
 1 

Single cell view of tumor microenvironment gradients in pleural mesothelioma 1 

 2 

 3 

Authors 4 

Bruno Giotti1,2&, Komal Dolasia1,2&, William Zhao1,2&, Peiwen Cai1,2&, Robert Sweeney2,3, Elliot Merritt1,2, Evgeny 5 

Kiner4, Grace Kim1,2, Atharva Bhagwat1,2, Samarth Hegde2, Bailey Fitzgerald7,8, Sanjana Shroff1, Travis Dawson5, 6 

Monica Garcia-barros6, Jamshid Abdul-ghafar6, Rachel Chen5, Sacha Gnjatic2,3, Alan Soto6, Rachel Brody6, 7 

Seunghee Kim-Schulze5, Zhihong Chen5, Kristin G. Beaumont1, Miriam Merad2,3, Raja Flores9, Robert Sebra1, 8 

Amir Horowitz2,3, Thomas U Marron2,3, Anna Tocheva1,2, Andrea Wolf3,9, & Alexander M. Tsankov1,2,3* 9 

 10 

Affiliations 11 

1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 12 

2Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 13 

3Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 14 

4Immunai, 430 East 29th Street 11th floor, New York, NY, USA. 15 

5The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 16 

6 Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New 17 

York, NY, USA.  18 

7Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 19 

USA 20 

8 Presently at Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA  21 

9Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 22 

&These authors contributed equally. 23 

*Correspondence: alexander.tsankov@mssm.edu (A.M.T.) 24 

 25 

ABSTRACT 26 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.585048doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585048


 2 

Immunotherapies have shown great promise in pleural mesothelioma (PM), yet most patients still do not achieve 27 

significant clinical response, highlighting the importance of improving understanding of the tumor 28 

microenvironment (TME). Here, we utilized high-throughput, single-cell RNA-sequencing to de novo identify 54 29 

expression programs and construct a comprehensive cellular catalogue of the PM TME. We found four cancer-30 

intrinsic programs associated with poor disease outcome and a novel fetal-like, endothelial cell population that 31 

likely responds to VEGF signaling and promotes angiogenesis. Throughout cellular compartments, we observe 32 

substantial difference in the TME associated with a cancer-intrinsic sarcomatoid signature, including enrichment in 33 

fetal-like endothelial cells, CXCL9+ macrophages, cytotoxic, exhausted, and regulatory T cells, which we validated 34 

using imaging and bulk deconvolution analyses on two independent cohorts. Finally, we show, both 35 

computationally and experimentally, that NKG2A-HLA-E interaction between NK and tumor cells represents an 36 

important new therapeutic axis in PM, especially for epithelioid cases.  37 

 38 

Statement of Significance 39 

This manuscript presents the first single-cell RNA-sequencing atlas of pleural mesothelioma (PM) tumor 40 

microenvironment. Findings of translational relevance, validated experimentally and using independent bulk 41 

cohorts, include identification of gene programs predictive of survival, a fetal-like endothelial cell population, and 42 

NKG2A blockade as a promising new immunotherapeutic intervention in PM. 43 

 44 

Introduction 45 

Pleural mesothelioma (PM) is a cancer of the lung pleura that is strongly associated with exposure to asbestos (1), 46 

although the proportion of patients without known occupational asbestos exposure is rising (2). Histologic subtypes 47 

can be characterized as epithelioid (60-75% of cases), sarcomatoid (10%), or biphasic PM (20-30%), with the latter 48 

thought to represent a mixture of epithelioid and sarcomatoid subtypes (3). Due to the aggressive nature of all 49 

histological types (4,5), existing therapeutic strategies (6,7) have had limited success with a median overall survival 50 

of approximately 18 months (6). Recently, the combination of anti-PD1 and anti-CTLA4 checkpoint inhibitors has 51 

emerged as an effective combination therapeutic option for PM; despite similar response rates compared to 52 
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chemotherapy, responses are more durable in this immunotherapy combination, resulting in a 27% decrease in the 53 

risk of death (8). Patients with sarcomatoid and biphasic (non-epithelioid) histologies have been historically 54 

associated with worst overall survival but are also marked by a higher lymphocyte infiltration in the tumor 55 

microenvironment (TME) (9) and show greater benefit from checkpoint blockade combination treatments relative 56 

to chemotherapy, which, in contrast, has greater efficacy in epithelioid tumors (8). 57 

While immunotherapy holds great promise, most patients with PM still do not achieve significant clinical 58 

benefit from these therapies, and many who do respond initially only receive a transient benefit. Given the 59 

variability in response encountered among patients and the toxicities associated with these therapies, new 60 

approaches are needed to determine which patients will benefit from existing immunotherapies and to discover new 61 

therapeutic strategies for non-responders. It is likely that intra- and inter-tumoral heterogeneity in the TME and 62 

tumor-immune cell interactions all contribute to the variability in treatment response. Thus, a more complete 63 

characterization of the PM TME at baseline will reveal more optimal patient stratification strategies and new 64 

immunomodulatory pathways to target. 65 

Large scale bulk genomic and transcriptomic studies (10-13) have defined molecular subtypes associated 66 

with differences in the TME composition, including higher levels of T cells and M2-like macrophages in 67 

sarcomatoid and enhanced VISTA expression in epithelioid PM (10,11). A following meta-analysis study further 68 

reported on higher lymphocyte and monocyte infiltration, increased stromal components and expression of immune 69 

checkpoints molecules in PM samples correlated with a sarcomatoid transcriptional phenotype (S score) whereas 70 

VISTA and natural killer (NK) cell markers trended in the opposite direction (14). Additional studies expanded on 71 

the PM tumor-subtype dichotomy to define novel subtypes based on additional molecular features such as immune 72 

content, DNA methylation and tumor ploidy (12,13). Similarly, a recent mass cytometry study based on a 35 73 

antibody panel also identified two histology-independent immunologic subtypes related to MHC-I and MHC-II 74 

neopeptide abundance (15). Single-cell RNA-sequencing (scRNA-seq) now enables interrogation of the TME at 75 

unprecedented resolution and scale without a priori knowledge and reliance on a limited set of markers, which has 76 

greatly enhanced our understanding of tumor heterogeneity across cancers (16). Here, we used high-throughput, 77 

scRNA-seq and single-cell T Cell Receptor sequencing (scTCR-seq) on treatment naïve patient samples to build a 78 
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comprehensive single-cell atlas of PM primary tumor and peripheral blood. Our integrative analysis allowed us to 79 

ask (1) if there are cellular and molecular differences in the TME between PM histological and molecular subtypes, 80 

(2) if different subtypes associate with different cancer-intrinsic programs, (3) if new cell type specific signatures 81 

are predictive of disease outcome, and (4) if the scRNA-seq data suggest more effective, personalized therapies. 82 

 83 

RESULTS 84 

A single-cell catalogue of patient-matched PM tumors and peripheral blood 85 

Our study group included 13 treatment-naïve patients diagnosed with PM spanning all three histological subtypes 86 

and comprising of 4 non-white and 5 females patients (31% and 38% of total cohort respectively), providing greater 87 

diversity compared to national incidence demographics (17) (Table S1). Primary tumor samples were obtained 88 

either during surgical resections (n=7) or diagnostic biopsies (n=6) and profiled for scRNA-seq using the 10X 89 

Chromium platform, including scTCR-seq on 7 samples (Figure 1A). In parallel, peripheral blood mononuclear 90 

cells (PBMC) were similarly profiled for a subset of patients (n=8). Following stringent quality control, a total of 91 

141,219 cells were recovered (Figure S1A; Methods). We constructed an analytical pipeline aimed at uncovering 92 

axes of molecular variation across cellular compartments and PM subtypes in our single cell data (discovery cohort), 93 

which we validated experimentally and in silico using bulk RNA-seq and patient survival data (Figure 1B) from 94 

Bueno et al., and Hmeljak et al., (10,11) (293 patients in total; hereafter named Bueno and Hmeljak validation 95 

cohorts). Unsupervised dimensionality reduction and clustering of the tumor scRNA-seq data (Figure 1C, left 96 

panels) allowed for unbiased discovery of both established and previously unreported PM markers (Figure 1D, 97 

Table S2) for all major cell types detected in the tumor samples, including tumor cells (KRT19), normal mesothelial 98 

cells (HP), fibroblasts (COL1A1), smooth muscle cells (MYH11), endothelial cells (PECAM1), myeloid (LYZ), T 99 

cells (CD3D), NK ( GNLY) B cells (CD79A), plasma cells (IGLC2), plasmacytoid dendritic cells (pDC, IRF8), a 100 

small number of alveolar type II cells (AT2; SFTPC) and a rare glial population (PMP2) recovered in only one of 101 

the patients. Similarly, we identified transcription factors (TFs) most specifically expressed in each major cell type 102 

(Figure S1B), which agreed with the TFs’ known role, including TEAD1 in malignant cells, WT1 in mesothelium, 103 

and SNAI2 in fibroblasts (18-20). As samples were collected with two different procedures (biopsy or surgical 104 
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resection) we examined difference in cell proportions which showed higher fractions of B, T, and NK cells in the 105 

resection samples and malignant cells in the biopsies (Figure S1C). To normalize for sample acquisition differences 106 

in cell composition, we performed downstream cell subset and program enrichment analyses relative to each cellular 107 

compartment and validated our main findings throughout the study with bulk deconvolution analysis. 108 

Additionally, we performed cellular indexing of transcriptomes and epitopes (21) (CITE-seq) to construct 109 

a patient-matched single cell atlas of the cellular protein and 5’ transcriptomes of PM PBMCs (Figure 1C, right 110 

panels). 30 PBMC subsets shared across the 8 patients were annotated using a reference-based pipeline (22), and 111 

de novo protein and RNA marker discovery identified canonical genes associated with these PBMC annotations 112 

(22), highlighting the quality of the data generated (Figure S1D-G; Tables S3-4).  113 

