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ABSTRACT 

Objective: Oncogenic “hotspot” mutations of KRAS and GNAS are two major driver alterations in 

Intraductal Papillary Mucinous Neoplasms (IPMNs), which are bona fide precursors to pancreatic ductal 

adenocarcinoma. We previously reported that pancreas-specific KrasG12D and GnasR201C co-expression 

in p48Cre; KrasLSL-G12D; Rosa26LSL-rtTA; Tg (TetO-GnasR201C) mice (“Kras;Gnas” mice) caused development 

of cystic lesions recapitulating IPMNs. Here, we aim to unveil the consequences of mutant GnasR201C 

expression on phenotype, transcriptomic profile, and genomic dependencies. 

Design: We performed multimodal transcriptional profiling (bulk RNA sequencing, single cell RNA 

sequencing, and spatial transcriptomics) in the “Kras;Gnas” autochthonous model and tumor-derived cell 

lines (Kras;Gnas cells), where GnasR201C expression is inducible. A genome-wide CRISPR/Cas9 screen 

was conducted to identify potential vulnerabilities in KrasG12D;GnasR201C co-expressing cells. 

Results: Induction of GnasR201C – and resulting G(s)alpha signaling – leads to the emergence of a gene 

signature of gastric (pyloric type) metaplasia in pancreatic neoplastic epithelial cells. CRISPR screening 

identified the synthetic essentiality of glycolysis-related genes Gpi1 and Slc2a1 in KrasG12D;GnasR201C co-

expressing cells. Real-time metabolic analyses in Kras;Gnas cells and autochthonous Kras;Gnas model 

confirmed enhanced glycolysis upon GnasR201C induction. Induction of GnasR201C made KrasG12D 

expressing cells more dependent on glycolysis for their survival. Protein kinase A-dependent 

phosphorylation of the glycolytic intermediate enzyme PFKFB3 was a driver of increased glycolysis upon 

GnasR201C induction.  

Conclusion: Multiple orthogonal approaches demonstrate that KrasG12D and GnasR201C co-expression 

results in a gene signature of gastric pyloric metaplasia and glycolytic dependency during IPMN 

pathogenesis. The observed metabolic reprogramming may provide a potential target for therapeutics 

and interception of IPMNs. 

(248 words) 
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SUMMARY 

What is already known on this topic  

• Activating “hotspot” mutations of KRAS and GNAS are found in a majority of Intraductal Papillary 

Mucinous Neoplasms (IPMNs). 

• Expression of mutant KRAS and GNAS drives development of IPMN-like cystic lesions in the 

murine pancreas that eventually progress to pancreatic ductal adenocarcinoma (PDAC). 

 

What this study adds 

• Mutant GNAS and the resulting aberrant G(s)alpha signaling drives a transcriptional signature of 

gastric (pyloric type) metaplasia in IPMNs with mucin production. 

• Aberrant G(s)alpha signaling enhances glycolysis via protein kinase A-dependent phosphorylation 

of the glycolytic enzyme PFKFB3. 

• Enhanced glycolysis in KRAS;GNAS-mutated IPMN cells is validated via multiple orthogonal 

approaches in vitro and in vivo and represents an actionable metabolic vulnerability. 

 

How this study might affect research, practice or policy 

• The present study provides mechanistic insight into how aberrant G(s)alpha signaling alters the 

biology of Kras-mutant pancreatic epithelial neoplasia through metaplastic and metabolic 

reprogramming. 

• Targeting glycolysis in IPMNs may represent both a therapeutic avenue as well as an opportunity 

for intercepting progression to invasive cancer.  
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Introduction 

The multistep progression of pancreatic ductal adenocarcinoma (PDAC) occurs via one of two bona fide 

precursor pathways, either via microscopic pancreatic intraepithelial neoplasias (PanINs) or through 

macroscopic cystic lesions, of which Intraductal Papillary Mucinous Neoplasms (IPMNs) are the most 

common [1]. The progression from IPMN to cancer accounts for approximately 10-15% of PDAC cases 

annually, providing an opportunity for early detection and cancer interception in this lethal disease [2]. 

Activating point mutations in KRAS are the most frequent somatic alteration in IPMNs, observed in greater 

than 80% of cases, followed by point mutations of GNAS codon 201, which is present in approximately 

two-thirds of IPMNs [3, 4]. Overall, approximately half of IPMNs harbor co-mutations of KRAS and GNAS, 

with progression to invasive carcinoma associated with additional alterations, such as TP53, SMAD4 and 

PIK3CA mutations. GNAS encodes for the alpha subunit of a stimulatory G-protein (G(s)alpha protein) 

and the codon 201 “hotspot” mutation leads to constitutive activation due to impaired GTPase activity [5]. 

Activated G(s)alpha induces adenylyl cyclase to produce cyclic AMP (cAMP), which in turn stimulates two 

intracellular cAMP effectors, Protein Kinase A (PKA) and Exchange Protein directly Activated by cAMP 

(EPAC), impacting diverse biological functions [6, 7].  

 

In our previous study, we demonstrated that co-expression of KrasG12D and GnasR201C (p48Cre; KrasLSL-

G12D; Rosa26LSL-rtTA; Tg (TetO-GnasR201C), henceforth referred to as “Kras;Gnas” mice), caused 

development of IPMN-like cystic lesions in the pancreas, culminating in adenocarcinoma [8]. Thus, the 

“Kras;Gnas” autochthonous model both genocopies the most frequent combination of genetic alterations 

in human IPMNs, and phenocopies the observed multistep progression of IPMNs to invasive cancer. 

However, while this foundational study of the Kras;Gnas mice characterized the autochthonous model, it 

did not comprehensively elucidate the significance of oncogenic G(s)alpha signaling on tumor biology. To 

this end, we established murine PDAC cell lines from the Kras;Gnas mice (Kras;Gnas cells), in which 

KrasG12D is constitutively expressed, while GnasR201C can be induced upon addition of doxycycline in vitro. 

