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Evaluation of Gene Set Enrichment Analysis (GSEA) tools highlights the value of single 1 

sample approaches over pairwise for robust biological discovery. 2 
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Abstract 35 

Background: Gene set enrichment analysis (GSEA) tools can be used to identify biological 36 

insights from transcriptional datasets and have become an integral analysis within gene 37 

expression-based cancer studies. Over the years, additional methods of GSEA-based tools 38 

have been developed, providing the field with an ever-expanding range of options to choose 39 

from. Although several studies have compared the statistical performance of these tools, the 40 

downstream biological implications that arise when choosing between the range of pairwise 41 

or single sample forms of GSEA methods remain understudied. 42 

Methods: In this study, we compare the statistical and biological interpretation of results 43 

obtained when using a variety of pre-ranking methods and options for pairwise GSEA and 44 

fast GSEA (fGSEA), alongside single sample GSEA (ssGSEA) and gene set variation analysis 45 

(GSVA). These analyses are applied to a well-established cohort of n=215 colon tumour 46 

samples, using the clinical feature of cancer recurrence status, non-relapse (NR) and relapse 47 

(R), as an initial exemplar, in conjunction with the Molecular Signatures Database “Hallmark” 48 

gene sets. 49 

Results: Despite minor fluctuations in statistical performance, pairwise analysis revealed 50 

remarkably similar results when deployed using a range of gene pre-ranking methods or 51 

across a range of choices of GSEA versus fGSEA, with the same well-established prognostic 52 

signatures being consistently returned as significantly associated with relapse status. In 53 

contrast, when the same statistically significant signatures, such as Interferon Gamma 54 

Response, were assessed using ssGSEA and GSVA approaches, there was a complete absence 55 

of biological distinction between these groups (NR and R).  56 

Conclusions: Data presented here highlights how pairwise methods can overgeneralise 57 

biological enrichment within a group, assigning strong statistical significance to gene sets 58 

that may be inadvertently interpreted as equating to distinct biology. Importantly, single 59 

sample approaches allow users to clearly visualise and interpret statistical significance 60 

alongside biological distinction between samples within groups-of-interest; thus, providing a 61 

more robust and reliable basis for discovery research. 62 

Words: 309  63 
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Introduction 64 

Decreasing costs for sequencing, coupled with an increasing adoption of the FAIR principles
1
, 65 

have provided the cancer research field with a substantial amount of freely available 66 

molecular datasets derived from tumour tissue samples. To ensure that these large datasets 67 

can reveal important mechanistic insights, increased data availability has been coupled with 68 

the development of transcriptional signatures that represent important biological pathways, 69 

alongside easy-to-use algorithms that allow users to apply thousands of signatures 70 

simultaneously to these data. These are exemplified by the establishment of the Molecular 71 

Signatures Database (MSigDB)
2
 and gene set enrichment analysis (GSEA) tools

3
, providing 72 

the field with a stable set of reference templates and methods to compare across cohorts of 73 

interest. The success of these approaches has led to a rapid expansion of established 74 

signature collections in both human and mouse, most notably the MSigDB biological 75 

“Hallmark” collection
4
 and development of programming software-based GSEA tools such as 76 

the clusterProfiler
5
 and fast GSEA (fGSEA)

6
 R packages. 77 

Given that many tumour cohorts have associated metadata linked to important features, 78 

such as clinical outcome, the application of these large collections of signatures to cohorts in 79 

conjunction with GSEA can serve as the basis for discovery and validation of biomarkers that 80 

represent the biological characteristics of the chosen features, such as prognosis. This 81 

approach is referred to as a supervised pairwise analysis, as the groups are known prior to 82 

application of the GSEA method, and these tools have been tested extensively in terms of 83 

the statistical robustness and performance in this setting
7,8

. Once identified, these 84 

biomarkers can be used as the basis for mechanistic investigations, pre-clinical model 85 

development, and/or testing of a therapeutic target. 86 

Alongside pairwise GSEA methods, approaches for single sample methods have been 87 

developed, which differ from the pairwise approach in that they allow users to apply the 88 

same transcriptional signature collections to all samples individually in a cohort, using single 89 

sample GSEA (ssGSEA)
9
 and gene set variation analysis (GSVA)