We next investigated cell type abundance differences across PM molecular and histological subtypes using 114 

a Bayesian deconvolution framework powered by our PM-specific single-cell expression data (23).  To robustly 115 

assess these data, we leveraged both the Bueno and Hmeljak validation cohorts. Results broadly agreed with 116 

previous bulk deconvolution cell type estimations (13,14), showing a more prominent infiltrate of T and B 117 

lymphocytes and myeloid immune populations as well as a more abundant stromal component in non-epithelioid 118 

subtypes, whereas epithelioid tumors were comparatively enriched in malignant and NK cells (12-14) (Figure 1E, 119 

S1H-I). 120 

Inference of copy number variations (CNVs) enabled us to distinguish malignant cells from normal 121 

mesothelial cells in the tumor scRNA-seq data (Figure 1F), where we detected no malignant cells in biopsy sample 122 

P10 and therefore excluded it from all cancer cell downstream analyses. The CNV analysis detected large scale 123 

deletions on chromosomes 3 (p-arm), 13, 14 and 22 in most samples, in agreement with frequently deleted regions 124 

in PM detected by DNA sequencing (10,24), which harbor commonly deleted genes such as BAP1, LATS2, and 125 

NF2 (Figure 1F). Taken together, we have constructed the first comprehensive single cell atlas of PM and observe 126 

clear differences in TME cell type compositions between PM molecular and histological subtypes. 127 

 128 

 129 

De novo discovery of PM cancer programs show link to disease outcome 130 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.585048doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585048


 6 

We reasoned that analysis of scRNA-seq data from 30,318 PM malignant cells can provide new, higher-resolution 131 

insight on intra- and inter-tumor heterogeneity. Towards this goal, we scored each malignant cell using signatures 132 

derived from four previously identified PM molecular subtypes (11) — sarcomatoid, biphasic-S, biphasic-E, and 133 

epithelioid (Figure 2A, left panel). As expected, we observed that in the most sarcomatoid (e.g., P1, P13) and 134 

epithelioid (e.g., P8, P9) tumors, malignant cells predominantly reside in the corresponding subtype quadrants 135 

(Figures S2A, 2A, right panel). However, several patients’ tumors histologically classified as predominantly 136 

epithelioid (e.g., P2, P7) were comprised of malignant cells that spanned all 4 molecular subtypes, uncovering a 137 

previously unappreciated intra-tumoral heterogeneity (Figures S2A, 2A, Table S1). Taken together, our data 138 

supports the view that PM tumors lie on a continuous spectrum between sarcomatoid and epithelioid subtypes 139 

(13,14) and further provides evidence that this paradigm is also valid at single-cell resolution. 140 

The ability of our scRNA-seq analysis to separate malignant cells from other TME cell types enabled us to 141 

dissect intra-tumoral heterogeneity and cancer-intrinsic expression programs at a much higher resolution and accuracy 142 

than was previously possible in bulk studies. We used consensus non-negative matrix factorization (25) (cNMF) to 143 

identify 20 unique cancer modules (Cm1-Cm20) after careful annotation of their biological pathways based on co-144 

expression patterns across cells and enrichment of top markers in canonical cancer expression programs (Figure 145 

S2B-D; Table S5; Methods). For example, we identified a cancer cell module (Cm17) that was predominantly 146 

expressed in sarcomatoid histology tumors and was highly similar to the bulk RNA-seq derived S score from (14) 147 

(Figure S2E). Cm17 included known sarcomatoid-associated genes (e.g., AXL, HAPLN, VIM; Table S5) as well as 148 

novel ones such as S100A3, IGFBP6, and CAVIN3 that have been implicated in pancreatic, breast, and lung cancer 149 

progression, respectively (26-28). To quantify the sarcomatoid content for each sample, we scored all malignant 150 

cells for Cm17 (referred to as single-cell Sarcomatoid score or scS-score hereafter) and classified tumor samples as 151 

scS-high or scS-low based on their mean scS-score ranking (Figure 2B). To investigate the relationship between 152 

different cancer modules and scS-score, we correlated Cm scores across malignant cells and samples (Figure 2C, 153 

S2C). Malignant programs most correlated with scS-score were involved in hypoxia (Cm8; TGFBI, VEGFA), 154 

BMP2-driven targets (Cm11; HPGD, SYT1), epithelial to mesenchymal transition (EMT) (Cm19; COL1A1, 155 

MMP2), cell migration (Cm9; BARX1, PODXL), cell proliferation (Cm16; PCNA, MKI67) and a mixed program 156 
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enriched in several pathways including EMT, glycolysis, and hypoxia (Cm14; TGFB1, LOX; Figure S2D). In 157 

contrast, malignant programs anti-correlated with the scS-score were mostly enriched in epithelioid markers (Cm2; 158 

MSLN, ITLN1), cell projections (Cm10; TEAD1, WWC1) and mesothelium markers (Cm15; HP, UPK3B). We also 159 

defined other interesting malignant programs related to immune pathways that did not show strong association with 160 

scS-score, including TNF-driven inflammation (Cm7; NFKBIA, ATF3), interferon response (Cm18; ISG20, IFIT1) 161 

and antigen-presenting (Cm20; HLA-DR, HLA-DQ). Comparing each module’s expression in sarcomatoid versus 162 

epithelioid samples in bulk cohorts showed mostly consistent trends, validating our approach (Figure 2D, S2F), 163 

highlighting how our discovery cohort can be leveraged to uncover novel cancer programs at single-cell resolution 164 

and validate their association with molecular subtypes in larger PM cohorts.    165 

 To assess if the de novo discovered cancer programs were associated with different disease outcomes, we 166 

performed survival analysis using both the Cox proportional hazards regression analysis (adjusted for molecular 167 

subtype or histology) and the Kaplan-Meier model within each histology. We found that sarcomatoid Cm17, cell 168 

proliferation Cm16, cell migration Cm9, and mixed program Cm14 were predictive of poor outcome in both validation 169 

cohorts (Figure 2E, S2G-H). When stratified by molecular subtype we also found PTEN-signaling Cm5 and chromatin 170 

organization Cm12 to be prognostic of lower overall survival only in epithelioid and sarcomatoid Bueno cohort 171 

patients, respectively (Figure S2I).  172 

Lastly, we performed a new computational analysis that systematically uncovers genomic interactions 173 

between Cms and expression of genes in frequently deleted PM CNV domains (Figure 2F; Methods). For instance, 174 

chromosome 22 (chr22) was inversely correlated with expression of several Cms including the epithelioid Cm2 and 175 

was positively correlated with the scS-score. Interestingly, we observe a similar trend in the Bueno bulk cohort at both 176 

expression (Figure S2J) and DNA level, as quantified by fluorescence in situ hybridization (FISH; Figure 2G), 177 

suggesting that chr22 deletions may occur preferentially in low scS-score, epithelioid-like PM tumors.  178 

In summary, single-cell dissection of malignant cell heterogeneity uncovered genomic alterations and cancer-179 

intrinsic gene expression programs in PM associated with different molecular subtypes, including a sarcomatoid, cell 180 

proliferation, cell migration, and mixed programs associated with poor outcome. 181 

 182 
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Fetal-like, scS-score associated endothelial cells likely contribute to angiogenesis 183 

The scRNA-seq data also presented the opportunity to characterize the stromal cell subsets and interactions across 184 

our cohort, which has been largely understudied in PM compared to the malignant and immune cell compartments. 185 

Based on Louvain clustering and expression of canonical markers we identified six mesenchymal and endothelial 186 

cell (EC) subsets: artery, PLVAP+ EC, vein, lymphatic EC (LECs), cancer-associated fibroblasts (CAFs), and 187 

smooth muscle cells (SMCs) (Figure 3A-B, S3A). Using cNMF, we identified 6 EC gene modules (Ems), where 188 

only Em3, PLVAP+ EC module was correlated with the cancer-intrinsic scS-score (Figure S3B-C).  cNMF also 189 

detected 6 CAF modules (Fms): COL6A2high PNISRhigh (Fm1), IGFBP6highMFAP5high (Fm2), CDH2 highFABP5 high 190 

(Fm3), COL16A1highCOL8A1high (Fm4), TXNIP high SERPING1high (Fm5), and IGFBP2high (Fm6) (Figure S3D-E). 191 

Comparison with mesenchymal cells from normal lung scRNA-seq data (29) revealed that Fm1 and Fm2 were most 192 

similar to the adventitial fibroblasts, Fm4 to the alveolar fibroblast, Fm3 to pericytes, and Fm5 and Fm6 to 193 

Lipofibroblasts (Figure S3F).  194 

Integration with normal lung EC scRNA-seq data (29) similarly confirmed high correspondence between 195 

normal and PM EC subsets, except for the PLVAP+ EC population (Figure 3C). To examine the functional role of 196 

this EC subset we performed gene set enrichment analysis and found high enrichment of genes associated with 197 

blood vessel morphogenesis and development (Figure 3D). This suggested that PLVAP+ ECs may be more 198 

prominent in development and prompted us to compare this population to a recently published fetal lung single-cell 199 

atlas (30); indeed, top markers expressed in PLVAP+ ECs were also highly expressed in distal fetal lung endothelial 200 

populations relative to EC subset from adult lungs (29) (Figure 3E). PLVAP was recently reported as a marker for 201 

fetal-like ECs in hepatocellular carcinoma, but other marker genes (e.g. COL4A1/2, RGCC, HSPG2, COL15A1) 202 

were unique to this population arguing that this is an PM-specific, fetal-like EC subset (31). 203 

Next, we employed single cell regulatory network and clustering (SCENIC) (32) to decipher the key 204 

transcription factors (TFs) and downstream gene regulatory modules (regulons) for each EC subset (Figure S3G). 205 

This analysis revealed ETS1 and MEF2C to be among the top TF regulators of PLVAP+ EC population, including 206 

318 and 63 genes in their regulons, respectively. Both de novo identified ETS1 and MEF2C regulons were most 207 

highly expressed in the PLVAP+ EC and fetal EC subpopulations (Figure 3F; Table S6). In agreement, ETS1 and 208 
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MEF2C are known to be required for endothelial patterning in embryonic angiogenesis and VEGF-stimulated EC 209 

migration in mouse models (33-35). 210 

 Given that ETS1 and MEF2C are also known to regulate angiogenesis (36,37), we speculated that PLVAP+ 211 