This provided a facile isogenic system to study the specific impact of aberrant G(s)alpha signaling on a 
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mutant Ras background. Multimodal transcriptional profiling of Kras;Gnas cell lines and autochthonous 

Kras;Gnas mice revealed the emergence of a gene signature of gastric (pyloric type) metaplasia, defined 

as the upregulation of Spasmolytic Polypeptide Expressing Metaplasia (SPEM) markers (Tff2, Aqp5, 

Gkn3, etc.) with pit cell marker expression (Tff1, Gkn1, Gkn2, Muc5ac, etc.) [9, 10], upon GnasR201C 

induction. A genome wide CRISPR/Cas9 screen conducted in Kras;Gnas cells identified the glycolysis-

related genes Slc2a1 and Gpi1 as a synthetic essentiality in the setting of GnasR201C expression. Multiple 

orthogonal modalities (transcriptional profiling, Seahorse metabolic analysis and 13C-pyruvate 

hyperpolarized MR spectrometry) all confirmed enhanced glycolysis upon GnasR201C induction. 

Mechanistically, GnasR201C induction leads to PKA-dependent phosphorylation and consequent activation 

of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (p-PFKFB3), a key regulator of glycolysis [11], 

thus rendering the Kras;Gnas cells highly dependent on glycolysis. Our study identifies the role of 

aberrant G(s)alpha signaling in mucus production and metabolic reprogramming in IPMNs, which could 

form the basis for therapeutic and interception strategies in these PDAC precursor lesions.  

 

Materials and Methods 

Autochthonous Mice  

The autochthonous model of IPMN, which results from pancreas-specific co-expression of mutant 

KrasG12D and GnasR201C (Kras;Gnas mice) has been described [8]. Briefly, we generated p48Cre; KrasLSL-

G12D; Rosa26LSL-rtTA, Tet operon (TetO)-GnasR201C mice. In these mice, mutant Kras is constitutively 

expressed within the p48 (Ptf1a) positive domain, comprised of the pancreatic epithelium. To induce 

GnasR201C expression, mice were fed with 0.0060 % doxycycline diet from 8 weeks of age, which results 

in generation of IPMN-like cystic lesions. All animal experiments were performed in accordance with the 

MD Anderson Institutional Care and Use of Animals Committee (IACUC)-approved protocols.  

 

Establishment of cell lines from Kras;Gnas mice 

We generated 4 independent tumor-derived cell lines (LGKC-1, 2, 3, and 4 cells) from Kras;Gnas mice 
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for all the experiments (Kras;Gnas cells). Cells were established from the tumor tissues in an 8-month-

old male mouse fed with normal diet (LGKC-1 cells), a 10-month-old female mouse fed with normal diet 

(LGKC-2 cells), a 5-month-old male mouse fed with doxycycline diet (LGKC-3 cells), and a 5-month-old 

female mouse fed with normal diet (LGKC-4 cells). Tissues were minced, resuspended in Roswell Park 

Memorial Institute (RPMI) (Corning, Corning, NY, USA) supplemented with 10 % fetal bovine serum (FBS) 

and 1% penicillin and streptomycin, and plated onto collagen coated dishes to expand the tumor cells [8]. 

Established cell lines were cultured at 37°C with 5% CO2 in RPMI supplemented with 10 % FBS and 1% 

penicillin and streptomycin unless otherwise indicated. All Kras;Gnas cell lines express mutant KrasG12D 

constitutively. To induce GnasR201C co-expression, cells were treated with doxycycline (typically 

100ng/mL), thus creating a facile isogenic system to interrogate the specific impact of G(s)alpha signaling 

on a mutant Ras background.  

 

Additional Methods are included as supplementary data. 

  

Results  

Induction of GnasR201C expression drives transcriptional reprogramming of IPMN cells with gene 

signatures of gastric (pyloric type) metaplasia. 

We established cell lines (LGKC-1, 2, 3, and 4) from PDAC arising in four independent Kras;Gnas mice 

fed with either doxycycline diet or normal diet (Figure 1A). To investigate transcriptional reprogramming 

in GnasR201C-expressing Kras;Gnas cells, we performed bulk RNA sequencing in the presence (Kras ON, 

Gnas ON) or absence (Kras ON, Gnas OFF) of doxycycline. Approximately 90% of Gnas reads in 

doxycycline-treated cells harbored the R201C point mutation, whereas vehicle-treated samples had <1% 

mutated reads, indicating conditional induction of GnasR201C expression and minimal leakiness in the 

absence of doxycycline (Figure 1B). Pairwise differential expression analysis revealed 627 differentially 

expressed genes (p<0.05, minimum 2-fold difference) in GnasR201C-expressing cells, of which 474 (76%) 

were over-expressed (Figure 1C-D). Gene Set Enrichment Analysis (GSEA) identified G protein-coupled 
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receptor (GPCR) signaling, Metabolism, Coagulation/Complement, Cytoskeleton organization, and 

IFN/Immune response as positively enriched gene set categories (Figure 1E and Supplementary 

Figure 1). The enrichment of GPCR signaling gene sets indicates activation of downstream signaling of 

mutant G(s)alpha, consistent with GnasR201C induction (Supplementary Figure 1). Notably, transcripts of 

prototypal markers for SPEM (Aqp5, Gkn3) and gastric pit cells (Gkn1, Gkn2, Tff1, Mucl3), which are 

characteristic of gastric type IPMN [12, 13, 14], were significantly upregulated in GnasR201C-expressing 

cells together with apomucins (Muc1, Muc5b) (Figure 1F). GSEA also revealed that gene signatures of 

gastric pit cells were enriched upon GnasR201C induction (Figure 1G). These findings indicated the 

emergence of a gene signature of gastric (pyloric type) metaplasia. 