10
. While these single sample 90 

approaches are based on different statistical models to those in pairwise analyses, the 91 

resulting outputs are based on the same gene signatures. Numerous studies have assessed 92 

the statistical robustness and performance of this range of pairwise and single sample tools 93 

separately
7,11

. Despite differences being identified between methods when assessed using 94 
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statistically-driven criteria, few studies have focussed on the consequences in terms of 95 

downstream biological approaches. Given that significant pairwise GSEA results can be 96 

interpreted as representing the defining biological characteristics of a group of samples, the 97 

absence of a comparative study across all approaches means that such an interpretation 98 

may be based on incomplete evidence. 99 

In this study, we use a fixed set of transcriptional signatures, in conjunction with a fixed 100 

clinical feature (relapse status) within a well-characterised colon cancer (CC) transcriptional 101 

cohort
12

, to perform a series of pairwise and single sample assessments in tandem. Each 102 

output is assessed based on the provided statistical values, however the primary focus of 103 

this study is to assess how representative and uniform a significant pairwise result is when 104 

assessed by single sample methods. Utilising a range of data visualisations and performance 105 

measurements, we find that statistical results from a pairwise analysis often do not align 106 

with biological distinction when using single sample outputs for the same signature. 107 

Moreover, significant signatures identified from pairwise analysis can still be poor predictive 108 

biomarkers of the clinical groups they were developed to represent. 109 

 110 

Words: 560  111 
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Methods 112 

Datasets 113 

The transcriptional dataset used was previously assembled for the development of the FDA- 114 

approved stage II ColDx/GeneFx risk-of-recurrence/relapse assay, consisting of n=215 stage II 115 

primary tumours from CC patients profiled on the Almac disease-specific array, and available 116 

from ArrayExpress, accession number E-MTAB-863
12

. The cohort contained n=73 tumours 117 

from patients that went on to develop distant metastasis within 5-year of surgery to remove 118 

the primary tumour (relapse) (R) and n=142 tumours from patients that did not experience 119 

relapse within five years following surgery (non-relapse) (NR). The E-MTAB-863 CEL files 120 

were imported into Partek Genomics Suite (PGS; v6.6) and RMA normalised then log2 121 

transformed. The probesets on the array were collapsed by importing the normalised data 122 

into R (v3.3.2 or later) and, using the ‘collapseRows’ function from WGCNA (Weighted Gene 123 

Coexpression Network Analysis, RRID:SCR_003302) package (v1.61)
13

, selecting the probeset 124 

with the highest mean expression per gene.  125 

Differential gene expression analysis 126 

Differential expression analysis (DEA) was performed to measure differentially expressed 127 

genes between R and NR CC. DEA was performed using the limma R package (v3.54.2). 128 

Following DEA, genes were ranked using three different metrics, 1) the t-statistic (t-stat), 2) 129 

the Log Fold Change (LogFC), and 3) the combination of LogFC and p-value (LogFC*-Log10(p-130 

value); hereafter as “combined”). The addition of p-value to LogFC adds statistical 131 

significance to the directionality of LogFC. Separately, DEA was also performed for another 132 

comparison between tumours classified as PDS1 and PDS3, using the PDSclassifier package
14

 133 

with resulting groups being assessed using the same metrics and thresholds applied to the 134 

R/NR analyses. 135 

Pairwise analysis 136 

To perform pairwise analysis two R packages were used, clusterProfiler (v4.6.2) and fgsea 137 

(v1.24.0) and a random seed of 127 was set. Biological pathways were investigated using the 138 

Hallmark gene sets from the MSigDB accessed through the msigdbr package (v7.5.1). Pre-139 

ranked GSEA was first performed using the GSEA function in clusterProfiler with 1000 140 

permutations (nPermSimple = 1000, minGSSize = 1, maxGSSize = Inf).  Enrichment plots for 141 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585228
http://creativecommons.org/licenses/by/4.0/


Bull et al. 

GSEA were produced using the gseaplot2 function in the enrichplot R package (v1.18.4). 142 

GSEA was next conducted using the fgsea R package with the same parameters as 143 

clusterProfiler (nPermSimple = 1000, minSize = 1, maxSize = Inf). Enrichment plots of fGSEA 144 

were produced using the plotEnrichment function from the fgsea package. The online tool, 145 

GenePattern
15

, https://cloud.genepattern.org, was also used to perform a pre-ranked 146 

pairwise analysis, GSEAPreranked (v7.4.0). The Hallmark gene set collection was selected, 147 

‘h.all.v2023.2.Hs.symbols.gmt’. Default parameters were set except for ‘collapse dataset’ 148 

which was set to ‘FALSE’.  Normalised enrichment score (NES) and false discovery rate (FDR) 149 

values were recorded for each gene set within the two groups (R vs NR; PDS1 vs PDS3). A 150 

gene set with an FDR q-value below 0.05 was deemed significant. 151 

Single sample analysis 152 

To perform single sample analysis the R/Bioconductor package GSVA (v1.46.0) was used 153 

which facilitates ssGSEA
9
 and GSVA

10
. ssGSEA was performed with Hallmark

4
 gene sets from 154 

MSigDB
2
 and method set to “ssgsea”. GSVA was performed with Hallmark gene sets from 155 