ECs may play an important role in angiogenesis downstream of VEGF signaling. To examine which TME signaling 212 

pathways are most likely to regulate the gene expression of PLVAP+ ECs we employed NicheNet (38) and found 213 

that VEGFA was indeed the top predicted ligand, expressed predominantly in PM myeloid and tumor cells (Figure 214 

3G). Not surprisingly, PLVAP+ ECs also showed the highest expression of VEGFA receptors KDR and FLT4 215 

(Figure S3H). Worth noting, in the Hmeljak validation cohort the combined expression of highly specific markers 216 

for PLVAP+ EC subset was significantly correlated with poor survival (Figure S3I). 217 

Furthermore, PLVAP+ EC expression was enriched in scS-score high, non-epithelioid PM in bulk RNA 218 

cohorts after correcting for endothelial content (Figure 3H, Figure S3J).  To experimentally validate the presence 219 

of PLVAP+ ECs in PM and enrichment in non-epithelioid tumors, we performed dual immunohistochemistry 220 

staining for PLVAP/CD31 on tissue sections derived from PM patients encompassing all three histological 221 

subtypes, along with uninvolved normal distal lung tissue (control) obtained from patients with lung 222 

adenocarcinoma. The quantified percentages of endothelial cells exhibiting concurrent expression of CD31 and 223 

PLVAP within blood vessels were significantly increased in PM compared to control tissue, with the largest 224 

differences observed in non-epithelioid PM (Figure 3I-J). Taken together, we discovered a PM-specific, fetal-like, 225 

angiogenic PLVAP+ EC subset that is likely regulated by TF ETS1, MEF2C, and VEGFA signaling; this population 226 

specifically expresses VEGFA receptors KDR and FLT4 and is enriched in non-epithelioid PM tumors, which likely 227 

favors tumor survival and contributes to a worse disease outcome. These findings thus support further investigation 228 

of anti-VEGFA agents (7) in patients with PM with high PLVAP+ EC abundance. 229 

 230 

Macrophages in scS-high PM express CXCL9/10/11 and likely contribute to T-cell infiltration  231 

To characterize the diversity of myeloid cells in PM, we performed unsupervised clustering followed by integration 232 

and annotation of cell subtypes based on canonical markers (Figures 4A-B, S4A-C). We identified 8 different 233 

myeloid subsets such as dendritic cells, further separated into cDC1, cDC2 and mregDCs, plasmacytoid dendritic 234 
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cells (pDCs), classical (CD14+) and non-classical (CD16+) monocytes, mast cells, and a large and heterogeneous 235 

cluster of tumor-associated macrophages (TAMs). We observed that VISTA, an immune checkpoint (IC) gene 236 

shown to be preferentially expressed in epithelioid subtypes (10,39) was most highly expressed by monocytes 237 

amongst myeloid subsets and all other cell types and higher in CD14+ monocytes in scS-low epithelioid tumors 238 

(Figure 4C). VISTA has been targeted in clinical trials for PM and quantifying its expression at a single-cell 239 

resolution can provide insight into its potential therapeutic mechanisms and how these differ across histological 240 

subtypes.  241 

When applying cNMF to dissect TAM heterogeneity we detected 10 macrophage modules (Mm), including 242 

an interstitial macrophage-like state (Mm1; SELENOP, LYVE1), an inflammatory CXCL9high TAM state (Mm6; 243 

C1QC, STAT1), and lipid-associated TREM2high TAM state (Mm7 and Mm9; GPNMB, SPP1, HILPDA, TREM2) 244 

(Figure 4D, S4D-E). We find that Mm1 and Mm6 were most correlated with the scS-score (Figures 4D) and, in 245 

agreement, CXCL9/10/11 expression was higher in scS-high versus scS-low myeloid cells (Figure 4E-F). These 246 

chemokines are known to bind receptor CXCR3, recruit T cells to the tumor core, and correlate in expression with 247 

lymphocyte abundance in melanoma and lung cancer (40,41). In our cohort CXCL9/10/11 were most highly 248 

expressed in monocytes and TAMs, while their corresponding receptor CXCR3 was specifically expressed NK and 249 

T cells, especially in CD8 and regulatory T (Treg) cells (Figure 4F). Increased recruitment of T cells in scS-high 250 

PM tumors via these interactions is further supported by significant correlations between CXCL9/10/11 expression 251 

and T cell abundance in the Bueno cohort (Figure 4G). 252 

To further investigate the regulation underlying different myeloid and TAM subsets, we performed regulon 253 

analysis using SCENIC (Figures 4H, S4F). This de novo analysis captures the known role of IRF7 in pDC function 254 

(42) and predicts regulons driven by TFs MAFB, MEF2C, BCLAF1 and YY1 in monocytes (Figure S4F). 255 

Additionally, TFs MAF, ATF3, and JUN were enriched for regulon activity with scS-high associated Mm1 TAM 256 

state, while known IFNγ signaling TFs STAT1 and IRF1 (43) were predicted as regulators of Mm6 and 257 

CXCL9/10/11 expression (Figure 4H).  258 

In summary, we observe differences in myeloid expression associated with different PM subtypes, 259 

including higher VISTA expression in scS-low monocytes and increased production of CXCL9/10/11 chemokines 260 
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implicated in chemotaxis of T cells in scS-high TAMs likely regulated by TFs STAT1 and IRF1; these findings can 261 

inform on future immunomodulatory therapies targeting myeloid cells in PM. 262 

 263 

Molecular dissection of T cell programs and IC molecules shows association with scS-score. 264 

To comprehensively characterize the T and NK cellular diversity in PM de novo, we again utilized two 265 

complementary unsupervised clustering approaches—Louvain clustering and cNMF. Louvain clustering identified 266 

major cell subsets in the tumor samples including CD4, CD8, Treg, T follicular helper (TFH) cells, and two NK cell 267 

subsets marked by high expression of KLRC1 and FGFBP2 (Figures 5A-B, S5A). Using cNMF we additionally 268 

uncovered functional T cell expression modules (Tms), such as, naïve (Tm1), stress response (Tm8), interferon 269 

response (Tm12), inflammatory (Tm3), gamma delta (Tm9), and proliferative T cells (Tm10; Figures 5C, S5B-C). 270 

We found five T cell modules positively correlated with scS-score, including a Treg-associated program (Tm7; 271 

FOXP3 and IL2RA) and four other modules linked to CD8 cell states—namely, progenitor (Tm11; XCL1, GNG4), 272 

exhaustion (Tm5; HAVCR2, LAG3), effector (Tm2; NKG7, GZMA), and MHC II genes expressing module (Tm4) 273 

linked to CD8 T cell activation (44) (Figure 5C-D). Effector, exhaustion, and Treg modules showed increased 274 

expression in T cells from scS-high tumors and were significantly enriched in bulk deconvolution analysis 275 

comparing sarcomatoid versus epithelioid tumors after correcting for T cell content and selecting specific markers 276 

in the validation cohorts, arguing that higher immune infiltration in scS-high tumors is accompanied by a shift 277 

toward CD8 and Treg fractions (Figure 5E, S5D). Increased exhaustion in scS-high T cells was also supported by 278 

higher expression of HAVCR2 and LAG3 as well as known IC targets, including PDCD1, TIGIT, and CTLA4 (Figure 279 

5F), as previously reported in bulk RNA-seq studies (13,14). Amongst T cell subsets, CTLA4 and TIGIT showed 280 

highest expression in Tregs, while PDCD1 was most highly expressed in CD8 and TFH cells in scS-high and scS-281 

low tumors, respectively (Figures 5G, S5E).  282 

We observed expression of germinal center (GC) TFH cell markers (e.g., TOX2, CXCR5) (45) in sample P9 283 

enriched module Tm6 (Figure 5H), prompting us to examine the B cell compartment where we also identified a 284 

population of highly proliferating GC B cells found almost exclusively in P9 (Figure 5I-J). Notably, enrichment of 285 

both GC TFH and B cells suggests the presence of mature tertiary lymphoid structures (TLS) in this epithelioid PM 286 
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patient. To investigate a link between TLS presence and molecular subtypes, we correlated expression of GC TFH 287 

marker TOX2 with the top markers of GC B cells (Figure 5J) and found significant association only in epithelioid 288 

samples (Figure 5K; r =0.46, P value = 0.0004). Interestingly, a previous study showed histological evidence of 289 

TLS presence in a subset of epithelioid PM tumors associated with longer survival (46).  290 

Next, we examined the CITE-seq and scTCR-seq data for all PBMC lymphocytes, which showed consistent 291 

RNA and protein expression (Figure 5L-M, S5F) and detection of more than 3,000 expanded clonotypes in CD8 T 292 

cells (Figure S5G). Expanded TCR clonotypes may be indicative of reactive CD8 T-cells recognizing tumor 293 

antigens or bystanders CD8 memory T cells but only the former may lead to terminal exhaustion (47). Hence, we 294 

scored CD8 T cells with detectable TCR sequence by the exhaustion module previously identified in tumor-295 

infiltrating lymphocytes (Tm5) and found that expanded CD8 clonotypes have significantly higher exhaustion score 296 

compared to non-expanded clonotypes (Figure 5N). We also show significant increases for activation (Tm4) and 297 

cytotoxicity (Tm2) CD8 module scores (Figure S5H). These trends, albeit not significant perhaps due to smaller 298 

sample size, were also observed in tumor infiltrated T cells, where expanded clonotypes also mapped primarily to 299 

CD8 T cells and made up a higher fraction of CD8 T cells in scS-high tumors (Figure S5I-K). Finally, we identified 300 

several expanded clonotypes present in both tumor and blood patient-matched samples and exhibiting high 301 

exhaustion scores, further suggesting systemic anti-tumoral T cell activity (Figure 5O, S5L-M).  302 

 Taken together, molecular characterization of B and T cells revealed a higher abundance of Tregs, 303 

expression of IC targets, and CD 8 exhaustion, cytotoxicity and activation modules associated with the scS-score; 304 

in contrast, germinal center TFH and B cells markers suggest preferential TLS formation in epithelioid PM tumors. 305 