 

To further analyze the transcriptional alterations in pancreatic epithelial cells in vivo, we performed single 

cell RNA sequencing (scRNA-seq) in Kras;Gnas mice fed with doxycycline (Kras ON, Gnas ON) versus 

normal diet (Kras ON, Gnas OFF) for 10 weeks. In both cohorts, we identified a heterogenous pancreatic 

epitthelial compartment, consisting of seven distinct clusters (Figure 2A). Of these, three epithelial 

clusters were observed in both cohorts and identified as ‘acinar’, ‘duct-like’, and ‘ADM-like’, characterized 

by high expression of acinar-specific genes (Cpa1, Cela2a), canonical ductal transcription factors (Hnf1b, 

Onecut1, Sox9), and co-expression of acinar and ductal markers, respectively (Figure 2B-C). On the 

contrary, four epithelial clusters were almost exclusively present in the mice fed with doxycycline diet, 

suggesting these populations were driven by aberrant G(s)alpha signaling (Figure 2B). Among the four, 

three clusters were “duct-like” in origin based on Krt19 and Car2 co-expression (Figure 2C). These three 

“duct-like” clusters were also characterized by elevation of well described markers of metaplasia 

(Onecut2, Foxq1) [12, 15, 16]. The fourth was identified as a minor tuft cell cluster based on co-

expression of Dclk1 and Pou2f3 [15]. Importantly, these three metaplastic “duct-like” clusters were distinct 

from the ADM-like cluster, suggesting they were specifically accentuated by aberrant G(s)alpha signaling. 

Of the three metaplastic “duct-like” clusters, one additionally displayed elevated gastric pit cell markers, 

and is referred to as “metaplastic pit-like”. The other had elevated markers of proliferation (Mki67, Pcna), 
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which we refer to as “metaplastic duct-like proliferating”. SPEM markers were most abundant in the 

“metaplastic duct-like” cluster. The three metaplastic “duct-like” clusters also displayed relative 

overexpression of transcripts encoding for apomucins (Muc6, Muc5ac, Muc4) that are associated with 

gastric type IPMNs (Figure 2D) [17]. These findings suggested the induction of GnasR201C expression 

provoked gastric (pyloric type) metaplasia and associated mucin production. 

 

To validate the histological relevance of the gene signatures, we next analyzed spatial transcriptomics 

(ST) in the Kras;Gnas mice fed with doxycycline diet or normal diet, using the data from our recently 

published study [12]. We manually annotated areas in the tissue sections as “Lesion”, “Acinar”, and 

“Lymph Node (LN)” based on morphological examination (Figure 2E). We calculated a “Metaplastic 

signature” score for each spot based on the expression of 13 genes associated with gastric (pyloric type) 

metaplasia in our bulk and single-cell RNA-seq data sets (Gkn1, Gkn2, Gkn3, Tff1, Tff2, Aqp5, Mucl3, 

Muc1, Muc3a, Muc5ac, Muc5b, Onecut2, Foxq1). This score was significantly higher in the lesion spots 

from the doxycycline-treated mouse and specifically correlated with areas with IPMN-like histology 

(Figure 2F-G). 

 

In summary, multimodal profiling, including bulk RNA-seq on cell lines and scRNA-seq and ST in the 

autochthonous Kras;Gnas model identified that induction of aberrant G(s)alpha signaling leads to gastric 

pyloric metaplasia, resulting in a heterogenous population of metaplastic duct-like cells with 

characteristics of IPMN.  

 

Functional genomics screen implicates glycolysis as a dependency in GnasR201C-expressing Kras;Gnas 

cells. 

To interrogate genetic dependencies in IPMN cells in an unbiased fashion, we performed genome-wide 

CRISPR/Cas9 loss-of-function screening to identify genes required for survival of isogenic Kras;Gnas 

cells with aberrant G(s)alpha signaling. As shown in Figure 3A, LGKC-1 and LGKC-3 cells were 
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transduced with a genome-wide lentiviral gRNA library and cultured with or without doxycycline treatment 

for 9 days. We found that gRNAs for 3 and 50 genes were significantly depleted on GnasR201C induction 

in LGKC-1 and LGKC-3 cells, respectively (Figure 3B-C). gRNAs targeting 3 genes (Gpi1, Slc2a1, and 

Zfp120) were commonly depleted in doxycycline-treated samples of both cell lines. Interestingly, Slc2a1 

and Gpi1 encode for glucose transporter type 1 (GLUT1) and glucose-6-phosphate isomerase 1 (GPI1), 

respectively. GLUT1 is a glucose transporter, while GPI1 is an enzyme that catalyzes the conversion of 

glucose-6-phosphate to fructose-6-phosphate [18, 19], both of which are essential genes in the glycolytic 

pathway. These results indicated a potential dependence on glycolysis in Kras;Gnas cells upon induction 

of aberrant G(s)alpha signaling.  

 

Interrogation of bulk RNA-seq data in Kras;Gnas cells showed that glycolysis-related gene signatures 

were significantly enriched by the induction of GnasR201C expression, including 

HALLMARK_GLYCOLYSIS (Figure 3D). To determine if these results are reproduced in vivo, we 

performed rank-based gene set enrichment analysis on our scRNA-seq data set. This identified multiple 

HALLMARK gene sets significantly enriched in the epithelial clusters in doxycycline-treated mice, 

including HALLMARK_GLYCOLYSIS (Figure 3E, upper). We next combined all the metaplastic cell 

clusters which were almost exclusively found in the doxycycline-treated mice as shown above, into one 

“metaplastic_duct” cluster and repeated the enrichment analysis. This revealed that the 

HALLMARK_GLYCOLYSIS signature was enriched only in the metaplastic cluster in the scRNA-seq 

dataset (Figure 3E, lower). In the existing ST dataset, the HALLMARK-GLYCOLYSIS signature was 

significantly higher in epithelial spots (excluding lymph nodes), and lesion spots in the doxycycline-treated 

mouse pancreas (Figure 3F-G). We also found a significant correlation between the Metaplastic 

signature and the HALLMARK_GLYCOLYSIS signature in these samples (Figure 3H), suggesting a 

putative link between these processes. 

