, suggesting diverse
responses to environmental shifts. Subsequent simulations of typical Arctic conditions revealed interesting
patterns within the microbial communities. The summer cluster communities showed a clearly decreased
stability under Arctic conditions, in contrast to the winter cluster communities, which displayed a tendency
towards increased stability. This suggests that winter communities may have a greater capacity to adapt to
colder Arctic conditions compared to their summer counterparts (Supplementary Material - Results| Figure
S15). The Arctic projection notably harbored a higher number of unique species, indicating varied responses
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to environmental changes. Notably, the absence of shared keystone species among different datasets in the
summer cluster 10HS suggests a lower robustness of Atlantic ASVs to environmental shifts, with keystone
species candidates exhibiting variability. Under Atlantic environmental conditions, the closeness centrality
of the summer cluster 10HS increased more compared to the Arctic setup. In the winter cluster community
03LW, closeness centrality is very similar in both projections (Supplementary Material - Results| Figure
S15).

The results presented in this study not only have practical implications for ecosystem management
by improving our understanding and ability to predict change in complex ecological systems but also
provide systematic and mechanistic insights into the mechanisms responsible for shaping and maintaining
spatiotemporal heterogeneity in ecosystem composition (Suzuki et al., 2020).
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