MSigDB and the default parameters. 156 

Single sample analysis heatmaps 157 

For both ssGSEA and GSVA, matrix was formatted to include only Interferon Alpha Response, 158 

Interferon Gamma Response and Epithelial Mesenchymal Transition (EMT), as previously 159 

identified to be most significant by GSEA. The single sample scores were converted to Z-160 

scores and were plotted using the ComplexHeatmap (v2.14.0) R package and were grouped 161 

using their respective groups (R vs NR; PDS1 vs PDS3). 162 

Data visualisation 163 

Additional visualisation R packages used for single sample analysis included: smplot2 (v 164 

0.1.0), ggridges (v 0.5.4), easyGgplot2 (v 1.0.0.9000), pROC (v 1.18.5), randomForest (v 4.7 -165 

1.1) and, waterfalls (v 1.0.0). 166 

Statistics 167 

The statistical report was generated on RStudio (4.2.2). A Student’s t-test, from the stats (v 168 

4.2.2) R package, was used to calculate significance of single sample scores between groups 169 

(NR compared to R and PDS1 compared to PDS3). The cor.test function from the stats (v 170 
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4.2.2) R package, with “pearson” method selected, was used for correlation analysis 171 

between single sample enrichment scores for selected significant gene sets. The cutpointr 172 

function in the cutpointr (v 1.1.2) R package was used to find the optimal cutpoint for the 173 

single sample scores. Once calculated the single sample scores were centred around the 174 

cutpoint resulting in a stratification of high and low scores for each of the gene sets being 175 

tested. 176 

“dualgsea” 177 

The pairwise method, fGSEA
16

 and single sample method, ssGSEA
9
 have been combined to 178 

create an open source R-based function named “dualgsea”, 179 

https://github.com/MolecularPathologyLab/Bull-et-al. The function enables the user to 180 

apply the above statistical analysis and visualisations between two groups-of-interest. 181 

Words: 750 182 
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Results 184 

Variations in differential gene expression outputs across a range of methods do not alter 185 

overall GSEA results. 186 

A typical goal when analysing bulk transcriptomic data, is the identification of discriminatory 187 

biological signalling cascades that can serve as biomarkers to distinguish between group(s)-188 

of-interest; an output that can rapidly be delivered using transcriptional signatures in 189 

conjunction with in silico analytical tools, such as pairwise gene set enrichment analysis 190 

(GSEA)
3
 (Figure 1A). The initial step in this GSEA process requires all genes in the expression 191 

matrix to be ranked based on their differential expression between the groups-of-interest. 192 

For example, when using limma
17

 for microarray or DESeq2
18

 for RNA-seq, a ranked list of 193 

genes can be produced based on t-statistics (t-stat) or Log Fold Change (LogFC) values, both 194 

of which also provide directionality (up/down) according to the groups used. To assess the 195 

outputs from each ranking metric, we compared the ranked order of genes following the 196 

application of three approaches based on: 1) t-stat, 2) LogFC, and 3) the combination of 197 

LogFC and p-value (LogFC * -Log10(p-value); hereafter stated as combined) on expression 198 

profiles from n=15,723 genes derived from n=215 FFPE stage II colon cancer samples (E-199 

MTAB-863)
12

, where patients whose cancer relapsed following surgery (n=73) compared to 200 

those who did not (NR; n=142) was used as an exemplar pairwise GSEA  comparison (Figure 201 

1B). Considering only the top and bottom 100 genes ordered based on t-stat (0.6% of genes 202 

overall), gene ordering based on LogFC, or the combined rank, remained remarkably stable. 203 

The top/bottom ranked genes identified using each method remain highly enriched at the 204 

extremes relative to t-stat ranking (Figure 1B). When the genes were ranked by logFC the 205 

majority (86%) of the top 100 genes fell within the top 500 genes when ranked by t-stat and 206 

the remaining were represented within the top 2,707 genes. With the combined rank, 100% 207 

of the top 100 genes were represented within the top 300 genes when ranked by t-stat.  208 

 209 

To test if there were more profound downstream consequences of these small pre-ranking 210 

gene order fluctuations, GSEA in clusterProfiler was performed
5
 using each of these ranking 211 

metrics on the n=50 MSigDB ‘Hallmark’ gene sets. These analyses revealed that all three 212 

ranking methods resulted in remarkably consistent gene sets being returned as significant 213 