 

To validate these observations in human IPMNs, we analyzed the ST data from our recently published 
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series [12]. Since gastric pit and SPEM markers are characteristics for low grade (gastric) IPMNs, we 

used the data of 7 low grade (gastric) IPMNs from the data set. As detailed in the previous report, three 

different regions - “Epilesional” (spots overlapping with the neoplastic epithelium), “Juxtalesional” (defined 

as two layers of spots from the neoplastic epithelium corresponding to the immediately adjacent 

microenvironment), and “Perilesional” (spots distal from these regions) were extracted for the analysis 

(Figure 4A). Not surprisingly, Epilesional spots showed the highest expression of transcripts 

corresponding to metaplasia and gastric cell markers, and apomucins (Figure 4B). The Metaplastic gene 

signature was the highest in the Epilesional spots (Figure 4C). We found that Epilesional spots showed 

the highest HALLMARK GLYCOLYSIS scores, followed by a gradual decrease in Juxtalesional and 

Perilesional spots (Figure 4D). The Metaplastic gene signature showed significant positive correlation 

with the HALLMARK GLYCOLYSIS signature (Figure 4E). 

 

In summary, CRISPR/Cas9 screening and cross-species transcriptomic analyses cumulatively suggest 

that glycolysis is potentially essential for the survival of IPMN-derived tumor cells, that induction of 

GnasR201C drives a glycolytic signature in vitro and in vivo, and that this signature is elevated in human 

IPMNs. We next sought to determine if GnasR201C expression drives an increase in glycolytic flux. 

 

Induction of GnasR201C expression enhances glycolysis on real time metabolic assessment in vitro and in 

vivo.  

We next performed functional metabolic analysis to investigate the relationship between GnasR201C 

expression and glycolytic flux. Induction of GnasR201C expression significantly increased glucose uptake 

and lactate secretion in Kras;Gnas cells in vitro (Figure 5A-B and Supplementary Figure 2). We also 

found that the Proton Efflux Rate (PER) was elevated on GnasR201C induction, consistent with increased 

basal glycolysis (Figure 5C). To directly assess the glycolytic flux, we performed real-time Hyperpolarized 

Magnetic Resonance Spectroscopy (HP-MRS) in which the conversion of 13C-labeled pyruvate into 

lactate is measured as a lactate / pyruvate signal ratio (Figure 5D) [20, 21]. All four cell lines showed an 
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increase of lactate / pyruvate signal ratio following GnasR201C induction, suggesting increased glycolytic 

flux (Figure 5E-F). To assess glycolytic flux in vivo we performed 13C-HP-MRS coupled with high-

resolution T2-weighted proton (1H) MRI in Kras;Gnas mice. Compared with conventional diet-fed mice, 

doxycycline-fed mice showed elevation of the lactate / pyruvate signal ratio, consistent with elevated 

pancreatic glycolytic flux in vivo (Figure 5G-H). These findings provided additional lines of evidence that 

induction of mutant G(s)alpha on a mutant Kras background drives glycolysis in the pancreata of 

Kras;Gnas mice. Based on these findings, we subsequently analyzed the functional significance of 

abrogating glycolysis in IPMN models. 

 

Glycolysis is an actionable vulnerability in GnasR201C-expressing Kras;Gnas cells. 

To analyze the significance of glucose metabolism on cell proliferation in Kras;Gnas cells, we evaluated 

the influence of glucose deprivation. In glucose-replete medium, induction of GnasR201C did not impact 

cell proliferation (Supplementary Figure 3A) or colony formation (Supplementary Figure 3B). In 

contrast, induction of GnasR201C significantly attenuated the proliferation and colony formation of both 

LGKC-1 and LGKC-3 cells in glucose-free medium relative to isogenic controls (Supplementary Figure 

3A-B). We next treated Kras;Gnas cells with several preclinical inhibitors of glycolysis, including WZB-

117, PFK-15, and 2-Deoxy-D-glucose (2-DG). Both cell lines displayed increased sensitivity to these 

inhibitors upon GnasR201C induction as indicated by decreased half maximal inhibitory concentration (IC50) 

values in doxycycline-treated cells (Supplementary Figure 3C). These results indicate that Kras;Gnas 

cells expressing GnasR201C have greater dependency on glucose and glycolysis for their proliferation and 

survival, in comparison to isogenic controls. 

 

To further validate the glycolysis dependency using data from our CRISPR/Cas9 screen (Figure 3A-C), 

we generated two independent clones with deletion of endogenous Gpi1 from two Kras;Gnas cell lines 

(Figure 6A). As expected, knockout of Gpi1 resulted in drastically decreased basal glycolysis in these 

cells (Figure 6B). In Kras;Gnas cells with retained Gpi1, there was no difference in proliferation rate or 
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colony formation on GnasR201C induction (Figure 6C-D). In contrast, in both sets of Gpi1-knockout clones, 

cell proliferation and colony formation were significantly reduced on GnasR201C induction (Figure 6C-D). 

These in vitro findings were recapitulated in subcutaneous allografts in athymic mice. There was no 

significant difference in growth between Kras;Gnas tumors with retained Gpi1 expression, irrespective of 

normal or doxycycline diet (Figure 6E-G). Meanwhile, allograft volumes were significantly reduced upon 

GnasR201C induction in Gpi1-knockout cells (Figure 6E-G). Interestingly, Gpi1 knockout resulted in 

downregulation of several gastric pit cell and SPEM markers in GnasR201C-expressing cells, suggesting a 

potential link between glycolysis and transcriptomic programs of pyloric metaplasia (Figure 6H).   

