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Background: Spatial transcriptomics allows gene expression to
be measured within complex tissue contexts. Among the array
of spatial capture technologies available is 10x Genomics’ Vi-
sium platform, a popular method which enables transcriptome-
wide profiling of tissue sections. Visium offers a range of sample
handling and library construction methods which introduces a
need for benchmarking to compare data quality and assess how
well the technology can recover expected tissue features and bi-
ological signatures.
Results: Here we present SpatialBench, a unique reference
dataset generated from spleen tissue of mice responding to
malaria infection spanning several tissue preparation protocols
(both fresh frozen and FFPE samples, with and without CytAs-
sist tissue placement). We noted better quality control metrics
in reference samples prepared using probe-based capture meth-
ods, particularly those processed with CytAssist, validating the
improvement in data quality produced with the platform. Our
analysis of replicate samples extends to explore spatially vari-
able gene detection, the outcomes of clustering and cell deconvo-
lution using matched single-cell RNA-sequencing data and pub-
licly available reference data to identify cell types and tissue re-
gions expected in the spleen. Multi-sample differential expres-
sion analysis recovered known gene signatures related to biolog-
ical sex or gene knockout.
Conclusions: We framed a comprehensive multi-sample analy-
sis workflow that allowed us to generate consistent results both
within and between different subsets of replicate samples, en-
abling broader comparisons and interpretations to be made at
the group-level. Our SpatialBench dataset, analysis, and work-
flow can serve as a practical guide for Visium users and may
prove valuable in other benchmarking studies.

Spatial transcriptomics | Benchmarking | 10x Visium | Multi-sample analysis |
Differential expression

Correspondence: mritchie@wehi.edu.au

Background
Spatial transcriptomic technologies allow gene expression to
be measured in complex tissue samples in an x-y context
(1, 2). The main approaches for spatially resolving transcript
expression rely on either imaging based in-situ hybridization-
based methods (e.g. MERFISH (3), seqFISH (4) and CosMx
SMI (5)), in-situ sequencing-based methods (e.g. STARmap
(6) and HybISS (7)) or array-based sequencing protocols
(e.g. Visium (8), Slide-Seq1&2 (9, 10) and Stereo-Seq (11)).

Methods vary considerably in terms of the spatial resolu-
tion they allow (from sub-cellular to multi-cell) and number
of features that can be measured (from small focused gene
panels to genome-wide expression). The rapid expansion
in both the spatial transcriptomic protocols available to re-
searchers and subsequent analysis methods (12) introduces a
need for benchmarking to compare the performance of dif-
ferent combinations of platforms and analysis approaches
(13). Recent cross-platform benchmarking efforts include the
cadasSTre project (14) which focuses on sequencing-based
methods across a range of mouse tissues, comparison analy-
ses of imaging-based methods on human cancer and mouse
brain tissue (15, 16), and SpaceTx which includes both imag-
ing and sequencing-based technologies using human brain
and mouse primary visual cortex tissue (17). Other bench-
marking studies aim to evaluate the performance of analysis
methods developed for different pre-processing and down-
stream procedures (18–21).

By far the most popular sequencing-based method at present
is the commercially available Visium method from 10x Ge-
nomics. Visium’s experimental process involves the capture
of spatially barcoded mRNA transcripts on a slide, followed
by reverse transcription, library preparation and sequencing.
The resulting data integrates gene expression profiles with
spatial coordinates. A notable feature is Visium’s versatility
in terms of sample compatibility, being able to accommo-
date both fresh frozen (OCT) and formalin-fixed, paraffin-
embedded (FFPE) samples, expanding its applicability to
a broad range of tissue types and experimental conditions.
This flexibility allows researchers to leverage existing FFPE
archives, overcoming the limitation of previous single-cell
and spatial technologies that are restricted to OCT preserved
tissue (22).

A question that requires exploration for Visium technology
was how different sample handling methods affect data qual-
ity, spatially variable gene detection and downstream anal-
ysis results. To address this, we generated the Spatial-
Bench reference dataset, which includes replicate tissue sec-
tions that span different sample handling methods, including
fresh frozen with manual tissue sectioning and polyA library
preparation and the CytAssist (CA) automated method that
uses a probe-based protocol, as well as FFPE with manual
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sectioning or CytAssist (which both use probe-based proto-
cols).
Mouse spleens responding to malaria infection were selected
as a reference tissue in our study. As Plasmodium spp. are
blood-borne parasites, the spleen constitutes a key site in the
immune response to infection, with antibody responses play-
ing an important role in protection (23–27). The develop-
ment of this antibody-mediated immunity requires the estab-
lishment of germinal centre (GC) structures in lymphoid or-
gans, where activated B cells undergo antibody affinity mat-
uration. GC responses to malaria have been found to be reg-
ulated by transcription factors, such as T-bet, which are pref-
erentially activated in response to the highly inflammatory
milieu elicited during acute infection (28, 29). This infec-
tion thus provides an excellent experimental system to not
only investigate functional organ architecture but also anal-
yse specific structures within the spleen only visibly upregu-
lated in response to an active infection. Samples from both
male and female mice along with Tbx21fl/flCd23Cre (condi-
tional knockout of T-bet in mature follicular B cells) samples
were included in our study, allowing us to explore our abil-
ity to recover sex-specific gene signatures as well as examine
spatial influence of T-bet on GC response.
We use these data to compare sample handling and analysis
methods, develop a workflow for multi-sample analysis that
is able to recover expected ground truth in terms of both tis-
sue architecture and differential expression of known gene
signatures.

Results
SpatialBench reference samples profiled using 10x
Visium and scRNA-seq technology across different
sample handling × protocol combinations. Our study
profiled mouse spleen responding to malaria infection (Fig-
ure 1a) in a total of 13 samples (Figure 1b) sequenced across
4 experiments on an Illumina NextSeq 2000 instrument (Sup-
plementary Table S1). The samples were processed in 4 dif-
ferent ways (or “Sample Types”): OCT, OCT CA, FFPE,
and FFPE CA (Figure 1b). These refer to tissue preser-
vation, either as fresh frozen at optimal cutting tempera-
ture (OCT) or formalin-fixed paraffin-embedded (FFPE), and
tissue placement, either directly placed (Manual) or using
CytAssist (CA). Samples were of different genotypes and
sexes (Wild Type (WT) females, T-bet knockout (KO male)
or control (CTL male), where the KO and CTL samples
were available as OCT preserved only. We grouped these
samples by sample type and will refer to them broadly as:
FFPE Experiment 1, OCT Experiment 2, FFPE Experiment
3, and CA Experiment 4 (Supplementary Table S1). Samples
processed by FFPE and also those prepared with CytAssist
use probe-based ligation protocols for library construction,
whereas OCT with manual tissue placement uses a poly-A-
based capture method. A separate matching single-cell RNA-
seq dataset was also generated from three FFPE samples.
The data processing workflow builds upon scRNA-seq anal-
ysis, with the additional use of spatial coordinate information
in steps such as feature selection and clustering (Figure 1b).