 306 

NK cell IC blockade targeting NKG2A as a novel therapeutic strategy in PM 307 

In the past decade, immunomodulatory drugs have become a mainstay for the treatment of cancer (48), including 308 

anti-PD1 and anti-CTLA4 combination therapy recently approved for use in PM (49). NK cells have been largely 309 

unexplored in PM but also represent a viable therapeutic target (50). We found a significant survival benefit of 310 

higher NK cell infiltration in tumors from patients with epithelioid PM (Figure 6A S6A) and observe a similar trend 311 

when using a Cox proportional hazard regression model across all subtypes in both validation cohorts (Figures S6B-312 
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C). Combined with our previous observation of higher NK cell infiltration in epithelioid PM (Figure 1E), this 313 

analysis indicates that NK cell abundance may represent an important, epithelioid-specific prognostic biomarker. 314 

To dissect the crosstalk between NK and malignant cells and identify new therapeutic avenues, we curated a list of 315 

NK cell inhibitory receptors and cognate ligands and found that KLRC1 and its ligand HLA-E were both highly 316 

expressed by NK and malignant cells, respectively, in comparison to other ligand receptor pairs in our scRNA-seq 317 

data (Figure 6B). Additionally, we found that the fraction of KLRC1-expressing NK cells was most abundant in PM 318 

compared to other cancer types after integration with scRNA-seq data from a pan-cancer immune cell atlas (51) 319 

(Figure 6C). 320 

Antibodies (monalizumab) targeting NKG2A (encoded by KLRC1 gene) has been shown to enhance both 321 

NK and CD8 T cell response (50). To experimentally test if blocking NKG2A-HLA-E interaction could augment 322 

NK cells anti-tumor function in PM, we co-cultured four mesothelioma cell lines with blood-derived NK cells in 323 

the presence or absence of anti-NKG2A antibody (Figure 6D, S6D).  Flow cytometry analysis showed that the 324 

mesothelioma cell lines constitutively express HLA-E, which increased following IFNγ treatment (Figure S6E), 325 

while the NK cells expressed high levels of NKG2A (Figure S6F). Next, NK cells were co-cultured with the 326 

mesothelioma cell lines for 16 hours in the presence or absence of anti-NKG2A antibody, and IFNγ production and 327 

degranulation (CD107a+, Granzyme A-/low) were measured thereafter by flow cytometry as read-outs for NK cell 328 

activation. We found that NKG2A blockade significantly increased NK degranulation and IFNγ production, 329 

regardless of whether the tumor cell lines were pre-stimulated with IFNγ to increase HLA-E expression (Figure 330 

6E). These differences remained significant after applying a boolean operator for gating on total activated NK cells 331 

undergoing degranulation or producing IFNγ (Figure S6G). We tested this interaction also in the presence of anti-332 

MHC class I (MHCI) antibody since expression of MHCI on tumor cells is known to suppress NK cell activation. 333 

This additional step confirmed that enhanced NK cell activation was indeed primarily due to the targeted blockade 334 

of the NKG2A-HLA-E interaction (Figures 6E, S6G). 335 

In conclusion, our analysis demonstrates that NK cell infiltration is a prognostically relevant biomarker in 336 

epithelioid PM subtypes, and that targeting NKG2A significantly augments NK cells tumor cytotoxicity, warranting 337 

further investigations as a viable immunotherapy strategy in PM. 338 
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 339 

DISCUSSION 340 

We performed scRNA-seq profiling of ~140,000 human tumor and peripheral blood cells and identified 54 gene 341 

expression modules across cellular compartments to generate the first single-cell sequencing atlas of PM. Analysis 342 

of malignant cell heterogeneity showed presence of all 4 molecular subtypes in biphasic and most epithelioid PM 343 

tumors, supporting the notion that PM tumors do not classify into discrete molecular subtypes but rather lie on a 344 

continuum between sarcomatoid and epithelioid histology (13,14). Consequently, we adopted a rank-based 345 

analytical strategy designed to capture pairwise enrichment of different cellular programs across patients, which 346 

uncovered a highly distinct TME associated with a single-cell resolution, cancer-intrinsic sarcomatoid signature, 347 

we termed scS-score (Figure 6F). We also uncovered cell migration, proliferation, and mixed hypoxia/EMT cancer 348 

modules that were associated with high scS-score across patients and predictive of poor outcome. In contrast, cancer 349 

modules containing epithelioid markers were associated with chromosome 22 deletion in our scRNA-seq data, 350 

which was supported by RNA expression and DNA FISH data from the Bueno validation cohort. A multi-regional 351 

whole exome-sequencing from 22 PM patients aiming at reconstructing clonal trajectories reported chr22 deletion 352 

as a late event during PM evolution but did not find an association with the epithelioid subtype perhaps due to the 353 

small sample size (52), whereas our predictions leveraged on CNV-gene module co-variation analysis across 354 

malignant cells.  355 

Our de novo analysis led to the discovery of a fetal-like, PLVAP+ endothelial cell population, which we 356 

predict to be responsive to VEGFA signaling through receptors KDR and FLT4 and promote angiogenesis. This 357 

population was enriched in PM tumors when compared to ECs from normal adult lungs and was also associated 358 

high scS-score (scS-high) samples, which we validated by IHC. Bevacizumab, a monoclonal antibody targeting 359 

VEGFA effective in the treatment of many cancers (53), has been introduced in first-line standard of care for 360 

patients with unresectable PM albeit with limited benefits (7). Efforts in identifying biomarkers of treatment 361 

response have focused on plasma levels of VEGF-A (pVEGFA) and molecules eliciting similar angiogenic 362 

responses with inconclusive results (54,55). It is tempting to speculate that this population of PLVAP+ ECs may 363 
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represent a novel biomarker for anti-angiogenic therapy response and a putative future drug target to abrogate 364 

tumor-induced angiogenesis. 365 

 Examination of the immune composition of PM samples with high scS-score showed a higher proportion 366 

of Tregs and CD8 effector and exhausted T cells, in line with past bulk-RNA studies (12,13), and further uncovered 367 

a population of CD8 MHC II+ T cells, which was previously reported to induce pro-inflammatory activity in patients 368 

responding to neoadjuvant chemotherapy in breast cancer (44).We also provide molecular evidence for TFH cells 369 

positive for CXCL13 and IL21, which are relevant biomarkers of immunotherapy response (56), and further describe 370 

a patient-specific TOX2+ TFH transcriptional program associated with the presence of highly-proliferating germinal 371 

center B cells that could signify the presence of mature TLSs (52). Indeed, TOX2 has been shown to be essential 372 

for maintaining a TFH phenotype in ex vivo GC TFH isolated from human tonsils (45). Supporting our finding, TLSs 373 

have been previously observed in PM using bulk-RNA and histological analysis on a cohort of 123 chemo-naive 374 

patients, which was linked to improved survival and enriched in epithelioid tumors (57). Finally, we identified a 375 

CXCL9/10/11 expressing TAM population in PM that is associated with high scS-score samples and likely 376 

contributes to chemotaxis for T cell trafficking to the tumor core. Consistent with this observation, CXCR3 (receptor 377 

for CXCL9/10/11) was more expressed in scS-high tumor T cells, especially in CD8 T cells and Tregs that have 378 

higher abundance in scS-high tumors. Further supporting this finding is a recent study employing spatial 379 

transcriptomics in PM biphasic samples, which showed increased lymphocytic infiltrate and expression of 380 

chemokines CXCL9/10 in sarcomatoid-enriched regions (58). Future time-course studies will be needed to decipher 381 

the precise molecular events that trigger these highly divergent TMEs that track with the sarcomatoid-epithelioid 382 

axis.  383 

 Resolving the complexity of the immune-stroma-tumor interface and composition in the TME is of high 384 

clinical significance given that there are over 4700 immunotherapy agents in development (48), emphasizing the 385 

need for rational clinical trial design and patient treatment stratifications based on observations such as those 386 

reported here. Our data-driven approach highlighted an immunosuppressive NKG2A-HLA-E interaction between 387 

NK and tumor cells, which enhanced NK cell degranulation and IFNγ production upon NKG2A blockade in co-388 

cultures with 4 PM cell lines. A previous study similarly reported reactivity of NK cells isolated from PBMC of 389 
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healthy individuals against mesothelioma cell lines when stimulated with IL-15 (59). Further supported by the 390 

findings that KLRC1 expression in NK cells is more abundant in PM relative to other cancer types and that NK cell 391 

content is an indicator of better overall survival in epithelioid PM, this initial finding lays the ground for further 392 

investigations in experimental models of PM using anti-NKG2A therapeutics (e.g., monalizumab).   393 

In conclusion, this study demonstrates the potential of high-throughput cellular profiling via scRNA-seq 394 

and in-depth analysis on PM clinical samples in identifying new cellular programs, prognostic signatures of disease 395 

outcome, and therapeutic targets towards the goal of achieving more effective, personalized therapies in PM.  396 

 397 

Study limitations 398 

Our study comes with several limitations. Firstly, the small sample size of this rare pleural cancer limited our ability 399 

to sample patients evenly across different molecular subtypes. Our analysis strived to overcome this limitation by 400 

corroborating our main findings using large bulk RNA-seq cohorts and performing associations between cell 401 

composition and gene expression programs using rank statistics (Spearman correlation), which takes advantage of 402 

the power of the entire cohort rather than dividing samples into discrete groups. Secondly, differences in TME along 403 

the sarcomatoid to epithelioid subtype gradient in our study were investigated using gene expression information 404 

alone, whereas a recent study employing bulk multimodal molecular profiling reported orthogonal axes of molecular 405 

divergence driven by DNA methylation, genomic ploidy, and immune infiltration (12). Future efforts in 406 

characterizing PM should aim to leverage such multimodal technologies at a single-cell resolution. Thirdly, even 407 

though we were able to identify and validate the presence of a fetal-like, endothelial subpopulation, the stromal 408 

component in our scRNA-seq cohort was overall underrepresented, accounting for only 6,352 cells with several 409 

samples having very low numbers. This may have precluded us from uncovering additional stromal subtypes of 410 

relevance for PM progression, especially dissection of cancer-associated fibroblasts (CAF) that are known to be 411 

abundant in PM and contribute to its pathogenesis (60). Fourthly, we capture 3,214 NK cells in our data that form 412 