 

We also tested the effect of the deletion of Slc2a1 in the setting of GnasR201C induction. Glut1, which is 

encoded by Slc2a1, was depleted in the knockout cells and basal glycolysis was significantly reduced 

(Supplementary Figure 4A-B). Induction of GnasR201C attenuated in vitro cell proliferation and colony 

formation of Slc2a1-knockout cells, compared to isogenic control lines (Supplementary Figure 4C-D). 

In the subcutaneous allograft model, doxycycline diet specifically suppressed the growth of Slc2a1-

knockout cells (Supplementary Figure 4E-G). Similarly to Gpi1 knockout, loss of Slc2a1 decreased the 

expression of gastric pit cell and SPEM markers (Supplementary Figure 4H). Thus, our in vitro and in 

vivo single gene knockout studies of Gpi1 and Slc2a1 validated the CRISPR screen. 

 

In summary, these findings confirm that expression of GnasR201C increases the requirement of glucose 

transport and glycolytic flux for cell proliferation in Kras mutant cells and that abrogation of glycolysis is 

a potentially actionable metabolic weakness in these cells.   

 

PKA-mediated PFKFB3 phosphorylation drives enhanced glycolysis in Kras;Gnas cells on GnasR201C 

induction. 

We next investigated the mechanism of increased glycolysis by GnasR201C induction. Induction of 

GnasR201C resulted in the upregulation of phospho-PKA substrates, indicating the activation of 
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G(s)alpha/cAMP/PKA signaling (Figure 7A, left). Expression of multiple components of the glycolytic 

pathway, including HK1, HK2, LDHA, GAPDH, PFKP, PKM2, and pyruvate dehydrogenase was not 

altered in Kras;Gnas cells on GnasR201C induction (Figure 7A, middle). On the contrary, phosphorylation 

of PFKFB3, one of the phosphofructokinase (PFK) subunits that mediate the phosphorylation of fructose 

6-phosphate to fructose-1,6-bisphosphate, was increased in both Kras;Gnas cell lines (Figure 7A, right). 

Treatment with forskolin, an agonist of adenylate cyclase, recapitulated p-PFKFB3 upregulation, together 

with the increase of phospho-PKA substrates, in Kras;Gnas cells (Figure 7B). Exposure to a preclinical 

grade PKA inhibitor H-89 [22] resulted in the attenuation of the PFKFB3 phosphorylation observed on 

GnasR201C induction (Figure 7C), suggesting that GnasR201C-mediated PFKFB3 phosphorylation is PKA 

dependent. We subsequently analyzed the impact of modulating PFKFB3 activity on glycolysis in 

GnasR201C-expressing Kras;Gnas cells. The increase in glucose uptake and lactate secretion on 

GnasR201C induction (Figure 5A-B) was significantly reduced by exposure to PFK-15, a preclinical grade 

inhibitor of PFKFB3 [11] (Figure 7D-E). The upregulation of basal glycolysis by GnasR201C induction was 

abolished by PFK-15 (Figure 7F). The basal glycolytic rate in GnasR201C-expressing cells was more 

sensitive to PFKFB3 inhibition by PFK-15, as indicated by lower IC50 values in both cell lines (Figure 7G). 

Immunohistochemistry for phosphorylated PFKFB3 in human IPMN samples (7 GNAS-wild and GNAS-

mutant samples, respectively) revealed significantly increased staining in GNAS-mutant relative to 

GNAS-wild type lesions (Figure 7H). Overall, these findings support that activation of the cAMP-PKA-

pPFKFB3 axis is one avenue through which induction of mutant GNAS enhances glycolysis in IPMNs 

(Figure 7I).  

 

Discussion 

In the present study, multimodal transcriptome analyses of the Kras;Gnas IPMN model demonstrated 

that induction of mutant GNAS expression, on a mutant KRAS background, reprogrammed epithelial cells 

toward gastric (pyloric type) metaplasia. Pyloric metaplasia is a repair process that occurs in response to 

mucosal injury in the stomach, which involves foveolar (pit) cell hyperplasia and establishment of SPEM 
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cells at the base of glands, following parietal cell loss [9, 10]. While pyloric metaplasia protects against 

ongoing mucosal injury through production of protective mucins and wound-healing agents (e.g. Tff2), it 

can also be an initial step towards dysplasia and tumorigenesis [9, 10]. Interestingly, analogous gastric 

pit and SPEM markers are also characteristic of low grade (gastric) IPMNs, which are the most common 

subtype of IPMNs [23, 24, 25]. Our findings demonstrate that mutant GNAS at least partially contributes 

to the gastric metaplastic phenotype characteristic of low-grade IPMNs. We found that mutant GNAS 

exacerbates pyloric metaplasia and drives the development of gastric-like IPMNs. We have previously 

described the expression of the transcription factor Nkx6-2 in low-grade IPMNs, and the association 

between Nkx6-2 upregulation and the gastric (pyloric like) signature [12]. Surprisingly, in our 

transcriptomic analyses, we did not observe upregulation of Nkx6-2 on induction of GnasR201C (data not 

shown). suggesting that this pivotal transcription factor is induced independent of G(s)alpha signaling in 

early IPMN pathogenesis, and likely exacerbates the observed mucinous phenotype. 