An overview of our dataset shows that across all experiments,
probe-based samples had higher UMI counts and numbers of
detected genes, particularly the CytAssist samples (Figure 1c,
d). Spots located beyond tissue boundaries, and many spots
with low UMI counts and few detected genes were filtered
out during quality control (Figure 1b).

Probe-based samples have higher UMI counts. Tissue
sections were placed on a Visium slide containing 4,992 spots
that were used to measure gene expression. The number of
spots that were covered by tissue depends on both its size
and shape. Across our experiments using mouse spleen, an
average of 1,957 spots (39%) were covered by tissue (range:
592-3,224, see Supplementary Table S2). The amount of se-
quencing carried out for each sample was adjusted such that
larger tissue sections were sequenced more deeply, to have
on average the same number of reads per spot than smaller
tissue samples.
Samples had a mean of 39,616,270 valid UMI counts, that
is, UMIs covered by tissue. Across each experiment, poly-
A-based OCT Experiment 2 had a mean of 23,642,694 valid
UMI counts, while for probe-based experiments (FFPE Ex-
periment 1 and 3, CA Experiment 4) this was higher at
41,630,649. Separately, CA Experiment 4 had the highest
mean valid UMI count of 70,815,948, and FFPE Experiment
3’s mean (50,309,451) was almost double that of FFPE Ex-
periment 1 (26,355,327).
Poly-A-based OCT samples had a mean of median UMI
counts per tissue-covered spot of 8,360. This is lower than
our probe-based experiments which had higher sensitivity;
with FFPE Experiment 1 having a median of 33,390 UMI
counts per spot, FFPE Experiment 3 at 21,730, and CA Ex-
periment 4 at 24,804. Within each experiment, UMI counts
were generally consistent across samples. FFPE CA sam-
ple 713, however, had a notably lower UMI count and a me-
dian UMI count of less than half compared to the other CA
samples (Figure 2a). Differences between poly-A and probe-
based experiments are shown for sample 709 as an example
in Figure 2b and c. They can also be observed in OCT sam-
ples (KO vs CTL and OCT) having lower counts in Supple-
mentary Figure S1. An edge bias was also apparent, char-
acterised by higher UMI counts along the edges of the OCT
samples. This raises the possibility of under-permeabilisation
following tissue optimisation, before library preparation and
sequencing.

Probe-based samples have higher mapping confi-
dence. Reads mapped with more than 85% confidence to the
probe set in our probe-based experiments. All samples in
FFPE Experiment 1 and CA Experiment 4 had reads mapped
with more than 97% confidence, whilst FFPE Experiment 3
ranged between 85-98%. This was expected as probe sets are
highly specific to known sequences in the reference transcrip-
tome. We also observed that poly-A-based experiments (Ex-
periment 2 plus two related OCT experiments not included in
this dataset) had lower values of reads being mapped confi-
dently to the transcriptome (66-79%).
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Fig. 1. Overview of the experimental workflow, data generated and its analysis. (a) The mouse spleen and major cell types (B, T and Plasma cells, Erythrocytes, Neutrophils
and Macrophages) and structures (Germinal centres which are predominantly made up of B cells) expected following infection, which are organised into broader tissue regions
(Red and White pulp). Figure created with BioRender.com. (b) 13 samples were captured over 4 10x Genomics Visium OCT slides and 3 FFPE slides, and sequenced over
5 runs on an Illumina NextSeq 2000. Samples are categorised by sex, genotype, tissue preparation protocol, library construction protocol, and tissue placement. A matching
scRNA-seq sample of 3 mouse spleens (samples denoted with an asterisk) was captured over 1 gel bead-in emulsion (GEM) well, and gene expression and hashtag oligos
(HTOs) were sequenced over 1 Illumina run. Subsequent data analysis involved processing with 10x Genomics Space Ranger 2.0.0, and quality control, feature selection,
dimensionality reduction and downstream analysis using various R-based software packages. Figure created with BioRender.com. (c) Violin plots of UMI counts per spot
for all samples, grouped by tissue preparation protocol. The y-axis is on a log10 scale for clarity. (d) Violin plots of number of genes detected per spot for all samples,
grouped by tissue preparation protocol. (e) A scatterplot showing the fraction of reads captured by spots under tissue against the mean number of reads per spot. The order
of experiments is reflected in the shared legend.

Du, Wang, Law, Amann-Zalcenstein et al. | Benchmarking 10x Visium platforms with SpatialBench 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.13.584910doi: bioRxiv preprint 

BioRender.com
BioRender.com
https://doi.org/10.1101/2024.03.13.584910
http://creativecommons.org/licenses/by/4.0/


CytAssist facilitates the capture of more reads under
tissue. Importantly, although some samples from earlier ex-
periments had higher sequencing read numbers, the fraction
of reads in spots under tissue was close to 100% for samples
placed with CytAssist (Figure 1e). This is another indication
of higher quality overall, as a lower proportion of reads would
have been filtered out from these samples during quality con-
trol. In contrast, approximately 65-87% of reads fell within
tissue boundaries for OCT and FFPE samples. For some
samples like OCT 460 and FFPE 708, a notable amount of
sequencing reads were assigned to spots outside the bound-
ary of the tissue sections. Tissue boundaries are annotated
by imaging processing software, but some images or areas
of the tissue can be blurry and boundary definitions can be
inaccurate, making it difficult to decide whether a spot falls
within or outside of tissue boundaries. The improvement in
reads captured within tissue boundaries for CytAssist experi-
ments may be attributed to enhancements implemented in the
CytAssist platform.

Removing low quality spots. The initial phase of all analy-
sis workflows involves evaluating data quality. This includes
the detection of outlier spots, removal of low-quality spots,
and normalisation (Figure 1b). Only spots covered by tis-
sue were retained. They were then further filtered out from
downstream analyses if specific criteria for library size, de-
tected features and mitochondrial content were not met, in-
dicative of low quality. Per-spot metrics were computed, and
outliers were identified using the scater (30) package. Fol-
lowing spot filtering, normalisation using scRNA-seq meth-
ods from scater and scran (31) were applied.
Following quality control, the proportion of spots covered by
tissue remaining for further analysis was greater than 0.90
for all probe-based samples, except FFPE sample 708 (0.87)
(Supplementary Table S2). On average, this was 0.95 for
probe-based samples, compared to 0.83 for poly-A-based
samples, as lower proportions of UMIs and spots were re-
moved, especially in CA samples. This led to higher propor-
tions of UMIs per spot and spots under tissue passing quality
control and being retained for downstream analysis. FFPE
Experiment 1 samples retained an even higher average pro-
portion of spots (0.96) following filtering. However, these
samples initially started with low numbers (<1,000) and low
proportions (on average, 0.14) of spots under tissue. Ad-
ditionally, they displayed the highest proportions of UMIs
removed among probe-based samples, further restricting the
number of spots available for downstream analysis.