(FDR adjusted p-value < 0.05; t-stat =16/50, LogFC = 21/50, combined = 15/50), n=14 of the 214 
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n=22 total significant gene sets identified as common across from all three ranking methods 215 

(Figure 1C; Supplementary Figure 1A). When the normalised enrichment score (NES) is 216 

assessed to measure directionality, the direction of the n=14 overlapping significant gene 217 

sets identified remained entirely consistent (Figure 1D), meaning that regardless of the pre-218 

ranking method used for these GSEA analyses, the biological interpretation will remain the 219 

same. Furthermore, when gene sets that were identified as significant by one method but 220 

not by the others, these were all enriched with the same directionality yet just below the 221 

statistical significance threshold: again, confirming the similarities in outputs for GSEA using 222 

all three pre-ranking methods (Supplementary Figure 1A).  223 

 224 

Pairwise GSEA methods provide results with consistent downstream interpretation. 225 

As there were minimal differences in the GSEA outcome with the three ranking methods, t-226 

stat was used for the remainder of this study. Since the introduction of the original GSEA 227 

method, several updated methodologies have been developed and in this study we 228 

examined three derivatives of the GSEA method: 1) fast GSEA (fGSEA)
6
, 2) GSEA via 229 

clusterProfiler
5
 (as used in Figure 1), which are both R-based tools, and 3) GSEA

3
 from the 230 

Broad Institute GenePattern
15

 Server. The GSEA tool from GenePattern performs standard 231 

GSEA with default signal-to-noise for ranking genes, however, the server also provides users 232 

with a separate module called ‘GSEAPreranked’, where users can provide their own pre-233 

ranked gene list prior to analysis. To test outputs from each of these GSEA methods, relapse 234 

(R) (n=73) and non-relapse (NR) (n=142) groups were compared across the CC cohort 235 

previously used (E-MTAB-863), where these methods consistently identify the same 236 

common statistically significant gene sets as identified in Figure 1E, additionally the 237 

directionality of the NES for gene sets is consistent (Supplementary Figure 1B). Between 238 

these three methods, n=3 gene sets were consistently upregulated in the NR group, 239 

including Interferon Alpha Response and Interferon Gamma Response, and n=11 gene sets 240 

were upregulated in the R group, such as EMT (Figure 1F-H); gene sets that have previously 241 

been associated with prognosis in multiple cancer types, including colorectal cancer
19, 20

.  242 

 243 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585228
http://creativecommons.org/licenses/by/4.0/


Bull et al. 

Single sample GSEA methods provide biological insights that may be masked when using 244 

pairwise GSEA alone. 245 

Single sample GSEA (ssGSEA)
9
 has been proposed as an extension of the GSEA method, one 246 

which can provide signature enrichment scores for each individual sample, rather than the 247 

summarised “average” scores within groups of samples provided by pairwise GSEA, making 248 

it suitable for both biological discovery and post-hoc assessments of individual samples 249 

within any established groups-of-interest 
21

 
22

. Therefore, to compare the results obtained 250 

from GSEA (Figure 1) with those from the single sample approaches, we explored two such 251 

methods: 1) ssGSEA
9
, and 2) gene set variation analysis (GSVA)

10
 within our discovery cohort 252 

(Figure 2A). Using the top three significant gene sets identified in Figure 1E, namely 253 

Interferon Alpha Response, Interferon Gamma Response and EMT, these single sample 254 

approaches were run using the GSVA R package by selecting either the “ssGSEA” or “gsva” 255 

method. A correlative analysis was performed between the resulting ssGSEA and GSVA 256 

scores, which revealed that both single sample methods were highly correlated, with a 257 

significantly positive correlation across all three gene sets (R>0.8, p<0.0001; Figure 2B). 258 

These results suggest that while the algorithms are different, the output of either single 259 

sample methods provide consistent results. 260 

 261 

Assessment of the ssGSEA and GSVA scores for the three gene sets that were significantly 262 

different between the NR and R groups using GSEA, namely Interferon Alpha Response and 263 

Interferon Gamma Response and EMT, revealed that there were comparable quantities of 264 

high and low expression samples in each group, as indicated by the blue-to-red colours in 265 

the heatmap (Figure 2C). To test this, a series of quantitative assessments were performed 266 

using scores for the significant signatures using GSEA. Although the two clinical groups may 267 

appear statistically significant for these single sample scores (Supplementary Figure 2C-H), 268 

both clinical groups fall under the same distribution scale (Figure 2D-I), thus implying in 269 

biological terms, they are not distinct for the signatures, which contradicts with GSEA 270 

output. The range of ssGSEA scores showed large overlap between R and NR samples, 271 