 

Cross-species analyses demonstrated that a glycolysis signature is especially enriched in metaplastic 

epithelial cells in IPMNs. Besides the increased glycolysis (“Warburg effect”) generally observed in 

neoplastic cells [26], recent studies have suggested an intrinsic link between a glycolytic metabolism 

switch and somatic cell transdifferentiation and metaplasia. Such a glycolytic switch has been reported 

to be necessary in several contexts, including transdifferentiation of fibroblasts into induced endothelial 

cells [27],  phenotypic switching of vascular smooth muscle cells [28], and of related interest, acinar-to-

ductal metaplasia of the pancreas [29]. Our results suggest that glycolysis may be an accompaniment of 

mutant GNAS-mediated gastric (pyloric type) differentiation of neoplastic pancreatic epithelial cells. It is 

not fully understood why a glycolytic switch is observed in cells undergoing transdifferentiation or 

metaplasia. One possible reason is that reprogrammed cells need to adjust to new energy demands 

required for cell maintenance [30]. Epigenetic modifications needed to regulate gene expression during 

cell reprogramming may also play a role. Several glycolytic metabolites (e.g. pyruvate and lactate) can 

affect histone acetylation or lactylation [31]. Therefore, glycolysis may induce chromatin remodeling 
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through these metabolites, which in turn affects transcription factor binding. 

 

Our CRISPR/Cas9 loss-of-function screen and subsequent validation experiments demonstrated that 

glycolysis is an actionable vulnerability in KRAS and GNAS co-mutated cells. Whereas the relationship 

between glycolysis and IPMN has been largely unexplored until now, our findings suggest that mutant 

GNAS creates a targetable glycolysis dependency in the pathogenesis of IPMNs. As previously shown, 

glucose transport and glycolytic flux are required for growth of PDAC cells with oncogenic Ras [19]. The 

present study demonstrated that this requirement is significantly enhanced upon induction of mutant 

GNAS on a mutant Ras background. Increased glycolysis is generally related with tumor progression and 

aggressiveness via increased substrate production [32]. Lactate, which is the final product of glycolysis, 

can acidify the tumor microenvironment [32, 33]. Tumor microenvironment acidification promotes 

proliferation, resistance to apoptosis, invasiveness, metastatic potential, and aggressiveness of tumor 

cells [34]. Acidification of the neoplastic microenvironment may also modulate antitumor immunity through 

the attenuation of the activity and proliferation of T cells, which we have previously described 

accompanies IPMN progression [35] highlighting another avenue through which mutant GNAS-driven 

glycolysis may impact IPMN progression.   

 

We identified the cAMP-PKA-PFKFB3 axis as a mechanism of increased glycolysis in GNAS-mutant 

metaplastic cells. One of the critical rate-limiting steps of glycolysis is the conversion of fructose-6-

phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2), which is mediated by 6-phosphofructo-1-kinase 

(PFK-1). PFKFB is an enzyme that regulates the intracellular steady-state concentration of fructose 2,6-

bisphosphate (F2,6P2), which is an activator of PFK-1 [36, 37, 38]. Among 4 isozymes (PFKFB1-4), 

PFKFB3 has the highest kinase:phosphatase activity ratio and is the most potent isozyme to enhance 

glycolysis, whose activity is regulated both at the transcriptional and post-transcriptional levels [36, 37, 

38]. Interestingly, PFKFB3 is upregulated by mutant KRAS, which is well described to enhance glycolysis 

[39]. We found that PFKFB3 was activated through PKA-mediated phosphorylation, downstream of 
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mutant GNAS. While GNAS mutations are observed in several tumor types other than IPMN-derived 

PDAC, such as colorectal cancer, lung adenocarcinoma, thyroid carcinoma, or pituitary adenoma [40, 

41], the relationship between GNAS mutations and glycolysis has not been well described. Our findings 

may provide an insight into novel metabolic characteristics across multiple GNAS-mutant tumor types 

beyond the pancreas. 

 

In conclusion, multimodal transcriptional analyses and functional genomics followed by the validation 

experiments demonstrated that mutant GNAS reprograms Kras-mutant pancreatic epithelial cells toward 

gastric (pyloric type) metaplasia in the pathogenesis of IPMNs, where increased glycolysis is essential 

for their maintenance. This epithelial reprogramming could enable us to understand the biology of the 

most common cystic precursor of PDAC, for which no specific therapeutics are currently available. 

(3898 words)  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.13.584524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.13.584524


18 

 

Figure legends  

Figure 1. RNA-sequencing (RNA-seq) reveals transcriptional reprogramming and gene signature of 

gastric (pyloric type) metaplasia in Kras;Gnas cells with aberrant G(s)alpha signaling. 

(A) Establishment of 2D cell lines (Kras;Gnas cells; LGKC-1, 2, 3, and 4) from the pancreas of Kras;Gnas 

model and in vitro induction of GNASR201C-expression by doxycycline (Dox). Created with BioRender. 

(B-G) Kras;Gnas cells was incubated with or without 1 ug/mL doxycycline for 24 hours before RNA collection 

for RNA-seq.  

(B) Fraction of Gnas reads harboring the R201C mutation in doxycycline-treated and untreated cells. 

(C) Volcano plot of RNA-seq. Significantly upregulated or downregulated genes upon doxycycline treatment 

were shown in red or blue, respectively. Paired analysis comparing doxycycline-positive over negative 

samples for four cell lines.  DE; differentially expressed 

(D) Heatmap of differentially expressed genes upon doxycycline treatment.  

(E) Categories of significant genes sets enriched in doxycycline-treated cells generated through gene set 

enrichment analysis (GSEA). 

(F) Heatmap of transcripts indicative of gastric (pyloric type) metaplasia, and apomucins in doxycycline-

treated cells versus untreated cells. The pyloric type metaplasia signature includes transcripts indicative of 

both gastric pit and Spasmolytic Polypeptide Expressing Metaplasia (SPEM).  

(G) GSEA showing the enrichment of gastric pit cell gene signatures in doxycycline-treated cells over 

untreated cells. 

 

Figure 2. Single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) identifies 

heterogeneous metaplastic duct-like populations with gastric (pyloric type) metaplasia in Kras;Gnas 

mice with aberrant G(s)alpha signaling. 