Different genes are detected for poly-A-based OCT
samples than other sample types. The poly-A-based
capture method, used for OCT samples, selects genes or tran-
scripts by their poly-A tail, in theory allowing any expressed
gene to be detected given sufficient sequencing. This is in
contrast with the other sample types (OCT CA, FFPE and
FFPE CA), where genes are selected using a uniform set
of probes. For these probe-based samples, only genes that
are both expressed and within the probe set can be detected.
However, as the number of features is smaller in the probe

set, more genes can be detected at a given sequencing level.
Across our samples, we identified 1,636 genes detected in
OCT samples that used poly-A-based gene selection (Figure
2d). Here, we define detected genes as genes with a count
of 3 or more in at least 10% of spots under tissue remain-
ing after quality control. For probe-based gene selection, a
much higher number of genes were detected; 5,800 genes for
OCT CA samples and 6,681 for FFPE and 6,581 for FFPE
CA samples. Sample 709 is used to show these differences
in Figure 2b and c. In total, 38% of 19,465 genes targeted in
Visium Mouse Transcriptome Probe Set v1.0 were detected
in the probe-based samples. The largest overlap in detected
genes is between the 3 probe-based sample types. The ef-
fect of probe-based gene selection on OCT tissue for detected
genes is apparent in Figure 2f, as there is a much smaller
overlap (22.6%) between OCT and OCT CA samples, com-
pared to the high overlap (84.3%) between FFPE and FFPE
CA samples.
At a more lenient threshold of detected genes being defined as
genes with a count of 3 or more in at least 1% of spots (Sup-
plementary Figure S2), the largest overlap in detected genes
instead includes all 4 sample types. This implies that most
of the original overlapping genes between poly-A-based and
probe-based samples were very lowly expressed under the
poly-A protocol. Similar numbers in the overlap of probe-
based samples were observed for both thresholds, 4,000
genes.
It is worth noting that specific sets of genes, such as mi-
tochondrial genes, were missing from probe-based sam-
ples (Figure 2b), making detected genes inconsistent be-
tween poly-A-based and probe-based samples. Additionally,
there were 177 genes detected only in OCT samples (Fig-
ure 2d), of which there were no mitochondrial genes, but
57% were either ribosomal or mitochondrial ribosomal pro-
tein genes. These were also not detected in the probe set
as expected. However, of the remaining 43%, more than
half were included in the probe set, although not detected in
the probe-based samples according to the detection threshold
used. These consisted mainly of mitochondria-related genes,
though a few immune-related genes were detected such as
Csf1, characteristic of red pulp macrophages (32), and Cd7
expressed in T cells (33). OCT-only genes that were not
found in the probe set include Hba-a1 expressed in erythro-
cytes (34), and Ccl19 and Ccl21a involved in T cell immune
responses (35).

Downstream analysis by sample type. Following pre-
processing of individual samples, we applied a standard Bio-
conductor workflow (36) to explore feature selection and
clustering. Highly variable genes (HVGs) could be identi-
fied using established scRNA-seq methods from the scran
package (31) (Figure 3a, top row), though HVGs are notably
defined based on expression data along and do not consider
spatial information. Clustering was also possible following
scRNA-seq methods with default parameters, deriving clus-
ters in each sample without using spatial coordinates. How-
ever, different numbers of clusters were obtained for each
sample (Figure 3b).
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Fig. 2. Quality control procedures. (a) The spatial distribution of UMI counts per spot in FFPE CytAssist (CA) samples 709 and 713. (b) Quality control metrics for FFPE CA
sample 709 following filtering with scater. (c) Quality control metrics for OCT sample 709 following filtering with scater. (d) UpSet plot showing the overlap of detected genes
in all wild type (WT) samples, categorised by sample type. Detected genes are defined as genes with a count of 3 or more in at least 10% of spots. (e) Venn diagram of
genes in FFPE samples, with and without CA. (f) Venn diagram of genes in OCT samples, with and without CA.

In addition to not using spatial information, a limitation of us-
ing common feature selection and clustering methods was the
necessity to process samples individually, making it difficult
to derive broader insights between both biological and tech-
nical replicate samples. This challenge is further complicated

when comparing samples from different conditions, such as
KO and CTL genotypes. For example, Cluster 1 in one sam-
ple may not correspond to Cluster 1 in another sample, ne-
cessitating the need for labels to be resolved through cell type
deconvolution. For a more integrative analysis approach, we
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processed multiple samples simultaneously by sample type,
allowing for consistent cluster labels within each batch.

Feature selection. We identified spatially variable genes
(SVGs) using nnSVG (37), making use of the spatial infor-
mation in our data (Figure 3a, bottom row). nnSVG was run
in multi-sample mode, which firstly finds SVGs in individual
samples and ranks them. Ranks of genes that reached sta-
tistical significance with an adjusted p-value below 0.05 are
averaged across all the samples in a batch to produce a cross-
sample rank. Additional gene filtering was performed indi-
vidually per sample and log−counts were then re-calculated.
The output is a single list of SVGs and their overall ranks
across all replicates of the same sample type. When com-
paring the top-ranked (1,000) SVGs between different sam-
ple types, we observe that, reassuringly, the largest overlap
are genes shared in common between all 4 sample handling
methods (Figure 3c). Within the FFPE and OCT groups,
there is also relatively high agreement between FFPE and
FFPE CA samples, and OCT and OCT CA samples have
equal proportions of unique SVGs (Figure 3d). The second
largest category corresponds to OCT-specific SVGs, draw-
ing attention to the systematic differences between poly-A
and probe-based results highlighted previously. However,
upon considering all significant SVGs, we find more genes
are identified as spatially variable in probe-based platforms,
with 3,380 SVGs from the OCT samples versus a mean of
8,555 genes for probe-based sample types (OCT CA, FFPE
and FFPE CA) (Supplementary Figure S3a). This obser-
vation is also supported by the higher intersection of FFPE
and FFPE CA SVGs, and OCT CA only genes occupying a
greater percentage of all OCT SVGs (Supplementary Figure
S3b). These findings reinforce the need to analyse OCT sam-
ples that used poly-A-based gene selection separately from
samples that use the probe-based version of the Visium tech-
nology.
There is a high degree of overlap between the top SVGs and
top HVGs, indicating that a significant amount of biological
signal in our dataset is captured by the spatial distribution of
cells, particularly in red pulp and white pulp. For FFPE CA
samples, the highest overlap between all gene lists - HVGs
from sample 709, HVGs from sample 713 and multi-sample
FFPE CA SVGs - was ∼0.76, at the intersection of 537
genes (Supplementary Figure S3c). These lists also share the
same top gene, Car2 (Figure 3a), following removal of highly
abundant haemoglobin and immunoglobulin genes (38).
Gene Ontology (GO) terms enriched amongst the top 1,000
SVGs in FFPE CA samples relate to immune activation and
regulation, with focus on leukocytes and lymphocytes like B
cells, which are active during an immune response (39, 40)
(Supplementary Figure S3d). Inspecting the spatial distri-
bution of additional highly ranked SVGs reveals two dis-
tinct cell clusters and gene expression profiles (Supplemen-
tary Figure S4). It is clear from pathology image analysis
using a trained classifier (Supplementary Figure S5) and fur-
ther downstream analysis that these reflect the distribution of
red pulp and white pulp, the two major regions of the spleen
(41).