Interferon Alpha Response had 95.3% overlap between R and NR, Interferon Gamma 272 

Response had 97.7% overlap between R and NR and EMT had 99.1% overlap between R and 273 

NR. With respect to the GSVA results, Interferon Alpha Response scores had 95.8% overlap 274 
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between R and NR, Interferon Gamma Response had 98.1% overlap and EMT had 98.6% 275 

between R and NR.  Overall, these data highlight how even the most statistically significant 276 

pairwise GSEA results may not be sufficient to identify transcriptional signalling that is 277 

discriminatory between samples across two tumour groups. 278 

 279 

Visualisation of ssGSEA score is essential to ensure that statistical significance between 280 

sample groups also represents distinct biology. 281 

There are a range of biomarker performance metrics that can be used to objectively test and 282 

enumerate how well individual signatures represent the signalling within different groups of 283 

samples. Therefore, a series of analyses were conducted to test the predictive value of the 284 

most significant signatures identified by pairwise GSEA approaches (n=3) in identifying the 285 

specific groups-of-interest that they were enriched in. We performed receiver operating 286 

characteristic (ROC) analysis with the ssGSEA/GSVA scores and examined the area under 287 

curve (AUC). NR patients displayed statistically significant enrichment in Interferon Alpha 288 

and Interferon Gamma Response, implying that these signatures are contributing factors to 289 

favourable outcome in NR patients (Supplementary Figure 2C-E), albeit GSVA Interferon 290 

Gamma Response did not show any statistically significant enrichment in the NR samples 291 

(Supplementary Figure 2F). However, if both interferon response signatures were then to be 292 

used to develop a risk stratification tool to predict patient relapse status, the models 293 

developed based on these signatures would perform underwhelmingly with the AUC 294 

approximately ranging between 0.57 – 0.62 (Figure 3A, 3C). Furthermore, although there are 295 

more NR (n=142) than R cases (n=73), when stratified into high and low groups for the 296 

Interferon Alpha and Interferon Gamma Response signature scores using both ssGSEA and 297 

GSVA, based on the optimal cut-offs defined by the AUROC analyses, ~30-50% of relapse 298 

patients have high Interferon Alpha and Interferon Gamma Response scores (Figure 3B, 3D). 299 

Likewise, regardless of its statistical significance (Supplementary Figure 2G-H), the EMT 300 

ssGSEA and GSVA scores also perform poorly (AUC 0.60), with low sensitivity and specificity 301 

as a relapse-specific biological signature for the purpose of risk stratification (Figure 3E-F).  302 

 303 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585228
http://creativecommons.org/licenses/by/4.0/


Bull et al. 

Taken together, while each of these three signatures have been repeatedly shown to provide 304 

statistical significance in terms of association with relapse outcomes, this is primarily due to 305 

small (albeit statistically significant) differences in sample distributions, meaning that the 306 

biological signalling these signatures are based on cannot be interpreted as reflecting 307 

distinct mechanistic phenotypes or biological cascades between the two groups-of-interest. 308 

 309 

Pathway-derived subtype serves as an exemplar for performing biological discovery using 310 

a single sample approach. 311 

As shown above, pairwise methods comparing relapse and non-relapse tumours can provide 312 

users with statistically significant results, however these clinically distinct groups do not 313 

represent uniformly biological distinct transcriptional subtypes. Therefore, to test the 314 

performance of pairwise and single samples GSEA methodologies in groups of samples that 315 

represent biologically distinct entities, we next performed these analyses contrasting 316 

tumours based on our recent pathway-derived subtypes (PDS) 
14

 which identified three 317 

statistically and biologically distinct subtypes; PDS1-3.  318 

In this current study we now segregate our transcriptional cohort into these three PDS 319 

classes (this dataset was not used in the original study) and perform a series of GSEA/ssGSEA 320 

assessments on PDS1 (characterised by high MYC signalling) and PDS3 (characterised by low 321 

MYC signalling) in conjunction with the performance metrics and visualisations used so far 322 

(Figure 4A). Comparative analysis using the Hallmark gene sets collection and pairwise GSEA, 323 

similar to the relapse-based comparisons, highlights a highly significant statistical difference 324 

between PDS1 and PDS3 for MYC Targets V1 gene set (hereafter MYC V1; Figure 4B). 325 