(A-D) scRNA-seq was performed in the pancreas in Kras;Gnas mice fed with doxycycline (Kras ON, Gnas 

ON) versus normal diet (Kras ON, Gnas OFF) for 10 weeks (N = 2 for each group). 

(A) Uniform Manifold Approximation and Projection (UMAP) plot of seven distinct epithelial cell clusters.  

(B) Proportion of cells in epithelial subclusters in doxycycline fed versus normal diet fed Kras;Gnas mice. 

(C) Dot plots showing the expression of representative annotation markers in each epithelial cell cluster. 

‘Metaplastic duct-like’, ‘metaplastic pit-like’, and ‘metaplastic duct-like proliferating’ clusters showed 
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upregulation of ductal and metaplastic markers indicative of duct-like origin with metaplastic characteristics. 

‘Metaplastic duct-like’ and ‘metaplastic pit-like’ clusters represent gastric (pyloric) metaplasia as evidenced 

by the upregulation of SPEM and pit cell markers, respectively.  

(D) Expression of transcripts for cellular apomucins in epithelial cell clusters demonstrates enrichment within 

metaplastic clusters. 

(E-G) ST of pancreatic tissues in Kras;Gnas mice fed with normal diet or doxycycline diet for 25 weeks (N = 

1 per group). Data sets from the doxycycline-fed mouse was obtained from Reference 12 (Sans, et al. Cancer 

Discovery 2023).  

(E) Spatial mapping of the “Lesion”, “Acinar”, and “Lymph Node” (LN) areas in the pancreatic tissues in 

Kras;Gnas mice.  

(F) Spatial analysis of the enrichment of metaplastic gene signature in Kras;Gnas mice fed with doxycycline 

versus normal diet. The Metaplastic gene signature consists of 13 genes associated with gastric (pyloric type) 

metaplasia analyzed in our bulk and single-cell RNA-seq data sets (Gkn1, Gkn2, Gkn3, Tff1, Tff2, Aqp5, 

Mucl3, Muc1, Muc3a, Muc5ac, Muc5b, Onecut2, Foxq1). 

(G) Upregulation of a metaplastic gene signature in lesion spots in the doxycycline-fed Kras;Gnas mouse 

over normal diet-fed Kras;Gnas mouse. 

****p<0.0001. 

 

Figure 3. CRISPR/Cas9 loss-of-function screening identifies glycolysis as an actionable vulnerability 

in Kras;Gnas cells with aberrant G(s)alpha signaling.  

(A) Schematic illustration of genome-wide CRISPR/Cas9 knockout screening of Kras;Gnas cells. Created 

with BioRender. 

(B) Venn diagram of shared depleted genes in the LGKC-1 and LGKC-3 cell line CRISPR screen. Created 

with BioRender.  

(C) CRISPR drop-out screening Z-scores of the relative abundance of guides for each gene in LGKC-1 and 

LGKC-3 cells cultured with vs without doxycycline. Genes with FDR <0.05 were highlighted in red in cells. 

(D) Glycolysis-related gene sets significantly enriched in bulk RNA-seq of doxycycline-treated Kras;Gnas 

cells versus untreated cell lines.  

(E) scGSEA of pancreatic tissues in Kras;Gnas mice fed with normal or doxycycline diet. scRNA-seq data 
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shown in Figure 2 was used for the analysis. scGSEA on HALLMARK gene sets in all epithelial cells as a 

function of doxycycline treatment (upper) or as a function of cluster identity (lower) in Kras;Gnas mice. The 

‘metaplastic duct-like’, ‘metaplastic pit-like’ and ‘metaplastic duct-like proliferating’ clusters shown in Figure 2 

were combined into a single ‘metaplastic_duct’ cluster.  

(F-H) ST of the pancreatic tissues in Kras;Gnas mice shown in Figure 2. 

(F) Spatial analysis of the enrichment of HALLMARK GLYCOLYSIS gene signature in Kras;Gnas mice fed 

with doxycycline versus normal diet. 

(G) Upregulation of HALLMARK GLYCOLYSIS gene signature in all non-LN spots and lesion spots in 

doxycycline-fed Kras;Gnas mouse over normal diet-fed Kras;Gnas mouse. 

(H) Positive correlation between metaplastic gene signature and HALLMARK GLYCOLYSIS gene signature 

in all non-LN spots. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 4. Spatial transcriptomics of human IPMNs validates glycolysis signature within neoplastic 

epithelium concomitant with metaplastic signature. 

Data set of 7 human low-grade IPMN samples were obtained from Reference 12 (Sans, et al. Cancer 

Discovery 2023). 

(A) Mapping of Epilesional, Juxtalesional, and Perilesional areas, and HALLMARK-GLYCOLYSIS genes 

signature in a representative low-grade IPMN sample.  

(B) Dot plot of the expression of metaplastic and IPMN markers as a function of tissue region. 

(C) Enrichment of the Metaplastic gene signature in Epilesional spots relative to Juxtalesional and 

Perilesional spots. 

(D) Enrichment of the HALLMARK GLYCOLYSIS gene signature in Epilesional spots relative to Juxtalesional 

and Perilesional spots. 

(E) Scatter plot showing the correlation between the Metaplastic and HALLMARK GLYCOLYSIS gene 

signature scores. 

 

Figure 5. Real-time metabolic analysis identifies increased glycolytic flux following induction of 

mutant GNAS in vitro and in vivo. 
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(A-B) Four different Kras;Gnas cells (LGKC-1, 2, 3, and 4) were independently analyzed in each assay . Cells 

were incubated with or without 100 ng/mL doxycycline for 24 hours before the assay. The average value of 4 

replicates represented each cell line. The results of 4 replicates were shown in Supplementary Figure 2. 

(A) Glucose uptake from culture media into Kras;Gnas cells incubated with or without doxycycline.  

(B) Lactate secretion into culture media from Kras;Gnas cells incubated with or without doxycycline.  

