
Fast and accurate imputation of genotypes
from noisy low-coverage sequencing data
in bi-parental populations
Cécile Triay1,§ & Alice Boizet2,§, Christopher Fragoso3,4, Anestis Gkanogiannis5,
Jean-François Rami2, Mathias Lorieux1,5,*

1University of Montpellier, DIADE, IRD, France
2AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
3Verinomics, Inc., 5 Science Park, New Haven, CT 06511, USA
4Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
5Agrobiotechnology Unit, Alliance Bioversity-CIAT, International Center for Tropical Agriculture, Cali, Colombia.
*Corresponding author
§Equivalent contribution

Abstract
Motivation: Bi-parental populations genotyping can be performed with low-coverage next-generation
sequencing (LC-NGS). This allows the creation of highly saturated genetic maps at reasonable cost, precisely
localized recombination breakpoints, and minimized mapping intervals for quantitative-trait locus analysis.

The main issues with these low-coverage genotyping methods are (1) poor performance at heterozygous loci,
(2) a high percentage of missing data, (3) local errors due to erroneous mapping of sequencing reads and
reference genome mistakes, and (4) global, technical errors inherent to NGS itself.

Recent methods like Tassel-FSFHap or LB-Impute are excellent at addressing issues 1 and 2, but nonetheless
perform poorly when issues 3 and 4 are persistent in a dataset (i.e., “noisy” data). Here, we present an
algorithm for imputation of LC-NGS data that eliminates the need of complex pre-filtering of noisy data,
accurately types heterozygous chromosomal regions, precisely estimates crossover positions, corrects
erroneous data, and imputes missing data. The imputation of genotypes and recombination breakpoints is
based on maximum-likelihood estimation. We compare its performance with Tassel-FSFHap and LB-Impute
using simulated data and two real datasets. Furthermore, the algorithm is much faster than the Hidden
Markov-Chains method.

Availability: NOISYmputer is available as a multiplatform (Linux, macOS, Windows) Java executable at the URL
https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags. The
source code is available at the same URL.

Introduction
In genetic studies, bi-parental genetic populations can be created from inbred parental lines using various
crossing systems, e.g., F2 intercross issued from F1 self-pollination (F2) and recombinant inbred lines by single
seed descent (SSD). These populations are used to create recombination maps and, if phenotypes are
available, to find gene or quantitative-trait locus (QTL) genomic positions.

To do so, each individual of the population under study has to be characterized for its genomic content – or
“genotyped” at many loci. This can be done using different molecular biology techniques, including various
types of molecular markers. The gold standard for genetic variant discovery is obtained by different
next-generation sequencing (NGS) techniques like restriction site-associated DNA sequencing (RADseq)
(Davey and Blaxter 2010), genotyping by sequencing (GBS) (Elshire et al. 2011), and whole-genome
sequencing (WGS) (Huang et al. 2009). These techniques provide very large numbers of markers and
therefore facilitate the construction of highly saturated genetic maps. This provides accurate locations of
recombination breakpoints in each individual, which is important for a number of applications, e.g., studies of
local recombination rate, genetic maps comparison, or QTL detection. Though NGS is less and less expensive to

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://www.zotero.org/google-docs/?r8Y0WF
https://www.zotero.org/google-docs/?vS4M0Q
https://www.zotero.org/google-docs/?65CkKf
https://doi.org/10.1101/2024.03.13.584787

implement, sequencing a large number of samples can still be costly, and is commonly applied via reduced
representation (RRS-NGS) or low-coverage (LC-NGS) strategies to reduce genotyping costs.

Reducing sequencing costs through minimized per-sample coverage has an important experimental downside:
LC-NGS mechanically introduces a series of issues, the main ones being:

- Issue 1: Low power to detect heterozygosity under low coverage: For example, if only one sequencing
read is generated at a locus, only one of the two alleles is revealed. As each additional read has a 0.5
probability of detecting the second allele, even 3 reads have only 0.25 probability of failing to detect a
heterozygous call. Spread over thousands of sites, extensive inaccuracy in heterozygous regions becomes
highly problematic.

- Issue 2: Extensive genotype missingness: The sparse distribution of reads at low coverage (3X coverage,
for example, only implies an average of 3 reads per site) results in a complete lack of reads at some
variant loci. Even in plants, which contain more genetic variation than humans, there are 6-22 SNPs per
1 Kb, resulting in abundant opportunity for non-reference variant missingness under low coverage (Xu et
al. 2017).

- Issue 3: Errors due to erroneous mapping of sequencing reads: NGS technologies are based on short
reads (e.g., 150 base pair, paired-end Illumina technology). Due to the combinatorial limitation of the
sequence contained in short reads, multiple mapping locations may be identified, especially in plant
genomes which exhibit much more repetitive content than human genomes. Additionally, in plants, such
as rice, it has been shown that structural variation specific to subpopulations may be completely missing
in any single reference genome. These assembly errors, omissions, and challenges posed by repetitious
regions are sources of erroneous variants. Moreover, outright assembly errors may cause consistent, yet
locally encountered genotyping errors.

- Issue 4: Technical errors inherent to NGS methodology: Sequencing errors may be globally introduced at
a variety of stages in the NGS pipeline, from errors incurred in PCR-dependent library construction to
NGS sequencing itself. The initial GBS protocol is known to generate libraries contaminated by chimeric
inserts (Heffelfinger et al. 2014). Although rare, these errors may become problematic at low coverage, as
additional reads refuting an erroneous call may not be available at a given locus.

Common imputation algorithms implemented in computer programs like Beagle (Browning and Browning
2007; Browning et al. 2021) or Impute2 (Howie et al. 2012), although very accurate in diversity panels, are
not well adapted to the bi-parental context since they rely on large databases to infer haplotypes. Efficient
methods have been recently developed to impute genotypic data derived from LC-NGS assays in bi-parental
populations. For instance, Tassel-FSFHap (thereafter simply FSFHap) (Swarts et al. 2014) and LB-Impute
(Fragoso et al. 2016) can all address issues 1 and 2 accurately. Yet, these methods can produce inaccurate
results when the errors mentioned in issues 3 and 4 – thereafter called “noisy data” – are too frequent. Thus,
these methods might require additional bioinformatic steps to filter out low-quality markers before and after
imputation. Even then, troublesome markers might not be detected easily and could alter dramatically the
quality of the imputation and the final genetic map.

In this work, we present NOISYmputer, a maximum likelihood estimation algorithm for imputation of LC-NGS
data that eliminates the need of complex pre-filtering of noisy data, accurately finds heterozygous
chromosomal regions, corrects erroneous data, imputes missing data and precisely locates the recombination
breakpoints (i.e., the meiotic crossovers). We test its accuracy using simulated data and we compare its
performance with FSFHap, LB-Impute using three datasets: (1) a rice F2 population sequenced by WGS, (2) a
maize F2 population sequenced by GBS and (3) 84 simulated F2 populations with controlled depth, error rate
and marker density. The algorithm is implemented in NOISYmputer, a multiplatform Java command line
program (see “Availability” section).

