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Abstract 

Splicing is often dysregulated in cancer, leading to alterations in the expression of canonical 

and alternative splice isoforms. This complex phenomenon can be revealed by an in-depth 

understanding of cellular heterogeneity at the single-cell level. Recent advances in single-cell 

long-read sequencing technologies enable comprehensive transcriptome sequencing at the 

single-cell level. In this study, we have generated single-cell long-read sequencing of Patient-

Derived Organoid (PDO) cells of clear-cell Renal Cell Carcinoma (ccRCC), an aggressive and 

lethal form of cancer that arises in kidney tubules. We have used the Multiplexed Arrays 

Sequencing (MAS-ISO-Seq) protocol of PacBio to sequence full-length transcripts 

exceptionally deep across 2,599 single cells to obtain the most comprehensive view of the 

alternative landscape of ccRCC to date. On average, we uncovered 303,547 transcripts 

across PDOs, of which 40.5% were previously uncharacterized. In contrast to known 

transcripts, many of these novel isoforms appear to exhibit cell-specific expression. 

Nonetheless, 37.5% of these novel transcripts, expressed in more than three cells, were 

predicted to possess a complete protein-coding open reading frame. This finding suggests a 

biological role for these transcripts within kidney cells. Moreover, an analysis of the most 

dominant transcript switching revealed that many switching events were cell and sample-

specific, underscoring the heterogeneity of alternative splicing events in ccRCC. Interestingly, 

one of the ccRCC organoids seemed to have a VHL-negative phenotype despite a VHL P25L 

mutation, underscoring the benign nature of the mutation. Overall, our research elucidates the 

intricate transcriptomic architecture of ccRCC, potentially exposing the mechanisms 

underlying its aggressive phenotype and resistance to conventional cancer therapies. 
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Introduction 

Alternative splicing is a pivotal mechanism by which eukaryotic cells enhance their 

transcriptomic and proteomic diversity. By allowing a single gene to encode multiple RNA 

variants, alternative splicing contributes significantly to cellular complexity, tissue specificity, 

and organismal adaptability. In the context of human disease, notably cancer, dysregulation 

of alternative splicing events can lead to the expression of oncogenic isoforms, influencing 

tumor initiation, progression, and resistance to therapy. Despite its recognized importance, the 

comprehensive characterization of alternative splicing at the resolution of individual cells 

remains a formidable challenge, primarily due to the limitations of conventional sequencing 

technologies in capturing the full spectrum of splicing events. 

 

Recent advances in single-cell RNA sequencing (scRNA-seq) have revolutionized our 

understanding of cellular heterogeneity in complex tissues and tumoral environments, 

revealing unprecedented insights into the transcriptomic variations that define cell types, 

states, and functions. However, most single-cell studies have relied on short-read sequencing 

technologies, which, despite their high throughput, fall short of accurately resolving complex 

splice variants due to their limited read lengths. Long-read sequencing technologies offer a 

promising solution to these limitations. With the ability to generate reads that span entire 

transcript isoforms, long-read sequencing enables the direct observation of splicing patterns 

and the identification of novel isoforms that would be missed or misassembled by short-read 

technologies (Byrne et al. 2017; Amarasinghe et al. 2020; Bolisetty et al. 2015). However, 

long-read sequencing was not appropriate for single-cell transcriptome measurements due to 

the initial lower throughput and high sequencing errors. With the recent advances in 

sequencing chemistries and transcript concatenation protocols, the restrictions could be 

overcome, allowing us to measure transcripts in the transcriptome at full-length at single-cell 

resolution. 