(C) Real-time cell metabolic analysis with Seahorse XF Glycolytic Rate Assay to determine the effect of 

GNASR201C induction on basal glycolysis. Cells were incubated with or without 100 ng/mL doxycycline for 24 

hours before the assay. Proton Efflux Rate (PER) was sequentially measured under basal conditions, after 

inhibition of oxidative phosphorylation by rotenone/ antimycin A (Rot/AA), and after inhibition of glycolysis by 

2-DG. 

(D-H) Real-time cell metabolic analysis with 13C-pyruvate hyperpolarized magnetic resonance spectroscopy 

(MRS)  

(D) Scheme of 13C-pyruvate hyperpolarized MRS which detects Lactate / Pyruvate signal ratios to calculate 

glycolytic flux. Created with BioRender. 

(E) Representative sequential NMR spectra after the addition of approximately 8.7 mM hyperpolarized 

pyruvate in Kras;Gnas cells incubated with or without doxycycline for 24 hours. The spectrum was collected 

for every 6 seconds for 180 seconds. The labeled peaks are pyruvate, pyruvate hydrate and lactate. 

(F) Lactate / Pyruvate signal ratios of Kras;Gnas cells with or without doxycycline treatment. LGKC-1, 2, 3, 

and 4 cells were independently incubated with or without doxycycline for 24 hours before each assay.  

(G) Representative T2-weighted MRI (coronal slice) images and real-time in vivo 13C-magnetic resonance 

spectra after intravenous injection of hyperpolarized pyruvate. The sequential spectra are collected for every 

2 seconds for 120 seconds from the MRI slabs on the mouse pancreas. 

(H) Lactate / Pyruvate signal ratios of the pancreas in Kras;Gnas mice on 13C-pyruvate Hyperpolarozed MRI. 

Kras;Gnas mice fed with normal diet or doxycycline diet for 3-15 weeks were analyzed (N = 6 for each group). 

 *p<0.05, ****p<0.0001. 

 

Figure 6. Loss of Gpi1 abolished glycolysis and attenuated proliferation in GnasR201C-expressing 

Kras;Gnas cells. 

(A) Immunoblot of CRISPR Gpi1 KO Kras;Gnas cells and controls (LacZ). Cells were incubated with 100 
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ng/mL doxycycline for 24 hours before protein collection. 

(B) Seahorse XF Glycolytic Rate Assay. Cells treated with 100 ng/mL doxycycline for 24 hours were incubated 

in the medium containing glucose, glutamine, and pyruvate, followed by the injection of Rot/AA and 2-DG. 

PER was sequentially measured at indicated time points. 

(C) Cell proliferation assay. Cell viability was measured by WST-8 assay at indicated time points. Cells were 

incubated with or without 100 ng/mL doxycycline under glucose replete media. N = 3, technical replicates. 

(D) Colony formation assay. Cells were stained after 10-day incubation. Cells were incubated with or without 

100 ng/mL doxycycline under glucose replete media. 

(E-G) Allograft injection model of Gpi1 knockout cells. Cells were subcutaneously inoculated to the bilateral 

flank portion of nude mice (N = 6 tumors per group). Mice were fed with normal diet or doxycycline diet from 

the day of inoculation. Tumor volumes were measured every 3 or 4 days from day 14 until sacrifice on day 

28.  

(E) Macroscopic appearance of the allograft tumors.  

(F) Sequential tumor volume after cell inoculation. 

(G) Tumor volume at the time of sacrifice (day 28). 

(H) Quantitative PCR analysis for gastric pit cell and spasmolytic polypeptide expressing metaplasia (SPEM) 

markers in Gpi1-knockout Kras;Gnas cells. Cells were incubated with 100 ng/mL doxycycline for 24 hours 

before RNA collection. N = 4, technical replicates. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 7. PKA-mediated activation of PFKFB3 is responsible for glycolysis enhancement induced by 

mutant GNAS. 

(A) Immunoblot of glycolysis pathway-related molecules in Kras;Gnas cells. Cells were incubated with or 

without 100 ng/mL doxycycline for 24 hours before protein collection.  

(B) Immunoblot in Kras;Gnas cells incubated with or without 10 μM forskolin for 1 hour before protein 

collection.  

(C) Immunoblot in Kras;Gnas cells incubated with or without 100 ng/mL doxycycline or 5 μM H-89 for 24 

hours before protein collection.  

(D-E) Kras;Gnas cells were incubated for 24 hours before each assay with or without 100 ng/mL doxycycline 
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or 10 μM PFK-15 .  

(D) Glucose uptake assay in untreated, doxycycline treated or doxycycline + PFK-15 treated Kras;Gnas cells.  

(E) Lactate secretion assay in untreated, doxycycline treated or doxycycline + PFK-15 treated Kras;Gnas 

cells. 

(F) Seahorse XF Glycolytic Rate Assay of Kras;Gnas cells. Cells were incubated with or without 10 μM PFK-

15 under 100 ng/mL doxycycline for 24 hours before the assay. During the assay, cells were incubated in the 

medium containing glucose, glutamine, and pyruvate, followed by the injection of Rot/AA and 2-DG. PER 

was measured at indicated time points. 

(G) Dose-response curve and the half maximal inhibitory concentration (IC50) for basal glycolysis on PFK-15 

treatment. Kras;Gnas cells were treated with PFK-15 at indicated concentrations with or without 100 ng/mL 

doxycycline treatment for 24 hours before the assay. Basal glycolysis was measured by Seahorse XF 

Glycolytic Rate Assay.  

(H) Immunohistochemistry for phospho-PFKFB3 in human IPMN with or without GNAS mutation (N = 7 for 

each group). Representative images of GNAS-wild and mutant cases were shown.  

(I) Scheme of increased glycolysis via mutant G(s)alpha-PKA-PFKFB3 axis. Created with BioRender. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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