Clustering. Methods adapted from single-cell analysis work-
flows were previously demonstrated on individual samples.
In our multi-sample approach with spatially aware cluster-
ing, we could derive clusters that were concordant across all
samples types using the iSC.MEB (42) package. Normalised
counts of each sample in a sample type group were com-
bined into a single matrix for iSC.MEB to perform principal
component analysis (PCA) to obtain principal components
(PCs). The top 10 PCs were then used for spatial cluster-
ing to obtain cluster labels. iSC.MEB also offers differential
expression analysis, which was used in guiding cluster re-
finement to avoid over-clustering of spots. As a result, we
identified 7 spatial clusters in FFPE CA samples (Figure 3e),
and both samples appear to have been integrated evenly fol-
lowing batch correction (Supplementary Figure S6).

Cell type deconvolution. The high-performing spacexr (21,
43) (formerly Robust Cell Type Decomposition (RCTD)),
was chosen to perform cell type deconvolution. spacexr uses
annotated scRNA-seq data to generate gene expression pro-
files for each cell type in the reference. It then fits a proba-
bilistic model to estimate cell type proportions for each spot
and creates spatial maps of cell types, fitting each spot as a
linear combination of individual cell types. There are dif-
ferent modes to process data with one, two or an unknown
number of cells in each spot. We used the latter multi-mode
recommended for Visium, which can accommodate for more
than two cell types per spot and considers all such cell types
when estimating proportions. We also used our matching
scRNA-seq reference dataset. Estimates can be classified
as confident, and the distribution of confident weights infer-
ring cell type proportion can be visualised in a spatial map as
shown in Figure 3g. From this analysis, we were able to con-
solidate the classification of major cell types B cells, T cells,
erythrocytes, and neutrophils.
To evaluate the performance of our matching scRNA-seq
reference, we also performed deconvolution with a public
mouse spleen dataset (44). We compared the proportion of
spots with confident assignments as a metric, defining confi-
dence as a confident weight calculated by spacexr of greater
than 0.5. The public reference was more finely annotated
initially and required additional grouping of cell types into
broader categories, after which it produced similar results to
those generated with our matching reference.
With the public reference, proportions ranged from 0.73-0.86
for FFPE samples, 0.60-0.90 for OCT samples, 0.85-0.89 for
FFPE CA samples, and 0.83-0.93 for OCT CA samples. With
our matching reference, proportions ranged from 0.65-0.85
for FFPE samples, 0.49-0.91 for OCT samples, 0.83-0.84
for FFPE CA samples, and 0.88-0.94 for OCT CA samples.
Samples in FFPE Experiment 1 (460, 463, and 463) were also
observed to have lower proportions (0.65-0.79) than those
in FFPE Experiment 3 (0.80-0.85) when using the Spatial-
Bench reference. Notably, all CA samples had high propor-
tions above 0.8, though overall, these results are not neces-
sarily indicative of data quality. For example, FFPE sample
709 has more mean reads per spot and a higher fraction of
reads in spots under tissue than OCT sample 708 (Figure 1e),
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Fig. 3. Summary of downstream analyses. (a) Top: Spatial expression of the top 2 HVGs for FFPE CA samples. HVGs were identified for each sample, but are shown
together here, as the top 2 HVGs were the same in both samples. Bottom: Spatial expression of the top 2 SVGs for FFPE CA samples. These were identified in a single
gene list generated through a multi-sample approach. (b) Clusters identified in each FFPE CA sample following a standard Bioconductor workflow. (c) UpSet plot showing
the overlap of the top 1,000 SVGs in each sample type for all wild type (WT) samples. (d) Venn diagrams showing unique and overlapping SVGs between FFPE samples and
between OCT samples, with and without CytAssist, among the top 1,000 SVGs. (e) Top: A UMAP plot showing spatial clusters across both FFPE CA samples, identified by
iSC.MEB. Bottom: Spatial cluster 7 projected onto tissue images. (f) Top: A heatmap showing scores for expression of cell type marker gene groups in each cluster compared
to all other clusters in FFPE CA samples. Bottom: The aggregate gene expression of the T cell marker gene group in cluster 7. (g) A deconvolution plot of confident weights
for T cells generated by spacexr for FFPE CA samples. (h) FFPE CA samples 709 and 713 with each spot annotated following deconvolution and marker gene expression
analysis, using spatial clusters.
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but its proportion metric is lower at 0.81, compared to OCT
sample 708’s 0.91.
We also examined the expression of marker genes selected
from previous studies and literature search (see Methods)
that are particular to the cell types (B, T and plasma cells,
macrophages, neutrophils and erythrocytes) expected in a
spleen responding to infection. We developed a cluster score
approach using groups of marker genes that could be used
to identify a cell type or tissue region (Supplementary Table
S3), defining the score as the log-fold change between one
cluster and all other clusters (see Methods). This is demon-
strated in Figure 3f for FFPE CA samples, which shows dis-
tinct scores reflecting prominent cell types, for clusters 3-7
in particular. The score for (red pulp) macrophages was not
as high as for red pulp and erythocytes, which may be due
to the exclusion of some marker genes from the probe set.
Cluster scores for the major regions present in this spleen
model (germinal centre, red pulp, marginal zone and white
pulp) were also included to investigate their cell type compo-
sitions. Their scores signify that mostly erythrocytes consti-
tute the red pulp, B cells and some T cells can be seen in the
marginal zone, and germinal centres, B cells and T cells are
located in white pulp, aligning with their expected distribu-
tions (45). The strong signal for germinal centres also reflects
the presence and robust activity of these structures during an
immune response.