 

Using derivates of this new technology, the research community has begun to investigate the 

transcriptome of various samples at single-cell resolution. For example, Shiau et al. identified 

a distinct combination of isoforms in tumor and neighboring stroma/immune cells in a kidney 

tumor, as well as cell-type-specific mutations like VEGFA mutations in tumor cells and HLA-A 

mutations in immune cells (Shiau et al. 2023). Tian et al. highlighted the complexity of the 

transcriptome in human and mouse samples by identifying thousands of novel transcripts with 

conserved functional modules enriched in alternative transcript usage, including ribosome 

biogenesis and mRNA splicing. They found drug-resistance mutations in subclones within 

transcriptional clusters (Tian et al. 2021). Also, Yang et al. observed thousands of novel 

transcripts in human cerebral organoids, with differentially spliced exons and retained introns 

(Yang et al. 2023). Cell-type-specific exons with de novo mutations were enriched in autistic 

patients. In another interesting study, Wan et al. integrated single-cell long-read sequencing 

with single-molecule microscopy and observed distinct but consistent bursting expression for 

all genes with similar nascent RNA dwell time (Wan et al. 2021; Shiau et al. 2023). The intron 

removal time spans minutes to hours, suggesting that the spliceosome removes introns 

progressively in pieces. In a recent study, Dondi et al. identified over 52,000 novel transcripts 

in five ovarian cancer samples that had not been reported previously, and similar to the studies 

above, discovered cell-specific transcript and polyadenylation site usages and were able to 

identify a gene fusion event that would have been missed using short-read sequencing (Dondi 

et al. 2023).  
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Following in the footsteps of these studies, we have applied PacBio’s new Multiplexed Arrays 

Sequencing (MAS-ISO-Seq) protocol (Al’Khafaji et al. 2023) to probe full-length transcripts in 

single cells in patient-derived kidney organoids of four clear-cell renal cell carcinoma (ccRCC) 

patients. To our knowledge, the transcriptome and alternative splicing landscape in single-cell 

resolution has not been studied in ccRCC despite the heterogeneity and complexity of its 

tumor microenvironment (Motzer et al. 2022). However, various high-throughput studies point 

towards an important role of alternative splicing in ccRCC development and treatment 

response (Wang et al. 2022; Simmler et al. 2022; Zhang et al. 2021a). For example, recent 

single-cell studies have suggested VCAM1-positive renal proximal tubule cells to be the likely 

origin of ccRCC (Zhang et al. 2021b; Schreibing and Kramann 2022), which is consistent with 

the hypothesis that ccRCC is derived from the proximal tubules. Also, ccRCC tumors were 

found to detain many CD8+ T-cells and macrophages in immune checkpoint inhibition 

responsive and resistant samples, respectively (Krishna et al. 2021). The distinct response 

could explain the general good response of ccRCC patients to immunotherapy despite having 

a low mutational burden in their ccRCC tumors (Borcherding et al. 2021).  

 

Here, for the first time, we are exploring the transcriptome landscape of ccRCC samples and 

one matched-normal patient-derived organoids (PDOs) in single-cell resolution using single-

cell long-read sequencing technology. We detected more than 300,000 unique transcripts 

across samples found in at least three cells. Of those, 27% were identified as novel, unknown 

transcripts, of which many are specific to one sample. In addition, we evaluated the coding 

capability of transcripts and found a higher proportion of complete open reading frames in 

novel transcripts commonly expressed in many cells. Our findings elucidate the extensive 

heterogeneity inherent in the splicing landscape of ccRCC samples. This intricate variability 

underscores the resilience of ccRCC against conventional therapeutic strategies. 
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Results 

Full-length single-cell sequencing reveals transcript diversity and the cell 

heterogeneity of known and novel transcripts 
 

To discern the transcriptome diversity in ccRCC, we have applied full-length single-cell 

sequencing using the MAS-Seq protocol (Al’Khafaji et al. 2023) on a PacBio Sequel IIe 

instrument to five patient-derived organoids (PDO) samples (Fig. 1A). The resulting data 

included 29.4 to 58.8 million segmented reads per sample (please see Zajac N. et al. 