Importantly, unlike the assessment on R versus NR in the same cohort (Figure 1-3), 326 

comparison of PDS1 to PDS3 clearly shows both statistical significance and biological 327 

distinction when using single sample approaches (Figure 4C). Most importantly, unlike our 328 

earlier analyses based on GSEA results comparing R and NR samples, these new assessments 329 

across a known biology, reveal a remarkable difference and minimal overlapping distribution 330 

for MYC V1 ssGSEA score, with only 6.7% of ssGSEA scores overlapping between PDS1 and 331 

PDS3 (Figure 4D-E), implying that PDS1 and PDS3 can be considered as representing truly 332 

distinct biological groups for MYC V1. This is further confirmed using ROC analysis, from both 333 

ssGSEA and GSVA MYC V1 scores, which proves a sample will be classified as high MYC V1 334 
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when the sample is PDS1 with an AUROC = 0.99 (Figure 4F-G). We have created an open 335 

source parallel pairwise/single sample R-based function “dualgsea”, 336 

https://github.com/MolecularPathologyLab/Bull-et-al. The function produces multiple 337 

visualisations and statistical analysis options that enables users to perform a broad 338 

characterisation of their samples and groups-of-interest (Figure 4H). 339 

 340 

Words: 1875 341 

 342 

  343 
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Discussion 344 

In this study, we initially set out to provide a comparison of a number of well-established 345 

gene set enrichment analysis (GSEA) methods, with particular emphasis on how choices of 346 

standard bioinformatic pipelines can lead to differences in downstream biological 347 

interpretation. As an exemplar of this, we assessed how consistent a significant pairwise 348 

GSEA result is between pairwise approaches and also when the same signature is assessed 349 

using single sample GSEA methods. These analyses highlight concordance within pairwise or 350 

single sample approaches, however despite similar statistical performance, data presented 351 

here provides a clear indication for how vastly different downstream interpretation of results 352 

can be derived when using pairwise or single sample methods for the same transcriptional 353 

signatures. Pairwise methods provide the user with strong statistical-based evidence of 354 

differences in signature expression between two selected groups of samples, however this 355 

can result in confusion when interpreting the biological significance of these differences, as 356 

illustrated by enrichment scores across individual samples strongly overlapping between and 357 

within groups.  These results strongly support the use of single sample methods for class 358 

discovery and mechanistic biomarker development/testing, given their consistency and 359 

robustness in identifying distinct biological signalling between defined groups of samples. 360 

Many previous studies have focussed on the statistical advantages and limitations of GSEA 361 

methods, providing the field with important information on performance metrics for each 362 

algorithm
7
. While these algorithms were developed to identify statistical significance 363 

between user-selected groups of samples, they can occasionally be interpreted as 364 

representing biologically distinct groups; a point that becomes even more important if the 365 

results from GSEA-based methods are used to guide development of new pre-clinical models 366 

that are interpreted as faithfully representing the clinical group-of-interest, or used as the 367 

basis of developing prognostic/predictive biomarkers to guide clinical decision-making.  368 

Data presented in this paper does not challenge the importance of studies using GSEA 369 

methods, as we clearly demonstrate their value in identifying robust statistically distinct 370 

groups. Our current study aims to provide an example of the consequence of method 371 

selection for biological end-users with a primary interest in using these tools to identify 372 

biologically distinct mechanistic signalling between two groups. For such end-users, we 373 

propose that emphasis should be placed on more widespread use of visualisation methods 374 
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at an individual sample resolution, rather than the use of statistical values alone, to ensure 375 

there is a clear distinction between the groups being compared
23

. This point is particularly 376 

important for biomarker discovery, where there is a requirement for the most robust and 377 

discriminatory features that can be used to predict tumour groups with high sensitivity and 378 

specificity. In addition, the identification of representative biological cascades that are both 379 

statistically significant and biologically distinct between the two groups across a cohort of 380 

tumours is increasingly important in the era of precision medicine, where interrogation of 381 

transcriptional data can be used as the basis for development and testing of subtype-specific 382 

therapeutic targets aimed at these patient groups.  383 

 384 

An important feature for performing pairwise GSEA is the ranking of differentially expressed 385 

genes. Our analyses highlight that the positions of individual differentially expressed genes 386 

in an overall list will vary when using different ranking options. These results provide a clear 387 

example of how the use of some of the most widely accepted tools for differential gene 388 

expression analyses can lead to different users identifying conflicting biomarkers for the 389 

same phenotypes in the exact same datasets. However, we find that the effects on using 390 

different pre-ranking methods to rank genes for pairwise approaches have minimal effects 391 

on biological interpretation when using downstream pathway analyses with any GSEA 392 

method. As such, these data again support the use of pathway-level gene signatures as a 393 

more representative way of measuring true biological phenotypes in transcriptional data, 394 