Spatial cluster annotation. We combined our results from all
the above steps in the multi-sample downstream analysis to
assign cell type labels to each spatial cluster. It is important
to consider that Visium does not provide single-cell resolu-
tion, and therefore a singular label is not entirely reflective of
the cell type proportions at each spot. Nonetheless, we as-
signed labels for the most abundant cell type in each cluster
and showcase an effective visual representation of the mouse
spleen during infection (Figure 3h).
While the classification of most cell types was relatively
straightforward, varied results were presented during the as-
signment of red pulp clusters. This issue was observed across
all sample type groups. The top HVG and SVG in FFPE CA
samples, Car2, is a marker gene of erythrocytes (46) and can
be seen expressed in a distinctive spatial pattern, with a wide
outer edge around the spleen and in a series of circular struc-
tures in the middle of the tissue (Figure 3c). The distribu-
tion of confident weights for erythrocytes exhibited a simi-
lar pattern following cell type deconvolution (Supplementary
Figure S7). Our image segmentation classifier (see Meth-
ods) also mirrored this pattern, showing a clear distinction
between the red pulp and white pulp regions (Supplementary
Figure S5). However, the clusters in question, 1 and 5, ap-
peared to be distinct in the cluster UMAP (Figure 3e) and
cluster scores (Figure 3f), separating into inner and outer re-
gions of spots. Yet, the highest score for cluster 1, albeit low,
pointed to erythrocytes. Ultimately, these clusters were both
labelled as red pulp.
Overall, our results align with the the structures and lack
of architecture consistent with malaria infection (45) (Figure
1a). There is less organisation and definition observed in the

Cluster ROAST p-value Set size
B cell 0.000045 22

Germinal centre 0.00024 18
Neutrophil 0.00027 16
Plasma cell 0.00092 19
Red pulp 0.000015 22

T cell 0.00137 19

Table 1. ROAST p-values from testing the enrichment of a sex-specific gene signa-
ture in the pseudo-bulk differential expression analysis between male and female
spleen samples per annotated cluster or tissue region. Low count gene filtering was
performed for each cluster individually, resulting in a different number of genes from
the sex-specific set that could be tested for enrichment in each cluster.

structures containing B cells and T cells, B cell follicles and
T cell zones respectively, and transient loss of marginal zones
(Figure 3h). A key detail is the striking presence of germinal
centres, which are formed in response to infection.

Comparing gene expression between replicate male and fe-
male spleens. We also used sex-specific differences between
samples as ground truth to evaluate differential expression
between CTL (male) and WT (female) OCT samples from
Experiment 2. We clustered spots jointly for all CTL and
WT OCT samples (Figure 4a and Supplementary Figure S8),
identifying red pulp (clusters 1, 4 and 5), B cell (cluster 2),
neutrophil (cluster 3), germinal centre (cluster 6), plasma cell
(cluster 7) and T cell (cluster 8) enriched spots using the
marker genes described above (Figure 4b and c). For each
cluster, we then aggregated spot counts at the sample-level,
filtered genes with low counts using edgeR (47, 48) and per-
formed differential expression (DE) analysis with the limma-
voom (49) pipeline comparing male versus female samples.
Figure 4d shows an MA plot (log-fold-change versus aver-
age expression) for the male versus female DE comparison
within the B cell cluster, with plots for the other clusters in-
cluded in Supplementary Figure S9. Chromosome X genes
that were previously identified as X inactivation escape genes
in mouse spleens (50) (17 genes were in the original list, one
of which is not present in the CellRanger reference we used,
all remaining 16 genes are detected in at least one of the sam-
ples used in the DE analysis) and chromosome Y genes (a
total of 10 genes located on chromosome Y are detected in
at least one sample) are differentially expressed in the ex-
pected direction (i.e. up-regulation of chromosome Y genes
and down-regulation for X inactivation escape genes) for the
major clusters (Figure 4d highlights these genes in the B cell
cluster DE analysis). Barcode plots highlighting these genes
shows clear enrichment in the major clusters, with Figure 4e
showing the ranks of these sex-specific genes in the B cell
cluster DE results, and Supplementary Figure S10 showing
barcode plots for other clusters. Table 1 summarises the re-
sults from applying the ROAST gene set test (51) to the sex-
specific signature across the spatial DE cluster comparisons,
with statistically significant p-values for enrichment obtained
in all cases.

Comparing gene expression between replicate knockout
and control spleens. We also applied pseudo-bulk DE anal-
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Fig. 4. Pseudo-bulk differential expression analyses using biological sex as the ground truth. (a) A UMAP plot showing clusters identified by iSC.MEB across CTL (male) and
WT (female) OCT samples. (b) Heatmap of expression scores generated using marker genes for different cell types or tissue regions expected in the spleen for each spatial
cluster compared to all other clusters. (c) Spatial plot showing spots annotated using cluster maker gene expression from (b). (d) Log-fold-change vs mean expression plot of
the differential expression analysis between male and female samples based on pseudo-bulk counts from cluster 2 (annotated as B cell enriched cluster). Sex-specific genes
are highlighted in colour (red: chromosome Y genes, blue: genes that escape X inactivation in mouse spleen). (e) Barcode plot of male versus female differential expression
(DE) analysis results from pseudo-bulk counts from the B cell cluster (cluster 2), with the ranks of sex-specific genes highlighted in colour (red: chromosome Y genes, blue:
genes that escape X inactivation in mouse spleen).

ysis to the T-bet knockout (KO) and control (CTL) OCT
samples and assessed the level of agreement in results with
those from a previous bulk RNA-seq study, where cell sort-
ing was used to select for germinal centre B cells from mouse
spleens 15 days post-malaria infection in samples with the

same genotypes (29) (see Methods). All KO and CTL spleen
samples were clustered jointly and we obtained 5 distinct cell
type / tissue region clusters after marker gene based annota-
tion, including red pulp (cluster 1, 2 and 3), B cell (cluster 4),
T cell (cluster 5), plasma cell (cluster 6), neutrophil (cluster
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7) and germinal centre (cluster 8), which is similar to what
was obtained for the previous sex-based comparison. Figure
5a shows the spatial distribution of the annotated clusters, and
Supplementary Figure S11a and b shows the iSC.MEB clus-
tering result and S11c shows the marker gene heatmap used
for cluster annotation. After aggregating spot counts and fil-
tering genes with low expression, we performed DE analysis
comparing the B cell cluster from the KO samples against the
CTL samples. The T-bet regulated genes from the previous
study are highlighted in the spatial DE analysis results for
the B cell cluster in both an MA plot (Figure 5b) and barcode
plot (Figure 5c) to highlight the concordance. Enrichment of
this gene set in B cell cluster was tested using ROAST, which
gave a p-value of 0.005 suggesting enrichment of this signa-
ture and highlighting concordance between the Visium and
bulk RNA-seq results.