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?UgPcB9
https://www.zotero.org/google-docs/?UgPcB9
https://www.zotero.org/google-docs/?8inqNT
https://www.zotero.org/google-docs/?X9HhGX
https://www.zotero.org/google-docs/?X9HhGX
https://www.zotero.org/google-docs/?eAPRhS
https://www.zotero.org/google-docs/?6fWSg8
https://www.zotero.org/google-docs/?temzqZ
https://doi.org/10.1101/2024.03.13.584787

Design and implementation
Imputation method
In this section we describe the main imputation algorithm, which is applied separately to each chromosome.
The imputation can be preceded or followed by different filtering options in NOISYmputer (details in next
section) that can be applied to reduce or eliminate the noise in the data (Figure 1).

By imputation we mean here guessing, confirming or correcting the genotype at a SNP site in a sample. LC-NGS
generates poor information in heterozygous regions (see explanation on the confounding effect in SNPs with
one or few reads – issue 1 of the Introduction section). Conversely, homozygous regions are much less prone
to these confounding effects. Yet, missing data (issue 2), noisiness (issue 3) and sequencing errors (issue 4)
can lower the power to identify homozygous diplotypes (i.e., the combination of two gametic haplotypes). The
general idea of the algorithm is, like in Hidden Markov Model (HMM), to use information of various SNPs
around the imputed SNP, leaving unimputed the regions surrounding the recombination breakpoints laying
between the two diplotypes. The locations of the recombination breakpoints are then inferred. Furthermore,
instead of modeling error rates, we take an iterative approach to estimate them (Figure 1).

Imputation - Step 1
Let’s consider a chromosome of an F2 individual with one single recombination breakpoint that separates a
homozygous diplotype (AA; BB) from a heterozygous diplotype (AB, or BA, equivalent thereafter). Let’s also
consider a set of SNPs evenly dispersed on the physical genome, say, every 500 base pairs (bp). In the AA
diplotype, and far from the breakpoint location, all SNPs should be genotyped as AA, except from the different
kinds of errors cited above. To determine the genotype of a particular SNP, and due to these errors, one must
consider not only its score in the VCF, but also its immediate “environment”, that is, the SNPs that are located
just before and just after it along the chromosome. Those surrounding SNPs help identify a potential error in
the SNP scoring. Different approaches can be taken to look at the SNP environment. In segregating
populations, the vast majority of the genome is exempt from crossing overs. Indeed, when implementing a
sliding window method like described hereby, the expected proportion of the genome with no recombination
in the window is , where is the number of SNPs in the sliding window, is𝑃

𝑛𝑜𝑋𝑂
≈1 − 1

100𝑁()𝐷(8𝑚 − 2) 𝑚 𝑁
the total number of SNPs, and is the expected genome size in centimorgans (cM). Hence, in almost the entire𝐷
genome except the breakpoint regions there are only three possible diplotypes, depending on the population
type. Thus, instead of calculating all the likelihoods of possible paths (like in Hidden Markov Model methods),
the problem is reduced to calculate the likelihoods of the data for the three possible diplotypes. Furthermore,
there is no need to include transition (i.e., recombination) probabilities. The main advantage of this approach
is its computation time, which increases linearly according to the diplotype size, while it increases
exponentially in the Hidden Markov Model process. We now describe the algorithm with the example of an F2
population.

In practice, one defines starting values for error rates for reads A () and B (), being respectively the𝑒
𝐴

𝑒
𝐵

probability of observing a B read () whereas the genotype is truly AA and observing an A read () whereas𝑂
𝐵

𝑂
𝐴

the genotype is truly a BB

𝑒
𝐴

 = 𝑝 𝑂
𝐵

|𝐴𝐴() 𝑒
𝐵

= 𝑝 𝑂
𝐴

|𝐵𝐵()
We allow different error rates for A and B reads since the A and B parents are generally not equally
(genetically) distant from the reference genome. For example, once could set and if𝑒

𝐴
= 0. 005 𝑒

𝐵
= 0. 003

Parent B is closer genetically to the Reference genome than Parent A is. Those values will be automatically
refined after one or several rounds of imputation.

Thus, at homozygous sites, the probability of observing an A read if the true genotype is AA is

𝑝 𝑂
𝐴

|𝐴𝐴() = 1 − 𝑒
𝐴

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

Figure 1. NOISYmputer’s workflow. It is composed of three major phases: pre-imputation, imputation and post-imputation.
Some steps are optional (dashed line) while others are required for the algorithm to complete.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

and the probability of observing a B read if the true genotype is BB is

 𝑝 𝑂
𝐵

|𝐵𝐵() = 1 − 𝑒
𝐵

At heterozygous (AB) sites, and assuming that the A and B reads have the same chance to occur, the
probabilities of observing A and B reads are

𝑝 𝑂
𝐴

|𝐴𝐵() = 1
2 𝑝(𝑂

𝐴
|𝐴𝐴) + 1

2 𝑝(𝑂
𝐴

|𝐵𝐵) = 1
2 (1 − 𝑒

𝐴
) + 1

2 𝑒
𝐵

𝑝 𝑂
𝐵

|𝐴𝐵() = 1
2 𝑝(𝑂

𝐵
|𝐵𝐵) + 1

2 𝑝(𝑂
𝐵

|𝐴𝐴) = 1
2 (1 − 𝑒

𝐵
) + 1

2 𝑒
𝐴

Let’s consider a chromosome with SNPs. For each site of the chromosome, we define a symmetrical𝑛 𝑆𝑁𝑃
𝑗

window () containing the at its center, SNPs before it in the sequence and SNPs after it (with read𝑊
𝑗

𝑆𝑁𝑃
𝑗

𝑚 𝑚
count > 0). SNPs that are located in chromosome ends are omitted, since it is not possible to define
symmetrical windows around them. This case is discussed later on.

For each site of the window three situations are possible: i) the genotype of the is AA𝑆𝑁𝑃
𝑖

𝑊
𝑗

𝐺
𝑖

𝑆𝑁𝑃
𝑖

(homozygous for parent A allele), ii) the genotype is BB (homozygous for parent B allele) or iii) the𝐺
𝑖

genotype is AB (heterozygous).𝐺
𝑖

By using the binomial distribution with sample size equal to and the number of successes equal to (and𝑛
𝑖

𝑛𝐴
𝑖

thus of fails equal to), we estimate the likelihood of observing a given combination of reads (and𝑛𝐵
𝑖

𝑛𝐴
𝑖

 𝑛𝐵
𝑖

as) at , knowing already the probability of observing A reads under the three possible 𝑛
𝑖

= 𝑛𝐴
𝑖

+ 𝑛𝐵
𝑖

𝑆𝑁𝑃
𝑖

genotypes:

𝑃[𝑛𝐴
𝑖
 | 𝑝(𝑂

𝐴
| 𝐴𝐴)] =

𝑛
𝑖

𝑛𝐴
𝑖() 𝑝(𝑂

𝐴
 | 𝐴𝐴)𝑛𝐴

𝑖 (1 − 𝑝(𝑂
𝐴

 | 𝐴𝐴)𝑛
𝑖
− 𝑛𝐴

𝑖 =
𝑛

𝑖
𝑛𝐴

𝑖() 𝑝(𝑂
𝐴

 | 𝐴𝐴)𝑛𝐴
𝑖 𝑝(𝑂

𝐵
 | 𝐴𝐴)𝑛𝐵

𝑖

𝑃[𝑛𝐴
𝑖
 | 𝑝(𝑂

𝐴
| 𝐵𝐵)] =

𝑛
𝑖

𝑛𝐴
𝑖() 𝑝(𝑂

𝐴
 | 𝐵𝐵)𝑛𝐴

𝑖 (1 − 𝑝(𝑂
𝐴

 | 𝐵𝐵)𝑛
𝑖
− 𝑛𝐴

𝑖 =
𝑛

𝑖
𝑛𝐴

𝑖() 𝑝(𝑂
𝐴

 | 𝐵𝐵)𝑛𝐴
𝑖 𝑝(𝑂

𝐵
 | 𝐵𝐵)𝑛𝐵

𝑖

𝑃[𝑛𝐴
𝑖
 | 𝑝(𝑂

𝐴
| 𝐴𝐵)] =

𝑛
𝑖

𝑛𝐴
𝑖() 𝑝(𝑂

𝐴
 | 𝐴𝐵)𝑛𝐴

𝑖 (1 − 𝑝(𝑂
𝐴

 | 𝐴𝐵)𝑛
𝑖
− 𝑛𝐴

𝑖 =
𝑛

𝑖
𝑛𝐴

𝑖() 𝑝(𝑂
𝐴

 | 𝐴𝐵)𝑛𝐴
𝑖 𝑝(𝑂

𝐵
 | 𝐴𝐵)𝑛𝐵

𝑖

Since the binomial factor is the same for the three possible genotypes, it can be omitted in the calculations.
Then, individual relative probabilities that the genotype of the is AA, BB or AB are defined as:𝐺

𝑖
𝑆𝑁𝑃

𝑖

𝑝 𝐺
𝑖

= 𝑋() = 𝑃[𝑛𝐴
𝑖
 | 𝑝(𝑂

𝐴
 | 𝑋)] /

𝑋
∑ 𝑃[𝑛𝐴

𝑖
 | 𝑝(𝑂

𝐴
 | 𝑋)], 𝑤𝑖𝑡ℎ 𝑋 = 𝐴𝐴, 𝐵𝐵, 𝐴𝐵

The probabilities for the window’s diplotype around the to be AA, BB or AB are obtained by multiplying𝑆𝑁𝑃
𝑗

the individual probabilities of all the SNPs in the window. As multiplication of probabilities can result in very
small numbers, we add their logarithms instead to avoid reaching the precision limit of the computer:

ρ
𝑋

=
𝑖 = 𝑆𝑁𝑃

𝑗
− 𝑚

𝑆𝑁𝑃
𝑗
 + 𝑚

∑ 𝑙𝑜𝑔 𝑝 𝐺
𝑖

= 𝑋()[], 𝑤𝑖𝑡ℎ 𝑋 = 𝐴𝐴, 𝐵𝐵, 𝐴𝐵

Finally, the relative probabilities for the window’s around the to be AA, BB or AB are defined as:𝑊
𝑗

𝑆𝑁𝑃
𝑗

𝑃 𝑊
𝑗

= 𝐴𝐴() = 𝑒𝑥𝑝 ρ
𝐴𝐴()/ 𝑒𝑥𝑝 ρ

𝐴𝐴() + 𝑒𝑥𝑝 ρ
𝐵𝐵() + 𝑒𝑥𝑝 ρ

𝐴𝐵()()
𝑃 𝑊

𝑗
= 𝐵𝐵() = 𝑒𝑥𝑝 ρ

𝐵𝐵()/ 𝑒𝑥𝑝 ρ
𝐴𝐴() + 𝑒𝑥𝑝 ρ

𝐵𝐵() + 𝑒𝑥𝑝 ρ
𝐴𝐵()()

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

𝑃 𝑊
𝑗

= 𝐴𝐵() = 𝑒𝑥𝑝 ρ
𝐴𝐵()/ 𝑒𝑥𝑝 ρ

𝐴𝐴() + 𝑒𝑥𝑝 ρ
𝐵𝐵() + 𝑒𝑥𝑝 ρ

𝐴𝐵()()
A genotype is assigned to the SNP if the relative probability of its surrounding window is superior to a given𝑗
threshold . To guarantee that no SNP is falsely genotyped, the threshold is set to a very stringent valueα α
(0.999 by default). SNPs with for all genotypes are assigned a missing data value.𝑃 𝑊

𝑗() < α

We repeat the process for each SNP of the chromosome. For chromosome ends, the procedure is similar𝑗
except that the half-window on the end side is smaller due to the lack of sites available to left or right of .𝑆𝑁𝑃

𝑗

This leaves two types of chromosomal regions unimputed and filled with missing data: 1) regions between
imputed chromosome segments with identical diplotypes and for which none of the criteria are matched to
assign a genotype, and 2) regions near recombination breakpoints.

Imputation - Step 2
Step 2 consists in filling the unimputed regions with the surrounding genotype, with the condition that they
are surrounded (left and right) by identical imputed genotypes. This procedure assumes that a double
recombination event is very unlikely. The maximum region size that is authorized for data filling can be
calculated using the local recombination rate, which is calculated either from external data (e.g., another
saturated map from the same species), or from the current data of the entire F2 population, imputed from Step
1. So regions larger than the maximum size estimated with either method are left unimputed. It is desirable to
use an interference model to estimate the distances (in cM), for instance the one implemented in the Kosambi
mapping function (Kosambi 1944). The method employed in NOISYmputer to calculate recombination
fractions in F2 populations is the standard estimation Expectation-Maximization algorithm (Dempster et al.
1977).

This step leaves the breakpoint regions unimputed.

We can then estimate new values for and by comparing the observed data with the newly imputed𝑒
𝐴

𝑒
𝐵

regions. This is done by simply counting the proportion of A reads in BB-imputed segments, and the
proportion of B reads in AA-imputed segments.

Imputation - Step 3
Step 3 consists in imputing the SNP genotypes in the regions near the recombination breakpoints – i.e.,
between diplotypes of different states. The general idea is to determine an interval of high probability of
presence (loose support interval) of the breakpoint, then to calculate the likelihood of the data under the
hypothesis of a recombined segment.

This procedure allows determining with high confidence a loose support interval where the recombination
breakpoint is located. Here we take the example of a segment BB to the left of the breakpoint and a segment
AB to the right. Since we already know from Step 1 which are the two genotypes at the left and the right of the
breakpoint, we only need to consider the only two possible diplotypes, BB and AB. This saves one degree of
freedom.

If defines the closest SNP position to the point where in Step 1, we take𝑘 𝑝 𝑊
𝑗

= 𝐵𝐵() = 𝑝 𝑊
𝑗

= 𝐴𝐵() 𝑘 − 2𝑚
and as starting points to guarantee that the breakpoint is covered by the interval. Then, for each𝑘 + 2𝑚 𝑆𝑁𝑃

𝑗
of the scanned area, we recalculate and , but this time in asymmetric windows of size𝑝 𝑊

𝑗
= 𝐵𝐵() 𝑝 𝑊

𝑗
= 𝐴𝐵()

. For BB, we define a window from to and for AB a window from to . And𝑚 𝑆𝑁𝑃
𝑗

𝑆𝑁𝑃
𝑗

+ 𝑚 𝑆𝑁𝑃
𝑗

− 𝑚 𝑆𝑁𝑃
𝑗

then, following calculations similar to Step 1 but omitting the probabilities for the AA genotype:

in the B window𝑝 𝑊
𝑗

= 𝐵𝐵() = 𝑒𝑥𝑝 ρ
𝐵𝐵()/ 𝑒𝑥𝑝 ρ

𝐵𝐵() + 𝑒𝑥𝑝 ρ
𝐴𝐵()()

in the H window𝑝 𝑊
𝑗

= 𝐴𝐵() = 𝑒𝑥𝑝 ρ
𝐴𝐵()/ 𝑒𝑥𝑝 ρ

𝐵𝐵() + 𝑒𝑥𝑝 ρ
𝐴𝐵()()