3 distinct populations; however, we anticipate that higher sampling of these cell types in PM and across cancer 413 

types will better inform on their functional diversity and therapeutic potential (61). Lastly, our single-cell catalogue 414 
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does not capture neutrophils, which are known to escape detection in human samples utilizing the 10X Chromium 415 

scRNA-seq platform. 416 

 417 

METHODS 418 

Human tumor sample collection. Tumor samples were obtained from diagnostic biopsies and surgical specimens 419 

of patients undergoing resection at Mount Sinai Hospital after obtaining informed consent in accordance with a 420 

protocol reviewed and approved by the Institutional Review Board at the Icahn School of Medicine at Mount Sinai 421 

(IRB Human Subjects Electronic Research Applications 10-00472 and 10-00135) and in collaboration with the 422 

Biorepository and Department of Pathology. Clinical information of subjects can be found in Table S1. Only 423 

patients with treatment-naive PM were included in this study. 424 

 425 

Tumor sample processing. Tumor samples were transported in MACS® Tissue Storage Solution  stored at 4°C, 426 

rinsed with PBS, minced and incubated in a rotation shaker for 40 minutes at 37°C in Collagenase IV 0.25mg/ml, 427 

Collagenase D 200U/ml and DNAse I 0.1mg.ml (all Sigma). Cell suspensions were then aspirated through a 18G 428 

needle ten times and strained through a 70-micron mesh prior to RBC lysis. Dead cells were removed using an 429 

EasySep Dead Cell Removal (Annexin V) Kit. Cell suspensions were sorted into CD45+ and CD45- cells using the 430 

EasySep™ Human CD45 Depletion Kit per kit instructions. 431 

 432 

Tumor single-cell library construction and sequencing. Single-cell RNA-seq (scRNA-seq) was performed on 433 

tumor samples using the Chromium platform (10x Genomics, Pleasanton, CA) utilizing both the 3′ and 5’ gene 434 

expression kits. Approximately 6000 CD45+ and CD45- cells were loaded into each channel of the 10x Chromium 435 

controller, following the manufacturer-supplied protocol. For 5’ gene expression samples, BCR and TCR CDR3 436 

sequences were enriched using the human V(D)J B/T cell enrichment. 10x libraries were constructed using the 10x 437 

supplied protocol and sequenced at the Mount Sinai Genomics Core Facility. Gel-bead in emulsions (GEMs) were 438 

generated on the sample chip in the Chromium controller. Barcoded cDNA was extracted from the GEMs using 439 

Post-GEM RT-cleanup and amplified for 12 cycles. Amplified cDNA was fragmented and subjected to end-repair, 440 
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poly-A-tailing, adaptor ligation, and 10X-specific sample indexing following the manufacturer’s protocol. Libraries 441 

were quantified using Bioanalyzer (Agilent) and QuBit (Thermofisher) analysis and then sequenced in paired-end 442 

mode on a HiSeq 2500 instrument (Illumina, San Diego, CA).  443 

 444 

PBMC sample processing and sequencing. PBMCs were isolated within 3 hours of collection via Ficoll density 445 

gradient centrifugation for 10 min at 1200g room temperature. The supernatant was then spun down at 500g for 10 446 

min at 4 degrees C and the pellet resuspended to a concentration of 10x10^6 cells/ml cold Human Serum AB 447 

(GemCell HAB and HAB + 20% DMSO in 1:1 ratio). The resulting PBMCs were stored in 2ml Cryogenic vials in 448 

liquid nitrogen. For cell isolation PBMCs were thawed, washed 2X in RPMI 2% FCS, treated with ACK lysis buffer 449 

(Lonza) to remove RBCs and briefly incubated with DAPI. 300,000 cells were then sorted on a DAPI negative gate. 450 

Cells were then stained for 30 minutes at room temperature with a panel of 138 Total-Seq-C antibodies (Biolegend, 451 

Stoeckius et al 2017) and washed 3x using the HT1000 laminar wash system (Curiox). Cells were then counted 452 

using the Cellaca MX High-throughput Automated Cell Counter as described in the manufacturer’s protocol 453 

(Nexcelom), pooled and loaded on the 10x Chromium 5’ V2 and Next GEM Chip K Kit using a superloading 454 

strategy mixing cells from the same sample across lanes. BCR and TCR CDR3 sequences were enriched using the 455 

human V(D)J B/T cell enrichment. Libraries were prepared according to manufacturer’s protocol (10x Genomics) 456 

and sequenced on a NovaSeq 6000 System using the S4 2x 150 kit (Illumina). Raw reads were aligned to the human 457 

transcriptome using a splice-aware algorithm to produce cell-by-gene count matrices. Cells were separated to their 458 

respective samples using a combination of public (Scrublet by Wolock et al. Cell Systems 2019) and Immunai 459 

algorithms.  460 

 461 

scRNA-seq data preprocessing, quality control, clustering, annotation, and differential expression. Pair-ended 462 

FASTQ files were mapped to the GRCh38 human transcriptome using the count function in CellRanger > v3.1. The 463 

count matrices obtained were normalized, log-transformed and scaled using the Seurat v4 package v4.4 in R. Cells 464 

with < 400 genes, < 1000 unique molecular identifier (UMI) counts or > 25% mitochondrial gene expression 465 

detected were removed from downstream analyses. Principal component analysis (PCA) and k-nearest neighbor 466 
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(kNN) graphs were computed using Seurat default parameters. Based on the kNN graphs, a shared nearest neighbor 467 

(SNN) graph was constructed to cluster cells with the original Louvain algorithm as implemented in Seurat. High-468 

level cellular compartment annotations were assigned to clusters based on expressions of known cell class markers. 469 

Doublets were identified in two ways: doublet clusters were identified with higher-than-average gene and UMI 470 

counts, as well as expressions of markers from multiple high-level cellular compartment (e.g., CD45+ and 471 

CALB2+) and manually removed from downstream analyses and removed from downstream analysis. Data 472 

integration within each cell compartment was performed using harmony v.0.1 to minimize sample-derived batch 473 

effects in aggregated visualizations. For batch effect correction across all cell compartments, scANVI model with 474 

n_layers=3 and n_latent=32 from scvi-tools v0.20.3 was used on raw counts to integrate the data across samples 475 

with default parameters when training. Differential expression analyses for de novo marker discovery were 476 

performed using Seurat FindMarkers function using a Wilcoxon Rank Sum test. For pairwise comparisons between 477 

subset groups we used muscat v1.12.1 package using DESeq2 method. Pathway and gene ontology analysis was 478 

carried out with clusterProfiler R package v4.6.0, using function enricher.  479 

 480 

Defining cell programs using consensus non-negative matrix factorization (cNMF). We applied non-negative 481 

matrix factorization implemented in the Python package cNMF v1.3.4 to identify cellular states in each of the 482 

following cell types: malignant, endothelial, CAF, tumor-associated macrophages, and T cells. For each, we tested 483 

from 5 to 30 K with 100 replicate, and filtered outlier components with Euclidean distance > 0.3 from their nearest 484 

neighbors. Then based on the trade-off between reconstruction error and factorization stability and manual 485 

inspection of the modules we selected the most appropriate Ks. We then computed cNMF module scores by taking 486 

the top 20 genes ranked by spectra scores for each cNMF module using Seurat function AddModuleScore. Prior to 487 

this, we removed gene redundancy in cNMF modules by assigning each gene to the cNMF module with the highest 488 

spectra score ensuring independence when computing module scores and pairwise correlation. To compute pairwise 489 

Spearman correlation between cNMF modules across samples, we computed the mean score for each cNMF module 490 

across cells of the relative compartment. For the fibroblasts and endothelial cell compartments we computed cNMF 491 

modules from metacells, as these showed better performance compared to cNMF modules when using individual 492 
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cells. We also merged cNMF modules whenever their expression was highly correlated across cells (taking the top 493 

20 genes for each to compute a combined score) and removed others deemed to represent doublets, resulting in a 494 

total number of 54 cNMF that can be found in Table S5. 495 

 496 

Copy-number variations inference. We used the package InferCNV (v1.14.2) to infer copy-number variations 497 

(CNVs) in the epithelial compartment of the scRNA-seq data. We used a set of normal distal lung cell types 498 

including normal mesothelial cells as reference (unpublished). We computed a CNV load score per cell by summing 499 

the absolute CNV scores per cell and then normalized the resulting values to the 3rd quantile across cells per sample. 500 

A combination of the CNV load distribution and UMAP cell clustering of epithelial cells was used to identify true 501 

malignant cells. To infer genomic interaction with cancer cNMF modules, we applied the following strategy: 1) 502 

metacells were computed using hdWGCNA function MetacellsByGroups (k=50, max_shared=30) excluding low 503 

cell number samples P1 P3 and P13. 2) We selected the most frequent CNV chromosomal rearrangements in our 504 

data (at regions: chr1p, chr3p, chr4, chr13, chr14, chr22), which were then used to compute a module score inclusive 505 

of all genes contained in each chromosomal region. 3) Malignant cNMF modules were recomputed on metacells 506 

excluding all genes that overlapped selected genomic regions. 4) Spearman correlation was computed across 507 

metacells for each sample and the median Spearman correlation was used for display in heatmap in Figure 1G. 508 

Similarly, for validating this analysis in the Bueno cohort, we took the average expression of the genes in each 509 

malignant cNMF module, excluding genes within a CNV region, and computed Spearman correlation with the 510 

average expression of genes in each CNV region across samples. 511 

       512 

Bulk RNA-seq datasets acquisition and analysis. RSEM-normalized count matrix including 82 bulk RNA-seq 513 

samples as part of the TCGA MESO cohort (Hmeljak cohort) was downloaded using the R package cgdsr (v1.3) of 514 

cBioPortal (http://www.cbioportal.org), an online database built for cancer genomics along with metadata including 515 

histology information. The Bueno cohort was downloaded from the European Genome-phenome Archive (EGA) 516 

under accession number EGAS00001001563 as RPKM-normalized count matrix including 216 bulk RNA-seq 517 

samples along with metadata information including histological and molecular subtypes. Both datasets were log2 518 
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normalized before any downstream analysis. To compute the score for each scRNA-seq malignant cNMF program 519 

we averaged the expression of the top 20 genes for each malignant cNMF module. For cNMF programs identified 520 

in other compartments, we first corrected bulk normalized expression for a given cell type abundance (e.g., T cells) 521 

by using the function removeBatchEffect from limma R package v3.54.0, where we designated the expression of a 522 

canonical marker for a given cell type (e.g., CD3D for T cells) as covariate. For immune content correction we used 523 

the PTPRC marker gene, for T cell infiltration we used CD3D and for endothelial content we used VWF. This was 524 

done to ensure that differences observed in the bulk were not caused by higher abundance of the compartment 525 

program assessed. Additionally, to validate T-cell cNMF module enrichment across molecular subtypes, we 526 

selected most specific markers for each module: CD8A, CD8B for Tm2, HAVCR2 for Tm5 and FOXP3 TNFRSF18, 527 