Discussion
We have created SpatialBench, a unique multi-sample spa-
tial benchmarking dataset while profiles the mouse spleen as
a reference tissue, generated using 10x Genomics’ Visium
spatial technology. By harnessing Visium’s capacity to use
both OCT and FFPE tissues, and integrate optimised work-
flows from the CytAssist platform, we systematically eval-
uated different sample handling protocols, data quality, and
performance in various downstream analyses. We applied an
effective workflow to extensively analyse the dataset, gen-
erating group-level cluster labels, identifying expected cell
types, and validating existing biological knowledge of spleen
dynamics during immune responses.
We observed that probe-based samples exhibited higher UMI
counts, mapping confidence, and had greater proportions of
retained spots after quality control than poly-A-based sam-
ples. The use of CytAssist in sample handling produced
higher data quality, capturing almost all reads in spots lo-
cated within tissue boundaries. This is important as only such
tissue-covered reads pass the initial stage of quality control.
Our findings validate 10x Genomics’ expectations for the Cy-
tAssist platform, which was designed to improve data quality
through the enhanced localisation of transcripts within tis-
sue by using optimised reagents, precise microfluidic control,
and automated workflow steps. For poly-A-based samples,
the observed lower mapping confidence may be attributed to
the presence of unknown sequences or non-poly-adenylated
transcripts in the reference, resulting in a larger proportion of
unused reads. This contrasts with probe-based capture meth-
ods, where probe sets exhibit higher specificity to known se-
quences. In these samples, we also detected a bias showing
higher UMI counts along tissue edges. A possible expla-
nation could be sub-optimal permeabilisation conditions in
our experiments, which may have impacted sensitivity and
spatial resolution (52). Unlike FFPE and CytAssist work-
flows which use standard conditions (53, 54), OCT sample
preparation involves tissue optimisation experiments during
which optimal permeabilisation conditions for tissues are de-
termined before library sequencing. Additional optimisation
could be considered to mitigate this effect. It is worth noting

that, however, a number of genes including some in the probe
set were only detected in OCT samples, after filtering. Of
these genes, there were several related to immune response
and red pulp. Moreover, certain cell type marker genes were
absent from the probe set. These insights may lend support to
the efficacy of poly-A capture despite its poorer sensitivity.

As the field of spatial transcriptomics has evolved following
single-cell transcriptomics, methods have emerged to inte-
grate spatial information (55). Many of these were initially
adapted from scRNA-seq data analyses (1) and have proven
to be adaptable in procedures such as pre-processing in spa-
tial transcriptomics workflows (56). Our own workflow in-
corporated scRNA-seq analysis steps following a Bioconduc-
tor workflow (36), using established packages like scater and
scran. We also investigated differences between HVGs and
SVGs identified with scRNA-seq and spatial analysis tools,
respectively, and observed considerable overlap. This im-
plies that the spatial distribution of cells, particularly within
the major regions (red pulp and white pulp) of the spleen
effectively captures biologically meaningful information in
our dataset (43). From another perspective, this outcome
may also suggest that HVGs suffice in downstream analyses.
However, it should be noted that sensitivity is compromised
in the absence of spatial information, rendering scRNA-seq
tools only a short-term solution. For example, while library
size is commonly considered an technical artefact and used
for normalisation in single-cell analyses, variation in library
sizes across tissue structures more accurately reflect biolog-
ical rather than technical variation in spatial data (55). This
warrants caution when adopting single-cell methods to spa-
tial data analysis.

The efficacy of our matching scRNA-seq dataset was as-
sessed with cell type deconvolution, showing comparable
results to an established public reference (44) and outper-
forming it in several instances. The proportion of spots in
each sample that were assigned highly confident cell type la-
bels generated through deconvolution, served as the perfor-
mance metric. Several reference-guided deconvolution meth-
ods evaluated in previous benchmarking studies (18, 21) were
also explored, though we encountered various challenges in
installation and computational efficiency, before advancing
with spacexr. To streamline future analyses, we have in-
cluded our scRNA-seq dataset in SpatialBench as a practical
option, alleviating additional efforts required to source, com-
pare, and further process different public references.

Major cell types and structures expected within a mouse
spleen during malaria infection, including B cells, T cells,
neutrophils, and germinal centres, were identified through a
combination of various downstream processes. The spatial
distributions of these components provided a detailed visual-
isation of the formation of germinal centres and the disrupted
organisation of B and T cells, characteristic of an immune
response. However, a challenge emerged concerning the la-
belling of red pulp, as clusters separating inner and outer re-
gions of spots were identified. These clusters were ultimately
assigned a single label based on our findings from SVG ex-
pression, deconvolution of erythrocytes, and image segmen-
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Fig. 5. Pseudo-bulk differential expression analyses of T-bet knockouts. (a) Spatial plot of KO and CTL OCT samples with marker gene based annotated clusters. (b)
Log-fold-change vs mean expression plot of the differential expression analysis between KO and CTL samples based on pseudo-bulk counts from B cell enriched cluster. A
signature of differentially expressed genes in T-bet knockout compared to control samples from Ly et al. (2019) (29) are highlighted in colour (red: up-regulated genes, blue:
down-regulated genes) and T-bet is highlighted by a blue triangle. (c) Barcode plot of knockout versus control differential expression analysis results from pseudo-bulk counts
from the B cell cluster, with the ranks of a set of previously identified differentially expressed genes following knockout of T-bet highlighted in colour (red: up-regulated genes,
blue: down-regulated genes).

tation of red pulp and white pulp. This discrepancy could
potentially be attributed to the notably lower UMI counts de-
tected in central tissue regions compared to the edges, im-
pacting the sensitivity of our data. The classification of cellu-
lar subtypes was less straightforward due to the limited reso-
lution of Visium and absence of clearly defined marker gene
groups beyond those for major cell types, though this could
be addressed through refined iterations of deconvolution (43).
Further analyses may include a more thorough examination
of clusters, deconvolution, and the comparison of these re-
sults to structures identified from H&E images using object
or pixel classifiers. Annotations from these images could be
further used to train a custom deep learning model, which
could enhance the validation of clusters and cell types.
Multi-sample spatial analysis was performed by grouping
samples based on sample handling protocols, a decision that
was driven by variations observed in data quality and pre-
processing results. Further grouping of probe-based sam-
ples for analysis was attempted but challenges arose from
persistent batch effects. iSC.MEB is one of few tools capa-
ble of processing multiple samples simultaneously (42) and
allowed for the identification of concordant spatial clusters
across samples within each group, enabling the generation of
group-level results. Methods extended to address scenarios,
where more pronounced batch effects are seen across proto-
cols and tissue sections, would strengthen the capacity for
multi-sample analysis. On a broader scale, the additional in-
tegration of high-performing spatial feature selection, clus-