Starting from , and progressing to the right, we look for the first site for which :𝑘 − 2𝑚 𝑆𝑁𝑃
𝑗

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?IzfZRJ
https://www.zotero.org/google-docs/?Tdp4Gy
https://www.zotero.org/google-docs/?Tdp4Gy
https://doi.org/10.1101/2024.03.13.584787

, with = 0.05 by default.𝑃
𝑆𝐼

= 1 − 𝑝 𝑊
𝑗

= 𝐵𝐵()() 1 − 𝑝 𝑊
𝑗

= 𝐴𝐵()() > α
𝑆𝐼

α
𝑆𝐼

The breakpoint loose support interval is defined between the first position from the left and from right(𝑘
𝐿
)

where .(𝑘
𝑅

) 𝑃
𝑆𝐼

> α
𝑆𝐼

The breakpoint support interval and position are then estimated within the loose support interval. To do so,
for each in the breakpoint interval to , a probability that the diplotype’s window contains a𝑆𝑁𝑃

𝑗
𝑘

𝐿
𝑘

𝑅
𝑃

𝑏𝑘𝑝
breakpoint in its middle is estimated. We define a left window for that includes the and𝑝

𝑏𝑘𝑝
𝑊

𝑗
= 𝐵𝐵() 𝑆𝑁𝑃

𝑗
goes to the left until the window’s data count reaches SNPs with at least one read (the left boundary of𝑚/2
this window is called) and a right window for that starts at and goes to the right𝑚

𝐿
𝑝

𝑏𝑘𝑝
𝑊

𝑗
= 𝐴𝐵() 𝑆𝑁𝑃

𝑗
+ 1

until the window’s data count reaches SNPs with at least one read (the right boundary of this window is𝑚/2
called). Values of and are recalculated for each .𝑚

𝑅
𝑚

𝐿
𝑚

𝑅
𝑆𝑁𝑃

𝑗

The log-probabilities for the left and right segments are:

ρ
𝑏𝑘𝑝

𝑊
𝑗

= 𝐵𝐵() =
𝑖=𝑚

𝐿

𝑗

∑ 𝑙𝑜𝑔 𝑝 𝐺
𝑖

= 𝐵𝐵()[]

ρ
𝑏𝑘𝑝

𝑊
𝑗

= 𝐴𝐵() =
𝑖=𝑗+1

𝑚
𝑅

∑ 𝑙𝑜𝑔 𝑝 𝐺
𝑖

= 𝐴𝐵()[]
Then, the probability that the and are surrounding the breakpoint is:𝑆𝑁𝑃

𝑗
𝑆𝑁𝑃

𝑗
+ 1

𝑝
𝑏𝑘𝑝

𝐵𝐾
𝑗() = 𝑒𝑥𝑝 ρ

𝑏𝑘𝑝
𝑊

𝑗
= 𝐵𝐵() + ρ

𝑏𝑘𝑝
𝑊

𝑗
= 𝐴𝐵()()

And after normalization:

𝑃
𝑏𝑘𝑝

𝐵𝐾
𝑗() = 𝑝

𝑏𝑘𝑝
(𝐵𝐾

𝑗
) /𝑚𝑎𝑥 𝑝

𝑏𝑘𝑝
𝐵𝐾

𝑧(): 𝑧 = 𝑘
𝐿
, …, 𝑘

𝑅()
The breakpoint is estimated in the middle of the interval defined by the SNP having the maximal 𝑃

𝑏𝑘𝑝
(𝐵𝐾

𝑗
)

and the next SNP to its right.

Finally, the unimputed genotypes in the breakpoint area are completed in assigning the BB genotype to the
SNPs to the left of the SNP with the max (included) and AB to the right.𝑃

𝑏𝑘𝑝
(𝐵𝐾

𝑗
)

Imputation of breakpoint positions for the other types of homozygous-heterozygous transitions (AB→BB,

AA→AB, AB→AA) are easily derived from the example beforehand.

The support interval for the breakpoint around its most likely position can be defined in searching for the
SNPs (left and right starting from the SNP with the maximum) for which𝑃

𝑏𝑘𝑝
(𝐵𝐾

𝑗
) − 𝑙𝑜𝑔

10
𝑃

𝑏𝑘𝑝
𝐵𝐾

𝑗()() ≥ α
𝑑𝑟𝑜𝑝

, where is the dropping value of . is set to 1 by default, corresponding to ten-fold decrease ofα
𝑑𝑟𝑜𝑝

𝑃
𝑏𝑘𝑝

α
𝑑𝑟𝑜𝑝

compared with .𝑃
𝑏𝑘𝑝

𝑃
𝑏𝑘𝑝

𝐵𝐾
𝑗()

Filtering options – before imputation

Genotypic frequencies, heterozygosity, missing data
The program can filter out SNPs for parental genotypes, and progeny heterozygosity, percentage of missing
data and parental genotypic frequencies. Min and max filtering values can be manually entered (though
usually not recommended), or the program can calculate them from the genotype matrix imported from the
VCF. In this case, genotypic frequencies are calculated for each SNP, and the filter values are derived from the
extreme percentiles of the frequency distribution. Correction factors can be applied to the percentiles, to avoid
too small or too large values.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

Read counts
SNPs with too few or too many reads can be eliminated. This can be useful to, for instance, remove SNPs in
duplicated regions.

Incoherent SNPs
In sequence-based genetic mapping, it is common to observe SNPs that do not segregate the same way as their
immediate environment, indicating a probable mapping error due to, for instance, structural variation
between the reference genome and the population parents, or between the parents, or both. As segregation
distortion is a frequent phenomenon in many organisms, the Mendelian expected frequencies cannot be used
to analyze the SNP segregation. Instead, the procedure defines a window of SNPs around each tested locus.𝑛
By default, =1% the number of SNPs in the largest chromosome. For each window/SNP couple, it calculates𝑛
the genotypes AA, BB and AB frequencies and the reads A and B frequencies across the population from the
genotypes called in the VCF and compares the SNP with the window segregation of genotypes and reads using
a chi-square test, where expected counts are the observed frequencies in the window multiplied by the
population size. It then filters out SNPs for which the chi-square statistic exceeds a defined threshold for
genotypes or reads frequencies.

Filtering options – after imputation

Incoherent chromosome segments (single individual)
Even after imputation and the different filtering operations, some few, improbable chromosome short
diplotypes can still remain in the imputed matrix – we call them “small chunks”. The procedure identifies each
small chunk composed of identical alleles, embedded in a homogeneous genomic environment that has a
different allele. The method resembles the one used in Imputation - Step2.