over the use of individual gene-level biomarkers that can be undermined by technical biases 395 

inherent in method choices for gene ranking. This single sample approach was used as basis 396 

for class discovery within our recent pathway-derived subtypes (PDS) 
14

 study, which used 397 

ssGSEA scores to identify three biologically distinct classes of colorectal cancer that was 398 

found to have prognostic value. 399 

The cancer research field is accustomed to the heavy reliance on statistical thresholds as the 400 

primary criteria for significance, as they provide users with a quantitative reference in 401 

support of their findings. In data presented here we clearly show that additional 402 

visualisation of these same data can lead to questions over the true biological significance of 403 

such results. In this setting, if GSEA tools were used for discovery, the biological signalling 404 

used as the basis for mechanistic studies could be indistinguishable across samples from 405 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585228
http://creativecommons.org/licenses/by/4.0/


Bull et al. 

these different clinical groups, despite such signalling being based on statistically sound 406 

evidence. Moving forward, it is essential to find a balance between statistical significance 407 

and biological relevance, utilising visualisation techniques and analysis methods, including 408 

distribution plots and ROC curves, to validate and contextualise findings. To ensure users can 409 

recapitulate the approaches used here, we have developed an open source parallel 410 

pairwise/single sample R-based function, “dualgsea” 411 

https://github.com/MolecularPathologyLab/Bull-et-al, which provides multiple data 412 

visualisation outputs and statistical tests, enabling all users to perform a comprehensive 413 

assessment of their samples and groups-of-interest as shown in the comparison of PDS1 vs 414 

PDS3 (Figure 4H).  415 

 416 

Overall, our study sheds new light on the nuances between established gene set enrichment 417 

methods, highlighting the challenges in interpreting results across different methods. The 418 

work presented illustrates how a highly significant pairwise result does not always translate 419 

to a significant single sample result when the same transcriptional data is analysed using the 420 

same gene signatures. By carefully navigating these methods and their implications, 421 

researchers can uncover novel meaningful biological insights from transcriptional data.  422 

 423 

Words: 933 424 

 425 

Data Availability Statement 426 

Data is available in a public, open access repository. The “dualgsea” scripts used in this 427 

current study are publicly available at https://github.com/MolecularPathologyLab/Bull-et-al. 428 
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Figure Legends: 429 

Figure 1. Differential gene expression analysis and pairwise analysis of the discovery 430 

cohort. (A) Schematic of the differential expression analysis and pairwise analysis. (B) 431 

Workflow of differential expression analysis and ranked position of the top 100 differentially 432 

expressed genes and bottom 100 genes in NR when ranked by t-stat and the position of 433 

these genes when ranked by logFC and combined. (C) Venn diagram of the significant 434 

Hallmark signatures (padj < 0.05) from GSEA when genes were ranked by t-stat, logFC, and 435 

combined. (D) Significant Hallmark signatures (padj < 0.05) identified from clusterProfiler 436 

GSEA when genes were ranked by t-stat, logFC, and logFC combined with the p-value 437 

ordered by NES. (E) clusterProfiler GSEA, fGSEA, and GenePattern pre-ranked GSEA of the 438 

significant Hallmark gene sets. (F-H) clusterProfiler GSEA (F), fGSEA (G), GenePattern (H) 439 

comparing NR CC (n=142) to R CC (n=73) for Interferon Alpha Response, Interferon Gamma 440 

Response and EMT.  441 

Figure 2. Comparison of the single sample methods, ssGSEA and GSVA. (A) Schematic of 442 

standard single sample analysis workflow. (B) Scatterplot showing the correlation of ssGSEA 443 

scores and GSVA sores for the Hallmark Interferon Alpha Response (Pearson correlation 444 

coefficient, r = 0.835), Interferon Gamma Response (r = 0.878) and EMT (r = 0.953). (C) 445 

Heatmap of ssGSEA and GSVA scores for Interferon Alpha Response, Interferon Gamma 446 

Response and EMT comparing NR and R. (D - I) Distribution of ssGSEA and GSVA scores. (D 447 

and E) Distribution of the ssGSEA and GSVA scores for the Interferon Alpha Response 448 

signature in the R (orange) and NR (blue) samples depicted using kernel density plots (D) and 449 

histograms (E). (F and G) Distribution of the ssGSEA and GSVA scores for the Interferon 450 