tering, and deconvolution methods would also improve work-
flow efficiency, offering a more streamlined approach to spa-
tial analysis.
For differential expression analysis, a conventional workflow
of clustering and aggregating spot counts to pseudo-bulk val-
ues per sample and cluster was performed. Comparisons be-
tween male and female samples recovered the expected sex-
specific gene expression changes across all major cell type
and region-based clusters. We also analysed DE in sam-
ples with conditional knockout of T-bet in mature follicu-
lar B cells, and obtained highly concordant results with a
previous T-bet gene signature obtained from sorted germi-
nal centre B cells from samples with the same genotypes,
albeit at a slightly different time point (day 15 versus day
12). Our results highlight Visium’s potential in higher order
multi-sample analyses across distinct tissue structures, while
also outlining challenges in applying methods originally de-
veloped for single-cell or bulk RNA-seq experiments, espe-
cially in obtaining comparable clusters. Limited tools cur-
rently exist for multi-sample spatial analysis, and this is an
area in need of further development.
We have demonstrated a comprehensive spatial pre-
processing workflow and downstream analysis approach in-
tegrating SVGs and marker gene expression, cell type decon-
volution, and image segmentation, both for individual sam-
ples and groups of replicate samples. Challenges in anno-
tating some specific cell types arose potentially due to low
sensitivity in several samples, and the limited resolution of
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Visium-generated data. However, overall our framework en-
abled thorough annotation of our samples, leading to detailed
visualisations of the spatial context of structures within the
mouse spleen. As the field of spatial transcriptomics con-
tinues to evolve, we anticipate the development of advanced
methods capable of more effectively harnessing the power
of spatial information in multi-sample, multi-group experi-
ments. We envisage SpatialBench to be adaptable to include
such methods to analyse the depth of spatial data, and to ex-
pand to more platforms in the future, such as Visium HD and
others with higher spatial resolution.

Conclusions
We present SpatialBench, a comprehensive Visium spatial
transcriptomics dataset spanning several tissue handling pro-
tocols, that includes replicate samples and a correspond-
ing scRNA-seq reference dataset. Our investigation into
the differences between poly-A and probe-based capture li-
brary preparation protocols revealed higher quality among
probe-based samples, particularly those processed with Cy-
tAssist. We also showcase the successful application of
our dataset in a comprehensive analysis workflow, includ-
ing steps such as pre-processing with established scRNA-seq
methods and multi-sample spatial approaches to feature de-
tection and clustering, enabling the generation of results for
groups of samples. Through our analyses, we demonstrated
an accurate characterisation of the cellular composition of
the mouse spleen during an immune response, identifying
expected cell types and structures. We anticipate that our
dataset and results may serve as a practical guide to analysing
data from multi-sample 10x Visium experiments.

Methods
Mouse spleen samples. To visualize germinal centres aris-
ing in the spleen in response to infection, a number of
male Tbx21fl/flCd23Cre and Cd23Cre control mice as
well as wild type (WT) female 8 week C57BL/6J mice were
infected intravenously with 1 × 105 Plasmodium berghei
ANKA parasitised red blood cells (pRBCS), and then drug
cured at the onset of disease symptoms using chloroquine
and pyrimethamine as described previously (29). The
Tbx21fl/flCd23Cre conditional knockout deletes T-bet in
mature follicular B cells.

Sample preparation and library construction. Twelve
days post-infection, mice were euthanised and spleens were
fixed in 10% v/v formalin and Paraffin-Embedded (FFPE) or
embedded and in Optimal Cutting Temperature compound
(OCT) prior to freezing.

Fresh frozen (OCT) Direct Placement Visium. The permeabil-
isation time for spleen sections was first determined using
the Visium Spatial Tissue Optimization Reagents Kits User
Guide. An optimal permeabilisation time of 40mins was es-
tablished. 10µm sections were cut on a Cryostat and placed
directly onto a Visium Spatial Gene Expression Slide. Slides
were placed into slide mailers and stored at -80°C until use.

The Visium slides were processed according to the 10x Ge-
nomics Methanol Fixation, H&E Staining & Imaging for Vi-
sium Spatial Protocol followed by the fresh frozen Visium
Spatial Gene Expression Reagent Kits protocol according to
the manufacturer’s instructions.

FFPE Direct Placement Visium. 5µm sections were placed
onto a Visium Spatial Gene Expression Slide. Slides were
heated at 42°C for 3hrs on a thermocycler with a Visium PCR
Adaptor then placed in a desiccator at room temperature from
o/n up to 1 week. The Visium slides were processed accord-
ing to the 10x Genomics Visium Spatial Gene Expression for
FFPE – Deparaffinization, H&E Staining, Imaging & De-
crosslinking protocol followed by the Visium Spatial Gene
Expression Reagent Kits for FFPE protocol according to the
manufacturer’s instructions.

Fresh frozen (OCT) CytAssist Visium. 10µm sections were
cut on a Cryostat and placed directly onto a Superfrost Plus
microscope slides. Slides were placed into slide mailers
and stored at -80°C until use. The Visium slides were pro-
cessed according to the 10x Genomics Visium CytAssist Spa-
tial Gene Expression for Fresh Frozen – Methanol Fixation,
H&E Staining, Imaging & Destaining protocol followed by
the CytAssist Spatial Gene Expression Reagent Kits protocol
according to the manufacturer’s instructions.

FFPE CytAssist Visium. 5µm sections were placed onto a Vi-
sium Spatial Gene Expression Slide. Slides were heated at
42°C for 3hrs on a thermocycler with a Visium PCR Adap-
tor then placed in a desiccator at room temperature from o/n
up to 1 week. The Visium slides were processed according
to the 10x Genomics Visium CytAssist Spatial Gene Expres-
sion for FFPE – Deparaffinization, H&E Staining, Imaging
& Decrosslinking protocol followed by the Visium CytAssist
Spatial Gene and Protein Expression Reagent Kits protocol
according to the manufacturer’s instructions.