Consider two SNPs A and C that define the bounds of a region imputed as H and surrounded by regions
imputed as A or B. Search for the SNP B that is the closest to the middle point between A and C (in cM). Also
search for an SNP D before the SNP A so that , and an SNP E after the SNP C so that .𝑑

𝐷𝐴
~𝑑

𝐴𝐵
𝑑

𝐶𝐸
~𝑑

𝐵𝐶

Then, calculate the recombination fractions and from and using the inverse of the Kosambi𝑟
𝐷𝐵

𝑟
𝐵𝐸

𝑑
𝐷𝐵

𝑑
𝐵𝐸

mapping function. Then the maximum probability of the “chunk” to be different to the surrounding genotype
is

𝑟
𝐴𝐵𝐶

= 𝑟
𝐷𝐵

𝑟
𝐵𝐸

The chunks for which are restored with the surrounding genotype; is set to 0.001 by default.𝑟
𝐴𝐵𝐶

≤ α α

Incoherent chromosome segments (cross-population)
Entire chromosome segments can be misplaced due to genomic structural variation. Such segments are called
“aliens” in the program. If their size is too large, the chi-square procedure that filters out the incoherent SNPs
may fail to identify them since it is run before the imputation. Alien segments are easily detected, as they
produce severe map expansion. The procedure searches for SNPs that mark rapid changes in the slope of the
cumulated centimorgans of the genetic map calculated from the imputed matrix. If a SNP marker is detected,
the procedure then searches for the next SNP that is closely linked (by default <0.01) to the SNP located just𝑟
before the slope change. It then eliminates all the SNPs that are in-between.

Running the program
Algorithm implementation
The program is implemented in Java, as a Spring Boot project. Spring Boot is an open-source Java framework
used to create standalone java applications. The executable .jar is built using Maven, an open-source build tool.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

Paths to datafiles and working folders paths, as well as parameters for imputation and filtering can be entered
in a config file or directly in the command line. A “NOISYmputerResults” folder is automatically created, where
the program writes all the output files.

Data specifications
In this current version, NOISYmputer is built and extensively tested to perform on F2 intercross data, that is,
the progeny from F1 self-fertilization (F2). NOISYmputer can also be used on recombinant inbred lines by
single seed descent from the F2 (SSD).

Input data for NOISYmputer are standard Variant Call Format (VCF) files, with chromosome coordinates.
Genotypes (GT field) and allele depths (AD field) must be present in the VCFs. The data should be low
coverage, that is, the sum of all sequences produced per sample is equivalent to 1-3 times (1-3 X) the size of
the reference genome used. Ideally, the VCF should contain only bi-allelic single-nucleotide polymorphisms
(SNPs), however NOISYmputer automatically filters out the other types of sites. Small indels are not handled.
Parental lines need to be included in the VCF file with the prefix “Parent” in their name. Compressed “.gz” VCFs
are accepted.

Results
NOISYmputer, FSFHap and LB-Impute were run on the IFB Core cluster (specs. available at
https://ifb-elixirfr.gitlab.io/cluster/doc/cluster-desc/) with one allocated node per job and 32GB to 64GB of
RAM to make sure that the tested programs are fully efficient.

Details on parameters used for the three imputation methods are provided in Supplementary Data 1.

Using simulations for calibration
To test NOISYmputer’s accuracy and precision in breakpoints estimation, we used simulated F2 datasets
generated using PopSimul (https://forge.ird.fr/diade/recombination_landscape/popsimul). A set of 84 VCFs
with samples and varying values of marker density, mean depth and error rate were generated for a𝑛 = 300
final expected map size of 180 cM (corresponding to an average of 3.6 breakpoints per sample) to mimic the
chromosome 1 of rice. Using five different imputation window sizes, we compared the outputs of
NOISYmputer to the known positions of breakpoints in the simulated data. In total, a set of 420 combinations
were analyzed. All combinations and tested parameters are listed in Table 1. The results of these analyses
confirmed that NOISYmputer efficiently detects the recombination breakpoints and precisely estimates their
positions.

Table 1. Parameter values used in PopSimul to generate simulated F2 VCFs: marker density, mean depth and error rate. All
possible combinations of these parameters were tested and imputed using a range of imputation windows in
NOISYmputer.

Parameters Marker density (in
number of markers
along the chromosome)

Mean depth (in X) Error rate NOISYmputer impute
half window size

Tested values 220,000
180,000
100,000
66,000

0.5
1
1.5
2
2.5
3
4

0.05
0.01
0.005

15
20
30
50
100

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://ifb-elixirfr.gitlab.io/cluster/doc/cluster-desc/
https://forge.ird.fr/diade/recombination_landscape/popsimul
https://doi.org/10.1101/2024.03.13.584787

Breakpoint detection power
We assessed NOISYmputer’s ability to correctly detect all breakpoints within samples by comparing positions
of breakpoints found by NOISYmputer to those of simulated datasets. We considered a breakpoint correct
when the simulated breakpoint position falls within NOISYmputer's loose support interval, along with the
correct transition type.

Across all 420 VCFs, representing an average of 455,000 breakpoints, NOISYmputer demonstrated robust
detection power, correctly finding 99.5% of simulated breakpoints (median at 99.6%). NOISYmputer also
displayed high accuracy as, on average, 98.9% of breakpoints identified correspond to actual breakpoints
(with a median at 100%). Thus, NOISYmputer presents an overall excellent accuracy and power in detecting
breakpoints.

To better understand the impact of each parameter and their interaction on NOISYmputer performance, we
performed a principal component analysis (PCA) on parameters and performance indicators. Accuracy was
primarily influenced by error rates, but was also affected by the imputation window size when excessively
large. Conversely, smaller window sizes enhanced detection power. Also, higher marker density correlated
with improved detection power, as lower densities limit NOISYmputer's ability to identify breakpoints in
regions with high recombination rates.

Some specific combinations decreased NOISYmputer detection accuracy and/or power but overall the lower
performances were still acceptable. For instance, the lowest accuracy was of 72.3% (with error rates at 0.05
and smaller imputation window size of 15), and the lowest power was of 96.9% (with larger imputation
window size of 100). This is expected as small windows with high levels of noise are prone to false positive
breakpoints. On the other hand, large windows (especially if coupled with low depth or marker density) may
miss double recombination events, leading to false negatives (Figure 2 A and B).

The data in the VCF files, such as sequencing depth or marker density or species model, depend on the model
species or sequencing type and are generally not under the user's control. We thus looked for the imputation
window size producing the best results for both breakpoint detection accuracy and power with the VCF that
mimicked best the real F2 rice data we had. In both cases, the optimal results were obtained by the imputation
half window size of 30. Thus, we used this value of 30 later on when exposing NOISYmputer to real datasets.

Precision of breakpoint position
NOISYmputer’s precision was estimated by computing the difference between the simulated breakpoints
positions and the estimated ones by NOISYmputer. We considered the size of the support interval and its
marker density to estimate discrepancy (in number of SNPs) with the actual breakpoint position.

Across all 420 VCFs, a difference of 1,427 bp on average (equivalent to a discrepancy of ~2 SNPs) was
observed. The median difference was even lower, with only 245 bp (< 1 SNP discrepancy). This disparity
between the median and mean is mainly due to extreme combinations, particularly low depth combined with
high error rate. Notably, variance is higher in 0.5X coverage VCFs, becoming more homogeneous at 1X
coverage.

Regarding the imputation window, smaller half-windows resulted in lower average differences between
NOISYmputer and simulated positions but increased the median difference. Consequently, smaller windows
enhanced overall precision while potentially increasing the occurrence of extreme discrepancies.

Error rate estimations
Error rates (and), are recalculated after a first iteration of imputation step 1. NOISYmputer correctly𝑒

𝐴
𝑒

𝐵
estimated the error rates in 100% of the cases, with an average difference between simulated and estimated
error rates of 9.8 10-7 (standard deviation 4.8 10-5) (Supplementary Table S1).