ILRA for Tm7. Similarly, we selected most specific marker genes for the fetal PLVAP+ EC subpopulation (ESM1, 528 

PLVAP, TP53I11, and INSR) to compute survival analysis.  529 

 530 

Bulk RNA-seq cell type deconvolution. Cell type deconvolution of bulk RNA-seq samples were performed using 531 

the package TED (BayesPrism) (v2.0) (23). BayesPrism is a Bayesian framework that references on cell type 532 

expression profiles in scRNA-seq data to statistically estimate the proportion of corresponding cell types in bulk 533 

samples. To identify significant differences in the deconvolved cell type proportions we calculated P values using 534 

the Dirichlet-multinomial regression analysis, implemented by the R package DirichletReg. Since cell compositions 535 

sum to one, there is an inversely proportional relationship between cell fractions. Dirichlet-multinomial regression 536 

models these dependencies by accounting for the proportions of all other cell subsets when comparing the difference 537 

in one cell subset between two PM sample groups (e.g., difference in T cells between sarcomatoid and epithelioid 538 

molecular subtypes).  Dirichlet regression was used to assess significant variation in cell type abundances from 539 

deconvolved bulk-RNA cohorts and scRNA-seq data. 540 

 541 

Assigning bulk RNA-seq based molecular subtypes to malignant single cells. In the Bueno cohort, molecular 542 

subtypes were defined based on transcriptomic consensus clustering and assigned to four categories: sarcomatoid, 543 

biphasic-S, biphasic-E, and epithelioid (11). Two-dimensional representation of PM subtypes in malignant cells 544 
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was carried out similarly to Neftel et al (62). Cells were first separated into sarcomatoid/biphasic-S versus 545 

epithelioid/biphasic-E by the sign of D = log2(max(sarcomatoid,biphasic-S) – max(epithelioid,biphasic-E)-1), and 546 

D defined the y axis of all cells. For sarcomatoid/biphasic-S cells (i.e., D>0), the x axis value was defined as 547 

biphasic-S –sarcomatoid and for epithelioid/biphasic-E cells (i.e., D<0), the x axis was defined as epithelioid - 548 

biphasic-E. 549 

 550 

Survival analysis. We used a Kaplan-Meier (KM) model to estimate the survival function using the Bueno and 551 

Hmeljak cohorts, stratified by their expression levels of various gene modules that can serve as potential prognostic 552 

biomarkers. To adjust for histology or molecular subtype groups, we used a stratified Cox proportional hazards 553 

regression model and computed P values. Both models were implemented using the survival (v.3.4-0) R package. 554 

For Kaplan-Meier models we grouped the samples into three groups based on their module score, with high assigned 555 

to the first quartile, medium (med) to the second and third quartile and low to the fourth quartile, whereas we used 556 

both continuous and stratified values in Cox proportional hazards regression models (reported as (C) P value and 557 

(S) P value respectively). P values based on the log-rank test and the chi-square test were used to determine the 558 

statistical significance of survival outcomes among the three groups in the adjusted Cox and KM models, 559 

respectively.  560 

 561 

SCENIC analysis. SCENIC (v.1.1.2) was run using default settings as described (32) on the myeloid, TAM and 562 

endothelial cells. With its implementation in R, SCENIC was run using the 500bp and 10kb motif databases for 563 

GENIE3 and RCisTarget. The regulon activity scores (AUC) were calculated using the AUCell (v.4.2) R package 564 

for normal and fetal endothelial cells using regulon information from the PM endothelial cells. 565 

 566 

NicheNet analysis. In order to explore the potential regulation mechanisms of modules, we applied the NicheNet 567 

package (v2.0.4) implemented in R to predict potential upstream ligands in the TMEs of specific gene signatures. 568 

The receiver was defined as the cell population most highly expressing a given module and the sender was the other 569 
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cell types. Background expressed genes were defined as the intersection of the top 5000 variable features in the 570 

receiver cells and the ligand candidates in the ligand-target matrix database provided by NicheNet. 571 

 572 

TCR-seq analysis. TCR analysis was performed using R package scRepertoire (v2.0) (63).  Filtered contig lists 573 

from each sample outputted from Cellranger were combined using function CombineTCR and mapped to 574 

expression data via barcodes using combineExpression function. Clonotypes were labelled as non-expanded, 575 

expanded small (n > 1 and n ≤ 5, Small) and expanded large (n > 5, Large). To assess exhaustion in expanded 576 

clonotypes we used the computed score for the exhaustion module Tm5 and averaged the score per clonotype across 577 

cells. For clonal overlap across samples and across sites we used the ‘CTstrict’ clonecall. 578 

     579 

Immunohistochemistry (IHC): Paraffin-embedded human mesothelioma tumor samples from all three 580 

histological subtypes—epithelioid, biphasic, and sarcomatoid—as well as uninvolved normal lung tissues from lung 581 

adenocarcinoma patients, were sourced from the Biorepository tissue bank at the Icahn School of Medicine at Mount 582 

Sinai (ISMMS). These tissue samples were procured in accordance with protocols approved by the Institutional 583 

Review Board (IRB) of ISMMS. For IHC, 3μm sections of these paraffin-embedded tissue sections were utilized. 584 

The IHC process was conducted using the VENTANA Discovery Ultra system (Roche) following the 585 

manufacturer’s protocols. This involved de-paraffinization of the tissue sections, followed by sequential staining 586 

with primary antibody for CD31 (Roche) and PLVAP (Proteintech). Each primary antibody application was 587 

succeeded by the application of corresponding secondary antibodies—DISCOVERY OmniMap anti-Mouse HRP 588 

(RUO) Catalog # 760-4310, and DISCOVERY Anti-Mouse HQ Catalog # 760-4814. The signals were then 589 

developed using different colors: the DISCOVERY ChromoMap DAB kit (RUO) Catalog # 760-159 for brown and 590 

the DISCOVERY Purple kit (RUO) Catalog # 760-229 for purple. Crucially, after each staining phase, slides 591 

underwent a process of inhibition, heat denaturation, and neutralization. Subsequently, tissues were counterstained 592 

with Hematoxylin to highlight the nuclei in blue. The stained sections were imaged using NanoZoomer S60 Digital 593 

slide scanner (Hamamatsu), and the acquired images were analysed using the HALO® Image Analysis Platform 594 

(Indica Labs). CD31+ vessels, characterized by brown-stained particles in the cytoplasm, were quantified. 595 
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Simultaneously, PLVAP-positive cells, discerned by purple-stained particles, were identified. The percentage of 596 

CD31 and PLVAP double-positive endothelial cells within blood vessels was then calculated for graphical 597 

representation. For each sample, quantification was conducted on 9 to 23 randomly selected regions of interest 598 

(ROIs). Statistical significance of the findings was assessed using a paired Student’s t-test. 599 

 600 

Immunophenotyping of mesothelioma cell lines and NK cells. We performed immunophenotyping on all four 601 

mesothelioma cell lines used in this study: NCI-H28, MSTO-211H, NCI-H2052, and NCI-H2452. Each cell line 602 

was treated overnight in fully supplemented RPMI medium, either with or without 200 ng/ml recombinant human 603 

Interferon Gamma (rhIFNγ). Following treatment, cells were stained with Zombie NIR™ (Biolegend) for viability 604 

assessment. Subsequently, Fc blocking was performed using TruStain FcX, and the cells were stained with HLAE 605 

PE antibody (Biolegend) to assess the surface expression of these receptor. The comprehensive analysis of receptor 606 

expression was conducted using flow cytometry with a Cytek Aurora system. Peripheral Blood Mononuclear Cells 607 

(PBMCs) were isolated from healthy donor’s blood using density gradient centrifugation with Lymphoprep™ 608 

(STEMCELL Technologies) as the separation medium. The freshly isolated PBMCs were subsequently cultured in 609 

human NK MACS® medium (Miltenyi Biotec) for 2 to 3 weeks to ensure optimal in vitro expansion of NK cells. 610 

NK cells were analyzed by flow cytometry for expression of NKG2A using above mentioned protocol but with 611 

anti-human NKG2A PECy5 antibody (Biolegend). 612 

 613 
Mesothelioma-NK Cell Co-culture assay: Mesothelioma cell lines were prepared by incubation with or without 614 

200 ng/ml rhIFNγ in fully supplemented RPMI medium overnight. For the co-culture assay, mesothelioma cell lines 615 

were further pre-treated with anti-MHC class I antibody (10 μg/ml) (Clone W6/32, Biolegend) for 1 hour, whereas 616 

blood derived invitro expanded NK cells were pre-treated with anti-NKG2A (10 μg/ml) (Beckman Coulter) 617 

antibody for 1 hour. Subsequently, NK and mesothelioma cells were combined in a 96-well plate at an effector to 618 

target (E:T) ratio of 6:1. Anti-CD107a-BV785 antibody (Biolegend) at 1:500 dilution was added to the cells. After 619 

1 hour, the culture was supplemented with 0.5X concentrations of both brefeldin A and monensin (Biolegend) to 620 

facilitate cytokine retention within the cells. The co-cultured cells were then incubated for a total of 16 hours. Post-621 
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incubation, the cells underwent staining with Zombie NIR™ (Biolegend) for viability assessment, Fc blocked using 622 

TruStain FcX, and then with surface antibodies, including CD45 BUV395, CD3 BUV496, CD4 BV570, CD8 PerCP 623 