10x Single-cell samples. Cells were sorted on the BD Aria
III (100um nozzle, 1.5ND filter) using DAPI as a live/dead
cell marker. The sorted cells were centrifuged at 400xg for
5mins at 4°C and re-suspended in 25µl Cell Staining Buffer
(BioLegend). 2.5µl of 1:10 TruStain FcX™ PLUS (anti-
mouse CD16/32) (BioLegend) was added and incubated for
10mins on ice. 0.1µg mouse TotalSeq™-A HashTag and the
mouse TotalSeq™-A universal cocktail v1.0 (Biolegend) di-
luted 1:4, were added in a total volume of 25µl, mixed and
incubated on ice for 30mins. Cells were washed 3 times
with Cell Staining Buffer, centrifuged at 400xg for 5mins at
4°C and resuspended in 1X PBS + 0.04% BSA. Cells were
counted on the Countess III with trypan blue, pooled evenly
and a total of 35,000 live cells were loaded onto a single lane
of a 10x 3’ v3.1 Chip G. Gene expression libraries were pro-
duced according to the 10x Chromium Next GEM Single Cell
3’ v3.1 protocol, with HashTag and TotalSeq™-A antibody
libraries produced according to the BioLegend TotalSeq™-A
Antibodies and Cell Hashing protocol.
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Sequencing. All libraries were sequenced on the Illumina
NextSeq2000 according to 10x guidelines.

Pre-processing: Visium. Raw sequencing data were pro-
cessed using the 10x Genomics Space Ranger 2.0.0 mkfastq
pipeline to generate FASTQ files. Sequences were aligned to
the mm10 transcriptome and gene expression counts were ob-
tained using Space Ranger count. Quality metric plots were
created using ggplot2 (57) version 3.4.4 and ggpubr (58) ver-
sion 0.6.0. Individual samples were pre-processed following
a standard Bioconductor workflow for spatial transcriptomics
analysis (36)

Pre-processing: 10x Single-cell RNA-seq. Data were
run through Cell Ranger 7.0.0 (59) and demultiplexing of
the HTO data was performed using R/Bioconductor pack-
age demuxmix version 1.0.0 (60). Pre-processing was then
conducted following a standard Bioconductor workflow for
scRNA-seq analysis (61), using methods from scran (31) ver-
sion 1.24.1 and scater (30) version 1.24.0.

Feature selection. nnSVG (37) version 1.0.4 was used to
first conduct feature selection. Genes were ranked by the es-
timated likelihood ratio value, then only those with adjusted
p-values below 0.05 were retained. A multi-sample approach
was implemented by taking the mean of gene ranks to gen-
erate lists of spatially variable genes (SVGs) for each sample
type group. These were then compared with UpSet plots and
venn diagrams generated using ComplexUpset (62, 63) ver-
sion 1.3.3 and ggvenn (64) version 0.1.10. Highly ranked
haemoglobin and immunoglobulin genes in these lists were
excluded in downstream processes due to high abundance
(38).

Multi-sample cluster analysis. Pre-processed individual
samples were combined into lists of Seurat (65) objects to
create iSC.MEB objects used as inputs for multi-sample anal-
ysis with iSC.MEB (42) version 1.0. An iSC.MEB model was
fitted to each object and its relevant list of SVGs, based on
sample type group. Principal component analysis (PCA) was
conducted on the data and the top 10 principal components
(PCs) were selected for analysis. iSC.MEB then identified
spatial clusters concordant across all samples in each sam-
ple type group, visualising them in a UMAP plot, and further
analysed differential gene expression between clusters.

Marker gene selection and use in cluster annotation.
Marker genes for relevant cell types (Supplementary Table
S3) were primarily identified from previous studies and ex-
isting literature. Specific genes for germinal centres were
also chosen from a previous study (29). Zone-level marker
genes for analyses comparing red pulp and white pulp were
derived from individual or combined cell type marker gene
lists. Some zone-specific genes such as Hba-a1 (46) were
also included here. A cluster scoring approach was devel-
oped by firstly summing the expression of groups of cell type
marker genes for each spot in a cluster for each sample, then

normalising by the number of spots per cluster. This cal-
culation was repeated across all spots in all clusters and a
cluster score was calculated as the log-fold-change between
one cluster and all other clusters. Heatmaps of cluster scores
and all spatial expression plots were created using ggplot2
version 3.4.4.

Cell type deconvolution. Cell type deconvolution was per-
formed on each sample with spacexr (43) version 2.2.1, using
either a matching scRNA-seq dataset or an external mouse
spleen reference from the Tabula Muris compendium (44).
Multi mode was used as recommended for Visium, account-
ing for more than two cell types per spot.

Image segmentation. QuPath (66) version 0.4.3 was used
for image segmentation on pathology images. A representa-
tive image was used for color deconvolution with "Estimate
Stain Vectors", which was then applied to the entire dataset.
A training image with 15 patches was created by selecting 3-5
patches per image that were representative of background and
white pulp and used to train a pixel classifier to predict two
classes: white pulp and *Ignore. The trained classifier seg-
mented white pulp across the dataset, and a tissue threshold
generated a tissue mask. The red pulp mask was obtained by
subtracting the white pulp annotation from the tissue mask.
Red pulp and white pulp annotations were exported as a Geo-
JSON file, which was processed using R packages sf (67, 68)
version 1.0-14 and ggplot2 version 3.4.4.

Pseudo-bulk differential expression analysis. Multi-
sample clustering and marker gene based cluster annotation
was performed on relevant datasets (OCT CTL and OCT
WT replicate samples were analysed together in the Male
versus Female comparison and OCT KO and OCT CTL
replicate samples were analysed together in the KO versus
CTL analysis). Next, pseudo-bulk counts were aggregated
for each cluster in each sample and lowly expressed genes
were filtered using edgeR’s (47, 48) filterByExpr function
for each cluster individually. The limma-voom pipeline (49)
was performed with limma (69) version 3.58.1 and edgeR
version 4.0.16 to summarise data from replicates samples
and compare different sample groups (e.g. Male versus Fe-
male or KO versus CTL). For the Male versus Female anal-
ysis, ROAST gene set testing (51) was applied to a sex-
specific gene set in a directional way, with chromosome Y
genes given a gene.weight of 1 and X-inactivation es-
cape genes previously identified from mouse spleens (50)
given a gene.weight of −1. For the T-bet knockout ver-
sus control comparison, ROAST gene set testing (51) was ap-
plied to the spatial DE results using the significantly differen-
tially expressed genes (those with an adjusted p-value cut-off
< 0.05, 109 genes) from Ly et al. (2019) (29), where a simi-
lar knock-down and infection module was used to investigate
T-bet’s role in germinal centres at Day 15 post malaria in-
fection. The t-statistics from the previous study were used
as gene.weights in ROAST to account for both the direc-
tionality and confidence of the previous DE results.
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scRNA-seq analysis. Clustering was performed with clus-
terCells from scran, using igraph’s Louvain method (70, 71)
in a bluster (72) shared nearest-neighbour (SNN) graph. Sin-
gleR (73) version 2.0.0 was used with celldex (73) version
1.8.0’s mouse reference datasets, ImmGenData and MouseR-
NAseqData, to annotate cell types. Clusters were further re-
fined in an iterative approach of sub-clustering, re-processing
and re-assigning cluster labels.

Abbreviations
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