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

Figure 2. Most impacting parameters and data characteristics on NOISYmputer results based on 420 simulated F2
populations. A) Representation of NOISYmputer’s detection accuracy (proportion of NOISYmputer breakpoints being
actual breakpoints from simulated data) in function of NOISYmputer’s detection power (proportion of simulated
breakpoints correctly found by NOISYmputer). NOISYmputer shows excellent power detection and accuracy with at least
72.3% and 96.9% respectively. B) PCA Biplot of NOISYmputer showing VCFs characteristics and imputation window size
influencing detection accuracy and precision with simulated VCFs. The lowest detection powers are observed when high
error rates are coupled with a small imputation half-window size in NOISYmputer. The lowest accuracies correspond to
VCFs imputed with a large imputation half-window size in NOISYmputer and can be accentuated by very low depth (≤ 1X)
and/or low marker density (< 66,000 sites / 44 Mb).

Confirmed efficiency on real data and comparison with other methods
We assessed the performance of NOISYmputer on two real datasets: i) a maize F2 population in GBS with 91
samples, including the parents, and ii) a rice F2 population with 3X coverage in whole-genome sequencing
(WGS) comprising 222 samples, including the parents sequenced at ~30X. Details of how the real dataset for
rice was generated are summarized in the Supplementary Data. The maize dataset is described in the
LB-Impute publication (Fragoso et al. 2016).

In real data, direct estimation of imputation accuracy may be challenging due to the unknown true state at
each locus. However, it is possible to assess the quality of the imputation indirectly by comparing the final
genetic map to, for instance, existing high-quality maps. A correctly imputed dataset should yield a map size –
in centimorgans (cM) – consistent with those derived from high-quality marker data. Conversely, datasets with
a high rate of genotyping errors will exhibit map expansion, resulting in a longer genetic map due to falsely
imputed recombination breakpoints.

Using map size estimates in centimorgans (cM) of chromosome 1 of these datasets, we compared the results of
NOISYmputer to those of LB-Impute and FSFhap (Figure 3 and Table 2). Concerning the maize GBS dataset,
LB-Impute and FSFhap strongly overestimated the map size expected from high-quality datasets (respectively
633 cM and 13,271 cM), whereas NOISYmputer’s map was in range with the expected map size (203 cM).
Regarding the Rice WGS dataset, while both LB-Impute and FSFhap yielded maps much larger than expected
(23,436 cM and 337,750 cM respectively), NOISYmputer estimated a map size close to the expected value (213

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?KhGlr0
https://doi.org/10.1101/2024.03.13.584787

cM). Also, results from FSFhap on PopSimul data produced very large map size estimations for high error rates
(5%) VCF, while they were qualitatively similar to NOISYmputer’s for lower (1% and .5%) error rates.

To further estimate the performance of NOISYmputer on real datasets we also performed comparisons on
breakpoint detection accuracy, detection power, and position estimate in the 222 F2 Rice population. This
dataset includes 20 samples sequenced at ~20X depth, and artificially subsetted to 3X (that we call
pseudo-3X). These 20 samples allow for a more robust evaluation as their breakpoints are well estimated
thanks to their better depth. We processed similarly to the simulated analyses and compared breakpoint
detection accuracy, power, and precision of breakpoint estimates for NOISYmputer against the accurately
estimated breakpoints at 20X coverage. Unfortunately, we were not able to compare NOISYmputer results to
those of FSFHap and LB-impute as, even if we managed to retrieve each breakpoint position estimate, we
could not easily check which were actual breakpoints and which were false positives, as TASSEL FSFHap and
LB-impute do not provide support intervals for breakpoints.

Overall, NOISYmputer demonstrated excellent results with, on average, 99% accuracy and 97% detection
power. Regarding precision, on average the difference in position was of 10,219 bp, while the median was of
only 415 bp. The large difference between the average and the median is due to a few breakpoints estimated
far from their true position. Indeed, 80% of the breakpoints were still estimated at less than 1,669 bp from
their true position. In terms of number of SNPs, the discrepancy was of 2 SNPs on average (median: 1)
(Supplementary Table S2).

Overestimation of map sizes was mostly due to misinterpretation of noisy data by FSFHap and LB-Impute.
These discrepancies frequently arise in regions corresponding to structural variations between parental
genomes. Such variations can occur, for instance, when attempting to map onto regions found exclusively in
the Parent A genome, which serves as the reference. In such cases, mapping reads from Parent B poses
challenges due to the absence of “B reads”, induced by deletions in the Parent B genome, causing these regions
to resemble an A haplotype and resulting in false recombination events according to imputation softwares.
This phenomenon is accentuated in WGS data compared to GBS data as the complete genome is sequenced
and mapped, thus increasing the number of markers. Including more sites, inducing sites belonging to peculiar
genomic structures, can hinder the quality of imputation if the software does not take into account the
coherence of a marker with its surrounding environment in the population. Though FSFHap and LB-impute
might be precise in the estimated breakpoints positions, their lack of accuracy in breakpoints detection leads
to results, on whole genome datasets, difficult to use without the help of complex filtering steps. NOISYmputer,

Table 2. Comparison of estimated and expected map sizes for three different datasets using NOISYmputer, FSFHap and
LB-Impute. The 84 VCFs generated using PopSimul have varying numbers of markers (66,000, 100,000, 180,000 or
220,000), depending on the settings used to generate the VCFs. Overall, NOISYmputer is showing considerably higher
accuracy in map size estimation compared to FSFHap and LB-Impute.

Dataset Software Estimated map
size (cM)

Expected map
size (cM)

Initial number of
markers in VCF

F2 Maize GBS
n = 91 samples including
parents

NOISYmputer 203

~200 17,945FSFHap 13,271

LB-Impute 633

F2 Rice WGS
n = 222 samples including
30X parents

NOISYmputer 213

183 254,095FSFHap 337,750

LB-Impute 23,436

84 PopSimul F2s
n = 300 samples each
including parents

NOISYmputer 180

180
Different number of
markers depending on
the simulation settings

FSFHap 479,399

LB-Impute N/A

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

on the contrary, is very efficient at correcting mapping issues or divergence between parental genome
structures.

A resource-optimized software, CPU- and RAM-efficient
In our comparative analysis of the NOISYmputer with established counterparts, we conducted comprehensive
benchmarks, focusing on execution time and RAM usage (Table 3 and Figure 3). To do so, we ran NOISYmputer,
FSFHap and LB-Impute on simulated and real datasets. We then retrieved their CPU time, “wall clock”
execution time and RAM usage using the seff command on the IFB computing cluster.

Concerning the F2 Maize GBS dataset, NOISYmputer ran ~10 and ~45 times faster than FSFhap and LB-Impute,
respectively. It also used less RAM (~3.4 GB), ~3 times less than FSFHap and ~21 times less than LB-Impute.

Regarding the F2 Rice WGS dataset, NOISYmputer used slightly less RAM than FSFHap and was ~13 times
faster (< 6 min vs. 1h19m). LB-Impute showed poor CPU and RAM efficiency as NOISYmputer used ~9 times
less RAM and ran ~145 times faster.