Cy5.5, CD56 BUV805, PD-1 BV711, and NKG2A PECy5 (Biolegend). The cells were fixed using IC fixation 624 

buffer (Biolegend) and intracellularly stained using granzyme A AF700 and IFNγ PE antibodies in 1x 625 

Permeabilization Buffer (Biolegend). Finally, the stained samples were subjected to flow cytometric analysis using 626 

a Cytek Aurora system to quantitatively assess NK cell degranulation and cytokine production. Flow Jo was used 627 

for flow cytometry data analysis. We employed the Flow AI algorithm via the FlowJo software platform. This 628 

approach facilitated the automated identification and exclusion of aberrant events, ensuring high-quality data for 629 

subsequent analysis. The parameters and thresholds for Flow AI were set in accordance with the software's 630 

guidelines to optimize data integrity and analytical accuracy. 631 

 632 
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All scRNA-seq, CITE-seq and TCR-seq data have been deposited in the GEO and are available under accession 634 

number GSE190597. 635 
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Figure 1. Single-cell catalogue of PM tumor and PBMC samples shows distinct TME cell composition 861 

differences between molecular subtypes. A, Schematic of sample collection, digestion, cell sorting, and 862 

sequencing. B Analysis workflow C, Uniform Manifold Approximation and Projection (UMAP) plots colored by 863 

cell type annotations (top) and patient identities (bottom) of primary tumors (left) and PBMC (right). D, Dot plot 864 

showing expression and percentage of cells expressing selected marker genes for each annotated cell type. E, 865 

Sample distributions based on cell type proportions (deconvolved using BayesPrism) in the Bueno cohort, grouped 866 

by different molecular subtypes. FDR-adjusted P values comparing difference between sarcomatoid and epithelioid 867 

subtypes were determined by Dirichlet-multinomial regression model that takes into account dependencies in 868 

proportions between cell types. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. F, Inferred CNVs of malignant 869 

cells from primary tumor samples (sub-sampled to 200 cells per patient) with genomic location of key PM driver 870 

mutation genes shown on the bottom.  871 
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Figure 2. Unbiased discovery of PM cancer programs and association with patient survival. A, Left: Two 873 

dimensional (2D) representation (Methods) of the malignant cell distribution across the four PM molecular subtypes 874 

(quadrants) defined in Bueno et al (11) combining cells from all PM patients. Right: 2D representation of the 875 

malignant cell distribution for only four representative PM patients. Clinical histology of the cancers upon diagnosis 876 

are reported in parentheses. B, Per sample malignant cell distribution of the scS-score based on genes in Cm17, 877 

identified de novo from the scRNA-seq data. Tumor samples were classified as scS-high or scS-low based on their 878 

mean scS-score ranking. C, Pairwise Spearman correlation of sample-averaged scores derived from the 20 Cms 879 

identified in malignant cells. Each Cm was annotated with the most representative biological pathway. Vertical 880 

stacked bar plots (left) show Cm sample distribution. Top color bar shows correlation of each Cm to the scS-score 881 

D, Cm ranked by correlation to the sSC-score and colored by their enrichment for either epithelioid (green) or 882 

sarcomatoid (red) molecular subtypes from the Bueno cohort. FDR-adjusted P values were computed using Welch 883 

Two Sample t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.000. E, Univariate Cox-proportional hazard 884 

regression analysis (corrected for molecular subtype) for each Cm significantly associated with survival from the 885 

Bueno cohort. F, Common PM CNV (right) interaction with cancer programs (bottom) as computed by median of 886 

per-sample Spearman correlations between each Cm and CNV score (Methods). Left bar shows median of per-887 

sample Spearman correlation to the scS-score. G, Distribution of samples from the Bueno cohort scored by the scS-888 

score and grouped by FISH staining of chr22 reported as deleted or normal in the Bueno cohort. P value was 889 

computed using Welch Two Sample t-test. **p<0.01. 890 
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Figure 3. Fetal-like, cancer-enriched PLVAP+ endothelial cells associate with angiogenesis. A, UMAP 892 

embeddings of PM stromal and endothelial cell types integrated across patients. B, Dot plot showing expression 893 

and percentage of cells expressing top selected markers per cell type annotation and relative sample composition 894 

(right, stacked bar plots). C, Spearman correlation coefficient heatmap clustering the average expression profiles of 895 

endothelial cell subsets found in normal adult distal lung and PM samples. D, Gene set enrichment analysis of 896 

PLVAP+ EC markers compared against the Gene Ontology (GO) biological processes database. Top five enriched 897 

categories were displayed. E, Distribution of PLVAP+ EC marker score in fetal and adult distal lung endothelial 898 

cell subsets, ordered from highest to lowest median score. F, Distributions of the MEF2C (left) and ETS1 (right) 899 

regulon activity in fetal adult distal lung, and PM endothelial cell subsets . G, NicheNet prediction of ligand 900 

prioritization (top 10 displayed), their abundance in sender cell types (left dotplot), and their cognate targets among 901 

PLVAP+ EC markers (right heatmap). H, Sample distributions of PLVAP expression in the Bueno cohort grouped 902 

by molecular subtype after correcting for endothelial content.  P values were computed comparing sarcomatoid and 903 

epithelioid subtypes using Welch Two Sample t-test. p<0.001 = ***; I, Quantification of IHC staining of PVLAP+ 904 

CD31+ endothelial cells in PM tumor tissue sections of sarcomatoid (n=2), biphasic (n=2), and epithelioid histology 905 

(n=2) compared with normal adjacent distal lungs (n=4). Between 9 and 23 regions of interest (ROIs) were 906 

quantified for each sample. P values were computed comparing each PM subtype to the normal tissue using Welch 907 

Two Sample t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. J, Representative micrographs from tissue 908 

sections from patients with sarcomatoid, biphasic, and epithelioid PM histologies and uninvolved normal distal lung 909 

tissue section stained with anti-PLVAP (purple) CD31(brown) and hematoxilyn (blue).  910 
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 911 

Figure 4. Macrophages in scS-high PM express CXCL9/10/11 and likely contribute to T-cell infiltration. A, 912 

UMAP embeddings of PM myeloid cells integrated across patients. B, Feature plots of key markers used for myeloid 913 

cell type annotation. C, Sample distributions of log2-normalized expression levels of VSIR (VISTA) across all PM 914 

cell types, including myeloid subsets and split by scS-high and scS-low groups. FDR-adjusted P values were 915 

computed using Welch Two Sample t-test. D, Pairwise Spearman correlation of sample-averaged scores derived 916 

from the 10 Mms identified in PM TAMs. Each Mm was annotated with the most representative biological pathway. 917 

Top color bar shows correlation of each Mm to the scS-score. E, Sample distributions of log2-normalized mean 918 

TAM expression of CXCL9/10/11 split by scS-high and scS-low samples. FDR-adjusted P values were computed 919 

using Welch Two Sample t-test. F Dot plot showing expression and percentage of cells expressing CXCL9/10/11 920 
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and their receptor CXCR3 across cell types and split by scS-high and scS-low samples. G, Expression of 921 

CXCL9/10/11 versus T cell abundance inferred as the average expression of T cell marker genes in the Bueno cohort 922 

corrected for immune content. Spearman correlation P values are shown. H, Heatmap of the SCENIC significant 923 

regulon activities (scaled AUC score) and correspondent TFs (columns) in each TAM subset. TAM = tumor-924 

associated macrophage; Treg = regulatory T cell; TFH = T follicular helper cell. *p<0.05, **p<0.01, ***p<0.001, 925 

****p<0.0001. 926 

 927 
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928 

Figure 5. Molecular dissection of T cell programs and IC molecules shows association with scS-score. A, 929 

UMAP embeddings of PM tumor T and NK cells integrated across patients. B, Dot plot showing the expression and 930 

percentage of cells expressing key markers used for cell type annotation with relative sample composition for each 931 

cell type (right, stacked bar plots). C, Pairwise Spearman correlation of sample-averaged scores derived from the 932 

10 Tms identified in T cells. Each Tm was annotated with the most representative biological pathway. Top color 933 

bar shows correlation of each Tm to the scS-score. D Sample distributions of log2-normalized mean T cell 934 

expression of selected genes from Tm4 averaged per samples and split by scS-high and scS-low samples. FDR-935 
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 40 

adjusted P values were computed using Welch Two Sample t-test. E, Cell distributions of Tm module scores in all 936 

scS-high and scS-low samples (top) and sample distributions of Tms expression in the Bueno cohort for each PM 937 

molecular subtype after correcting for immune content (bottom). FDR-adjusted P values were computed comparing 938 

sarcomatoid and epithelioid subtypes using Welch Two Sample t-test. F, Sample distributions of log2-normalized 939 

mean T cell expression of known IC molecules. FDR-adjusted P values were computed using Welch Two Sample 940 

t-test. G, Scaled log2-normalized mean expression of known IC molecules across T cell subsets in scS-high and 941 

scS-low samples. H, Dot plot showing the expression and percentage of cells expressing markers for germinal 942 

center T follicular helper cells identified in Tm6. I, UMAP of B-cells compartment, including germinal center B 943 

cells (GC-B cells) predominantly found in P9. Inset shows distribution of cell cycle scores grouped by cell type 944 

annotations. J, Dot plot showing the expression and percentage of cells expressing top markers of B cells subsets 945 

and relative sample composition (right, stacked bar plots). K, Average expression of marker genes of GC B cells 946 

(y-axis) versus expression of TOX2 (identifying GC TFH cells, x-axis) in the Bueno cohort corrected for immune 947 

content. Spearman correlations and relative P values were computed for each molecular subtype. L, UMAP 948 

embedding of annotated T and NK cell subsets integrated across all PBMC samples. M, Feature plots of T and NK 949 

cell subsets representative markers (top, RNA; bottom, protein). N, Sample distribution of the mean exhaustion 950 

score in non-expanded vs expanded clonotype CD8 cells from PBMC samples (Methods). P value was computed 951 

using Welch Two Sample t-test. O, Dual expanded clonotypes as identified both in patient-matched tumor and 952 

PBMC samples distributed by their exhaustion scores in the corresponding sample source. *p<0.05, **p<0.01, 953 