Gamma Response signature in the R (orange) and NR (blue) samples depicted using kernel 451 

density plots (F) and histograms (G). (H and I) Distribution of the ssGSEA and GSVA scores for 452 

the EMT signature in the R (orange) and NR (blue) samples depicted using kernel density 453 

plots (H) and histograms (I) 454 

Figure 3. Application of single sample analysis as a predictor for relapse. (A) ROC curve 455 

using Interferon alpha response ssGSEA and GSVA scores to predict NR had an AUC ranging 456 

between 0.61 – 0.62. True positive rate is when the sample is classified as high Interferon 457 

Alpha Response, and the case was a NR. The true negative rate is the proportion of true 458 

negatives, when a sample is a NR cases without high Interferon Alpha Response. 459 
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 (B) Interferon Alpha Response waterfall plots show when stratified into high and low groups 460 

for the Interferon Alpha Response with both ssGSEA and GSVA scores, we found a greater 461 

number of NR patients classed as high (n=98 [75.4%], n=92 [76.0%]) respectively compared 462 

to R (n=32 [24.6%], n=29 [24.0%]) respectively. (C) Interferon Gamma Response ROC AUC 463 

values ranging between 0.57 – 0.61. True positive rate is when the sample is classified as 464 

high Interferon Gamma Response, and the case was a NR. The true negative rate is the 465 

proportion of true negatives, when a sample is a NR cases with a low Interferon Gamma 466 

Response score. (D) Interferon Gamma Response waterfall plots show when stratified into 467 

high and low groups for the Interferon Gamma Response with both ssGSEA and GSVA scores, 468 

there were greater number of NR patients classed as high (n=86 [76.1%],; n= 95 [71.4%] 469 

respectively compared to R (n=27 [23.9%],; n=38 [28.6%] respectively (E) EMT ROC AUC 470 

values of 0.60. True positive rate is when the sample is classified as high EMT, and the case 471 

was a relapse. The true negative rate is the proportion of true negatives, when a sample is a 472 

NR case with a low EMT score. (F) EMT waterfall plots show when stratified into high and 473 

low for EMT for ssGSEA we found that a greater number of R patients classified as high 474 

(n=22 [59.5%], compared to NR (n=15 40.5%). GSVA found a higher number of NR patients 475 

with a high EMT score (n=50 56.2%) compared to R (n=39 43.8%) 476 

Figure 4. The use of single sample analysis provides distinct biology between groups. (A) 477 

Schematic of application of pathway analysis methods when applied to PDS classification. (B) 478 

GSEA revealed MYC targets V1 is enriched in the PDS1 group compared to the PDS3 group. 479 

(C) ssGSEA scores show significant difference of MYC targets V1 expression between PDS1 480 

and PDS3 groups (**** p-value < 0.0001). (D & E) ssGSEA scores for PDS1 and PDS3 show 481 

little overlap of MYC targets V1 expression between groups. (F) ROC curve shows that the 482 

MYC V1 scores enable discrimination between PDS1 and PDS3.  AUC value of 0.99. True 483 

positive rate is when the sample is classified as high MYC V1, and the case was PDS1. The 484 

true negative rate is the proportion of true negatives, when a sample is a PDS1 without high 485 

MYC V1. (G) Stratification of MYC V1 high and MYC V1 low ssGSEA scores showed that PDS1 486 

was classified as high MYC V1 (n=54 [96.4%] and PDS3 contained only samples with a low 487 

MYC V1 score (n=63 [100%]).  488 
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Supplementary Figure Legends: 549 

Supplementary figure 1. Ranking metrics of differentially expressed genes for GSEA have 550 

little impact on GSEA results and GSEA methods have little variation. (A)  50 Hallmark gene 551 

sets from clusterProfiler GSEA when genes were ranked by t-stat, logFC, and combined, 552 

highlighting the significant (padj < 0.05) hallmarks that are associated with all three ranking 553 

methods. (B) clusterProfiler GSEA, fGSEA, and GenePattern pre-ranked GSEA 50 Hallmark 554 

gene sets ranked by t-stat. 555 

 556 

Supplementary figure 2. Comparison of single sample analysis methods. (A) ssGSEA 557 

heatmap of 50 Hallmark gene sets. (B) GSVA heatmap of 50 Hallmark gene sets. (C)  558 

Significance between NR and R ssGSEA scores for Interferon Alpha Response (** p <0.01) (D) 559 

Significance between NR and R GSVA scores for Interferon Alpha Response (** p <0.01). (E) 560 

Significance between NR and R ssGSEA scores for Interferon Gamma Response (* p <0.05). 561 

(F) No significance between NR and R GSVA scores for Interferon Gamma Response (ns). (G) 562 

No significance between NR and R ssGSEA scores for EMT (ns) (H) Significance between NR 563 

and R GSVA scores for EMT (* p <0.05). 564 

 565 
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