Due to the excessive computation time on this single smaller dataset, LB-Impute was excluded from the
remaining comparisons with the 84 PopSimul VCFs with 300 samples. It is interesting to note that FSFHap
resource efficiency is better on simulated than on real datasets even though they have more samples. Indeed,
FSFHap used on average 1.93 GB of RAM, whereas NOISYmputer was stable at 3.61 GB. NOISYmputer was still
faster than FSFHap on average, with ~5 min, while FSFHap ran in ~9 min. This underlies the difficulty that
FSFHap has to impute noisy data, partly due to structural variants and calling errors. These results underscore
NOISYmputer’s efficiency improvement in processing imputation tasks, especially compared to existing
software for bi-parental population imputation.

Figure 3. Barplot of CPU time and RAM resource usage for NOISYmputer (orange), LB-Impute (gray) and FSFHap (blue) on
three datasets. Rice_WGS is an F2 Rice WGS dataset with samples including parents; PopSimul_84 values are𝑛 = 222
averages across 84 VCFs generated with PopSimul, each VCF containing samples including parents, simulated𝑛 = 300
using ranges of depth, marker density and error rate to mimic different characteristics of F2 VCFs; Maize_GBS is an F2 Maize
GBS dataset with samples including parents (with a lower marker density than Rice_WGS). NOISYmputer is overly𝑛 = 91
faster and more RAM-efficient in all conditions than FSFHap and LB-Impute, with the exception for RAM usage on
simulated VCF files of PopSimul. No data is shown for PopSimul_84/LB-Impute, as LB-Impute was not benchmarked due to
excessive CPU time.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

Table 3. CPU and RAM usage of NOISYmputer, FSFHap and LB-Impute for three datasets based on the output of the seff
command on the IFB cluster. NOISYmputer 1st and 2nd Runs are displayed as NOISYmputer shows better CPU time usage
for the second run since the conversion of the raw VCF file has already been done. For LB-Impute, as imputation is
processed in two steps, CPU time and execution time results are the sum of the two steps; RAM usage corresponds to the
highest RAM usage of the two steps (offspring imputation). For the 84 PopSimul VCFs section, results correspond to the
average of resource usage for each of the 84 PopSimul VCFs for an imputation half-window of 30 SNPs with NOISYmputer
and the default window size (50) of FSFHap. All tests were conducted on the IFB Core cluster. *As LB-impute showed
excessive time and RAM consumption on the Rice_WGS dataset, we did not benchmark the 84 PopSimul VCFs with
LB-impute.

Datasets Softwares CPU time
(h:m:s)

Total execution time
(h:m:s)

RAM
(GB)

F2 Maize GBS
n = 91 samples
including parents

NOISYmputer
2nd Run 00:00:07 00:00:09 1.00

1st Run 00:00:27 00:00:28 1.00

FSFHap 00:06:49 00:04:35 3.42

LB-Impute 00:20:59 00:21:04 21.61

F2 Rice WGS
n = 222 samples
including 30X parents

NOISYmputer
2nd Run 00:06:49 00:04:35 3.42

1st Run 00:09:47 00:06:44 3.36

FSFHap 01:19:00 01:19:06 4.02

LB-Impute 16:18:52 16:19:21 31.48

84 PopSimul VCFs
with n = 300 samples
each including parents

NOISYmputer 1st Run 00:05:18 00:05:39 3.61

FSFHap 00:09:20 00:09:24 1.93

LB-Impute* NA NA NA

Availability and Future Directions
Availability
NOISYmputer is available as a multiplatform (Linux, macOS, Windows) Java executable at the URL
https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags. The
source code and the documentation are available at the same URL. A Quarto markdown companion
(compatible with R markdown and Jupyter notebooks IDE) that allows to display graphics of statistics (e.g.,
genotypic frequencies on SNPs and samples) and graphical genotypes from NOISYmputer output files was
developed and is also available.

NOISYmputer and its companion are distributed under the GNU Affero General Public License V3.0.

Future directions

NOISYmputer’s strengths
Although previous methods have made significant advances in addressing the challenges listed above, the
noisiness of imputed datasets are still producing expanded genetic maps, excess heterozygosity, and
probabilistically unlikely recombination events contained within a short physical interval. Here, we introduce
an algorithm which, in a series of steps, addresses each source of error to create higher-quality datasets for
improved trait mapping and genomics-assisted breeding. Our algorithm represents a step to systematically
address all sources of NGS genotyping error, and hopefully the corrections brought here will be integrated into

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://doi.org/10.1101/2024.03.13.584787

future algorithm development. Indeed, key features of NOISYmputer are its pre- and post-filtering steps that
other currently available software does not perform. In filtering SNPs and segments that are incoherent with
their environment and with the population local recombination landscape, NOISYmputer efficiently eliminates
errors of genotype calling, sequencing errors or errors generated by structural variants.

NOISYmputer is a resource-effective software developed in Java, allowing its integration in bioinformatics
pipelines. NOISYmputer is parallelizing computation at the sample level in several steps of the algorithm,
which increases its speed considerably. The use of a Java standalone executable also allows to simulate
parallelization in running each chromosome on a separate core of a server/cluster. Moreover, NOISYmputer
employs a maximum likelihood method, instead of hidden Markov models, which considerably reduces
computational complexity, compared to FSFHap (Swarts et al. 2014) and LB-impute (Fragoso et al. 2016),
while enhancing result accuracy and flexibility across diverse datasets. Indeed, NOISYmputer is less sensitive
to noisy regions (due to mapping artifacts for example) as it can handle large windows without being greedy
in RAM and computation time to overpass complex regions.

Notably, NOISYmputer's speed allows iterative refinement of parameter settings. For example, the size of the
imputation window (in number of SNPs), like in other imputation programs (e.g., FSFhap, LB-Impute), is
arbitrarily fixed by the user. The most appropriate value for depends on several factors, including depth and𝑚
SNP density. A convenient way to determine which value for to use is to run the imputation several times𝑚
with different values until reaching the expected distribution of the number of recombination breakpoints per
sample across the population (if previously known). Often, saturated genetic maps generated with other types
of markers are available in the literature, from which the expected distribution is easily derived. With our rice
data, the imputation algorithm gave the best results with , so even a few runs should provide a𝑚 = 30
satisfying window size.

Furthermore, NOISYmputer generates a .json file from the VCF during the initial run, that is used by the
consecutive runs, eliminating the redundant tasks of converting the input VCF file, thus enhancing speed for
subsequent launches on the same dataset.

Its robust performance extends to various VCF characteristics, accommodating differences in SNP quality,
marker density, error rates, and sequencing depths. This is partly due to its low sensitivity to the SNP calling
step used to generate the input VCF, as NOISYmputer is re-estimating the probabilities of genotypes using the
allele depth at each site, along with information of the surrounding environment and of the whole population.
This results in maintenance of overall excellent detection accuracy, detection power and position precision on
recombination breakpoints even with very low coverage datasets (≤1X). However, users should exercise
caution in selecting an appropriate imputation window size to mitigate the risk of false positives and
negatives.

In addition to its performance benefits, NOISYmputer provides users with several comprehensive breakpoint
confidence information allowing to further filter the identified breakpoints. This is a feature that is innovative
and useful and not available in other software, to our knowledge. NOISYmputer also outputs statistics on
genotypic/allelic frequencies, samples and genetic map among others.