***p<0.001, ****p<0.0001.  954 
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955 

Figure 6. NK cell IC blockade targeting NKG2A as a novel therapeutic strategy in PM. A, Kaplan-Mayer 956 

curve stratifying epithelioid samples in the Bueno cohort by NK cell abundance (deconvolved using BayesPrism). 957 

B, Log2-normalized mean expression of ligand-receptors expressed by malignant cells (y axis) and NK cells (x 958 

axis) respectively. Error bars represent standard errors of expression across samples.  C, Percentage of KLRC1 959 

expressing NK cells averaged across patients with different cancer types combining scRNA-seq data from our and 960 

a pan-cancer study (51). D, Schematic of the co-culture experimental design. E, Activation of NK cells co-cultured 961 

with mesothelioma cell lines upon NKG2A blockade, indicated by degranulation (left) and IFNγ production (right) 962 

with or without anti-MHCI antibody and with or without IFNγ stimulation of PM cell lines. P values were computed 963 

using a paired Student's t-test. Error bars represent standard error. F, Schematic of the key TME differences between 964 

scS-high and scS-low PM elucidated in our study. BC = breast cancers; BCC = basal cell carcinomas; CM = 965 

cutaneous melanoma; CRC = colorectal cancers; EA = endometrial adenocarcinomas; HCC = hepatocellular 966 
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carcinomas; ICC = intrahepatic cholangio carcinomas; PM = pleural mesothelioma; NSCLC = non-small-cell lung 967 

cancers; OC = ovarian cancers; PDAC = pancreatic ductal adenocarcinomas; RCC = renal cell carcinomas; SCC = 968 

oropharyngeal squamous cell carcinomas; UM = uveal melanoma. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 969 
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Figure S1 | Single-cell catalogue of PM tumor and PBMC samples. A, Violin plot of key quality control metrics 972 

of the tumor (left) and PBMC (right) scRNA-seq data per patient. B, Top transcription factor (TF) makers per cell 973 

type annotation in the primary tumors. C, Distribution of cell type abundances split by immune (CD45+) and non-974 

immune (CD45-) compartment and sampling procedure (resection versus biopsy). FDR-adjusted P values were 975 

determined by Dirichlet-multinomial regression model. D, F, Feature plots of key RNA (D) and protein (F) markers 976 

in the PBMC data. E, G, Dot plots of top de novo discovered RNA (E) and protein markers (G) per cell type 977 

annotation. H, I, Sample distributions based on fraction of cell types and grouped by molecular subtype in the 978 

Bueno cohort (H) and grouped by histology in the Hmeljak cohort (I). FDR-adjusted P values comparing difference 979 

between sarcomatoid and epithelioid subtypes were determined by Dirichlet-multinomial regression model that 980 

takes into account dependencies in proportions between cell types. TCM = central memory T cells; TEM = effector 981 

memory T cells; dnT = double negative T cells; MAIT = mucosal associated invariant T cells; Eryth = erythrocytes; 982 

CTL = circulating T lymphocytes; gdT = gamma delta T cells; HSPC = hematopoietic stem and progenitor cells; 983 

ILC = innate lymphoid cells; ASDC = AXL+ SIGLEC6+ dendritic cells. *p<0.05, **p<0.01, ***p<0.001, 984 

****p<0.0001. 985 
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Figure S2 | Unbiased discovery of PM cancer programs and association with patient survival. A, 2D 988 

visualization of malignant cells scored using the four molecular subtypes from Bueno et al for each sample. Clinical 989 

histology of the cancers upon diagnosis are reported in parentheses (Methods). B-C, Pairwise Spearman correlations 990 

(B) across all cells for the 20 Cms identified in malignant cells.  Dot plot (C) showing the expression and percentage 991 

of cells expressing top markers for each Cm. D, Pathway enrichment analysis showing the 10 most enriched 992 

pathways for each Cm within the HALLMARK gene categories. Only Cms with significant categories are shown. 993 

Dot size represents number of genes in the category and color represent -log10 (P value). E, Top: Spearman 994 

correlation and P value across scRNA-seq samples between mean Cm17 module score (scS-score) and mean Blum 995 

et al S_score (top 20 genes) in malignant cells. Bottom: Fraction overlap in genes between the markers for each of 996 

the 20 malignant Cms discovered in our scRNA-seq cohort and the two gene sets associated with a sarcomatoid 997 

subtype (S-score) and epithelioid subtype (E-score) from Blum et al. F, Cms ranked by correlation to the scS-score 998 

and colored by their enrichment for either epithelioid (green) or sarcomatoid (red) histological subtypes from the 999 

Hmeljak cohort. FDR-adjusted P values were computed using Welch Two Sample t-test. *p<0.05, **p<0.01, 1000 

***p<0.001, ****p<0.0001. G, H, Cox proportional hazard regression models for all the 20 Cms using survival 1001 

information from the Bueno cohort (G) and the Hmeljak cohort (H). I, Kaplan-Mayer survival curves of Cms 1002 

significantly impacting survival within molecular subtypes in the Bueno cohort.  J, Spearman correlation and P 1003 

values of samples in the Bueno cohort using average expression of all genes residing on chr22 versus average 1004 

expression of genes included in Cm17 (left) and Cm2 (right).  1005 
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1007 

Figure S3 | Fetal-like, cancer-specific PLVAP+ endothelial cells associate with angiogenesis. A, UMAP of 1008 

integrated tumor endothelial and mesenchymal cells colored by sample. B-C, Dot plot showing the expression and 1009 

percentage of cells expressing top markers in the endothelial gene modules (Ems) (B) and their pairwise Spearman 1010 

correlation across samples (above diagonal) and cells (below diagonal) (C). D, Dot plot showing expression and 1011 

percentage cells expressing top markers in the CAF gene modules (Fms). E, Heatmap of the pairwise Spearman 1012 

correlation between Fms across samples (above diagonal) and cells (below diagonal). F, Heatmap of pairwise 1013 
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Pearson correlation coefficient between the Fms and normal lung mesenchymal cell subset average expression 1014 

profiles (29). G, Heatmap of the average TF regulon activities inferred by SCENIC for each endothelial cell subset. 1015 

H, Dot plot showing expression and percentage cells expressing VEGFA receptor genes KDR and FLT4 for each 1016 

EC subset. I, Cox proportional hazard regression analysis (adjusted for molecular subtype in the Bueno cohort and 1017 

histology in the Hmeljak cohort) based on the expression of fetal-like PLVAP+ EC subset marker genes (Methods) 1018 

and survival information from the and Hmeljak (top) and Bueno cohorts (bottom). J, Sample distributions based on 1019 

PLVAP expression in Hmeljak cohort after correction for endothelial content. P values were computed using Welch 1020 

Two Sample t-tests. **p<0.01. 1021 

 1022 

1023 

Figure S4 | Macrophages in scS-high PM express CXCL9/10/11 and likely contribute to T-cell infiltration. A, 1024 

UMAP of integrated tumor myeloid cells colored by sample.  B, Dot plot showing the expression and percentage 1025 
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of cells expressing top markers for each myeloid subset and relative sample composition (right, stacked bar plots). 1026 

C, Top transcription factor (TF) markers per myeloid cell subset. D, Dot plot showing the expression and percentage 1027 

of cells expressing top markers in the TAM gene modules (Mms). E, Heatmap of the pairwise Spearman correlation 1028 

between Mms across cells. F, Heatmap of the SCENIC significant regulon activities (scaled AUC score) and 1029 

corresponding TFs (columns) in each myeloid subtype. 1030 

 1031 

1032 

Figure S5 | Molecular dissection of T cell programs and IC molecules shows association with scS-score. A, 1033 
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UMAP of integrated T and NK cells in the primary tumor colored by sample. B, Dot plot showing the expression 1034 

and percentage of cells expressing top markers in the T cells modules (Tms). C, Heatmap of the pairwise Spearman 1035 

correlation between Tms across cells. D, Sample distributions of the Tm2, Tm5, and Tm7 marker expression in the 1036 

Hmeljak cohort for each PM histological subtype after correcting for immune content. FDR-adjusted P values were 1037 

computed comparing sarcomatoid and epithelioid subtypes using Welch Two Sample t-test. E, Sample distribution 1038 

of the log2-normalized expression of key IC molecules for each T-cell subset split by scS-high and scS-low samples. 1039 

F, UMAP of integrated T and NK cells in PBMC and colored by sample. G, Number of cells with expanded 1040 

clonotypes (large) across PBMC T-NK subsets. H, PBMC sample distribution of the Tm4 and Tm2 mean module 1041 

scores in non-expanded vs expanded (small and large) CD8 T cells. I, Number of cells with expanded clonotypes 1042 

(large) across tumor cell subsets. J, Tumor sample distribution of the Tm5, Tm4, and Tm2 mean module scores in 1043 

in non-expanded vs expanded (small and large) CD8 T cells. P values were computed using Welch Two Sample t-1044 

test. K, Fraction of expanded clonotypes in CD8 T cells in tumor samples with detectable TCR sequences split by 1045 

scS-high and scS-low samples. L, Overlap of TCR clonotypes as computed by Morisita score in 3 patients with 1046 

available scTCR-seq data from both tumor and blood. M, Expanded clonotypes identified both in tumor and PBMC 1047 

for the three patients with matching TCR-seq data available. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 1048 
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1050 

Figure S6 | NK cell IC blockade targeting NKG2A as a novel therapeutic strategy in PM. A, Survival curve 1051 

stratifying NK cell abundance (deconvolved using BayesPrism) in epithelioid samples in the Hmeljak cohort. B-C, 1052 

Cox proportional hazard regression models for all the predicted cell types (deconvolved using BayesPrism) using 1053 

survival information from the Bueno cohort (B) and the Hmeljak cohort (C). D, Flow cytometry gating strategy for 1054 

the cancer-NK cell co-culture experiments. E, Expression of HLA-E on 4 mesothelioma cell lines with and without 1055 

interferon gamma stimulation. F, NKG2A expression on in-vitro expanded NK cells. G, Bar graph displaying the 1056 

percentages of NK cells either producing IFNγ or undergoing degranulation (Boolean gating). P values were 1057 
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computed using a paired Student's t-test and error bars represent standard error. *p<0.05, **p<0.01, ***p<0.001, 1058 

****p<0.0001. 1059 
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