Suggestions for Improvement
NOISYmputer could benefit from several improvements. The first one is including more population types. In
the next version, we will implement F2 backcross, or BC1F1, the progeny of the F1 hybrid crossed with one of
the parents (BC1) ; doubled haploid of F1 gametes (DH) ; F2 intercross, that is, the progeny from F1
self-fertilization (F2); recombinant inbred lines by single seed descent from the the BC1F1 (BCSSD); the
unconventional mating design (UMD) BC1F3, derived by two generations of self-fertilization of BC1F1
individuals. For now, it has been extensively tested and optimized for F2 crosses between distant parents
which might be one of the hardest designs to estimate breakpoints from. We thus are confident that the
algorithm can be adapted to these other types of crosses.

Breakpoint detection and accuracy could benefit from a more complex modeling of the likelihood. Currently,
we test for the existence of a single transition within the loose support interval in imputation Step 3. Testing
for one, two or even three transitions in a single interval could increase the probability of finding close double
recombination events if they happened to have a higher probability in the tested region. Breakpoint position

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?WKqCrl
https://www.zotero.org/google-docs/?25rbX0
https://doi.org/10.1101/2024.03.13.584787

estimation, on the other hand, might be improved by using a combination of NOISYmputer’s current algorithm
with a hidden markov model occurring in the Step 3 of imputation. This way, a smaller window size could be
applied and the region to scan would be reduced to a very limited percentage of the genome only, resulting in a
considerable gain of time.

NOISYmputer is robust on a broad range of samples and its computation time makes it very convenient. Part of
the success of NOISYmputer lies in the fact that it performs pre- and post-imputation filtering steps that
remove, among other things, incoherent SNPs, meaning SNPs that do not segregate the same way as its
immediate environment, often indicating mapping errors. This filtering of incoherent SNPs step uses a
Chi-square test to evaluate if the observed pattern is reasonable. Unfortunately, Chi-square test thresholds are
dependent on sample sizes. Thus, when imputing many samples (e.g., =2000) with NOISYmputer, the user𝑚
has to adapt the Chi-square threshold to the sample size, which is not convenient. A solution to this would be
to use a “Cramér’s V” statistic instead (Cramér 1999), which would be independent of the sample number in
the VCF.

Unlike FSFHap or LB-Impute, NOISYmputer does not impute the parental genotypes, which might result in the
loss of SNPs, especially in datasets derived from very low-coverage sequencing. Although we recommend
sequencing the parents at high coverage (> 20X), it is not always possible – for instance, when re-analyzing
historical data. The next version of NOISYmputer will impute the parental genotypes when necessary.

Finally, as pointed in the Results section, the imputation half-window size can have an impact on the outputs of
NOISYmputer. NOISYmputer could benefit from an iterative process that would check for different window
sizes and analyze the convergence of the results to select the appropriate window size and thus to achieve the
best compromise between detection accuracy and power, along with precision.

Acknowledgements
We thank Karine Labadie (CEA, Institut de Génomique, Genoscope, Evry, France) for sharing the WGS data for
the sequencing of rice populations, Christine Tranchant-Dubreuil (IRD, Montpellier, France) for her help with
retrieving the Rice_WGS data and François Sabot (IRD, Montpellier, France) for coordinating the IRIGIN
project. We are grateful to the Institut Français de Bioinformatique (IFB) for providing computing resources.
We also thank the Yale Center for Research Computing for guidance and use of the research computing
infrastructure. The following programs supported parts of this initiative: the French ANR project "LANDSREC"
(ANR-21-CE20-0012-03), the French Government France Génomique program through its International RIce
Genome INitiative “IRIGIN” project, and the CGIAR Research Program “RICE”.

Author’s contributions
CT participated to the algorithm development, designed and ran the bioinformatics pipeline to call SNPs for
the WGS dataset (F2 and SSD), benchmarked and compared all softwares, wrote the quarto markdown
companion, tested the program for debugging and took part in the manuscript conception. AB participated in
the algorithm development and implemented it in Java, took part in the manuscript conception. CF helped with
running LB-Impute for the Rice_WGS dataset for the previous version of NOISYmputer and edited the
manuscript. AG designed and ran the bioinformatics pipeline to call SNPs for the Rice_WGS dataset for the
previous version of NOISYmputer. JFR took part in the initial design and definition of specifications for
NOISYmputer. ML conceptualized the initial imputation algorithm for NOISYmputer, participated in its further
development and took part in the manuscript conception.

References
Browning S. R., and B. L. Browning, 2007 Rapid and Accurate Haplotype Phasing and Missing-Data Inference

for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American

Journal of Human Genetics 81: 1084–1097. https://doi.org/10.1086/521987

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?nxH3zj
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://doi.org/10.1101/2024.03.13.584787

Browning B. L., X. Tian, Y. Zhou, and S. R. Browning, 2021 Fast two-stage phasing of large-scale sequence data.

The American Journal of Human Genetics 108: 1880–1890.

https://doi.org/10.1016/j.ajhg.2021.08.005

Cramér H., 1999 Mathematical Methods of Statistics. Princeton University Press.

Davey J. W., and M. L. Blaxter, 2010 RADSeq: next-generation population genetics. Briefings in Functional

Genomics 9: 416–423. https://doi.org/10.1093/bfgp/elq031

Dempster A. P., N. M. Laird, and D. B. Rubin, 1977 Maximum Likelihood from Incomplete Data via the EM

Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39: 1–38.

Elshire R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, et al., 2011 A Robust, Simple

Genotyping-by-Sequencing (GBS) Approach for High Diversity Species, (L. Orban, Ed.). PLoS ONE 6:

e19379. https://doi.org/10.1371/journal.pone.0019379

Fragoso C. A., C. Heffelfinger, H. Zhao, and S. L. Dellaporta, 2016 Imputing Genotypes in Biallelic Populations

from Low-Coverage Sequence Data. Genetics 202: 487–495.

https://doi.org/10.1534/genetics.115.182071

Heffelfinger C., C. A. Fragoso, M. A. Moreno, J. D. Overton, J. P. Mottinger, et al., 2014 Flexible and scalable

genotyping-by-sequencing strategies for population studies. BMC Genomics 15: 979.

https://doi.org/10.1186/1471-2164-15-979

Howie B., C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis, 2012 Fast and accurate genotype

imputation in genome-wide association studies through pre-phasing. Nat Genet 44: 955–959.

https://doi.org/10.1038/ng.2354

Huang X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, et al., 2009 High-throughput genotyping by whole-genome

resequencing. Genome Res. 19: 1068–1076. https://doi.org/10.1101/gr.089516.108

Kosambi D. D., 1944 The Estimation of Map Distances from Recombination Values, pp. 125–130 in D.D.

Kosambi: Selected Works in Mathematics and Statistics, edited by Ramaswamy R. Springer India, New

Delhi.

Swarts K., H. Li, J. A. Romero Navarro, D. An, M. C. Romay, et al., 2014 Novel Methods to Optimize Genotypic

Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. The Plant Genome 7:

plantgenome2014.05.0023. https://doi.org/10.3835/plantgenome2014.05.0023

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://doi.org/10.1101/2024.03.13.584787

Xu C., Y. Ren, Y. Jian, Z. Guo, Y. Zhang, et al., 2017 Development of a maize 55 K SNP array with improved

genome coverage for molecular breeding. Mol Breeding 37: 20.

https://doi.org/10.1007/s11032-017-0622-z

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://doi.org/10.1101/2024.03.13.584787