(accompanying submission) for the technical details). The PDOs were established from four 

fresh ccRCC tissue samples (Fig. 1B). We sequenced one normal PDO matching ccRCC2, 

which we established from adjacent normal kidney tissue. All ccRCC PDOs carried a VHL 

mutation, a hallmark of ccRCC (Table 1). Note that the P25L mutation in ccRCC3 has 

previously been described as benign (Rothberg 2001). To sequence the single-cell 

transcriptomes as deeply as possible, we attempted to load as many transcript molecules of 

as few cells as possible on the flow cell. We managed to sequence a total of 2,599 cells, 

ranging between 310 and 1091 cells per sample with between 76,232 and 120,658 transcripts 

per cell (Table 2), an unparalleled depth. All cells except one in ccRCC4 expressed more than 

three genes and transcripts. Calculation of the number of unique genes and transcripts 

expressed in at least three cells and their UMI counts per cell revealed that the ccRCC4 

sample with the highest number of cells had the lowest number of transcripts, genes, and UMI 

per cell (Supplementary Figures 1A and 1B). The sequencing depth reached up to 25,997 

reads per cell on average in the normal-PDO, followed by 21,308 in ccRCC5, 21,077 in 

ccRCC2, 16,246 in ccRCC3, and 6,555 in ccRCC4.  

 

Table 1: Clinical data of patient-derived organoid (PDO) samples. 

 

Sample Names in the Manuscript FGCZ Sample No VHL Status Grade 

Normal 030669/1 WT - 

ccRCC2 030669/2 c.286C>T 3 

ccRCC3 030669/3 c.74C>T 4 

ccRCC4 030669/4 c.227T>C 4 

ccRCC5 030669/5 c.230insT 4 

 

 

The Iso-seq pipeline classified transcripts into four categories using SQANTI3 in SMRT-Link. 

Based on the alignment profile of exon coordinates of transcripts to the reference 

transcriptome, SQANTI3 (Pardo-Palacios et al. 2023) categorized the transcripts as full-splice 

match (FSM), incomplete-splice match (ISM), novel in catalog (NIC), and novel not in catalog 

(NNC) (Fig. 1C). FSM transcripts perfectly align with reference transcripts at their junctions; 

ISM transcripts have fewer exons at the 5' or 3' ends, while the rest of the internal junctions 

align with the reference transcript junctions. The novel transcript categories NIC or NNC are 
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made of new combinations of known splice junctions or have at least one new donor or 

acceptor site, respectively. We grouped the remaining SQANTI3 transcripts, namely 

antisense, genic intron, genic genomic, and intergenic, into a single category called 'Other'. 

On average, we identified 291,459 transcripts across all samples (Table 2). 37.2% of the 

transcripts were identified as ISM, followed by 36.9% novel transcripts, of which 14.6% and 

22.3% were identified as NIC and NNC, respectively. 21.9% of transcripts were annotated as 

FSM across samples (Fig. 1D, Table 2).  

 

Table 2: Statistics on the number of cells, genes, and transcripts sequenced in this 

project.  *Number of cells expressing 100 genes or transcripts. **Number of genes or 

transcripts found in at least three cells. FSM: Full splice match, ISM: Incomplete splice match, 

NIC: Novel In Catalog, NNC: Novel Not In Catalog. Other: Genic, antisense, intergenic, fusion, 

more Junctions. 

 

 

FSM transcripts mainly consist of transcripts having alternative 3' ends, while ISM transcripts 

have different 5' prime ends (Supplementary Figure 2). Calculation of the number of transcripts 

detected per gene across all samples showed that 28% of genes in the normal sample 

expressed more than ten transcripts. ccRCC3 had the smallest number of genes per cell 

expressing more than ten transcripts, with only one for 27% of genes. (Fig. 1E, Supplementary 

Fig. 1E for the transcripts found at least in 3 cells). Most gene transcripts were found to be 

expressed in only one cell across all samples (Fig. 1F). FSM and NIC transcripts tended to be 

the longest and to have similar lengths on average (t-test p-value=0.82) (Fig. 1G), while the 

ISM and NNC transcripts showed shorter lengths compared to FSM and NIC (t-test, p-value 

< 2.2e-16). The ‘Other’ category showed the shortest transcripts (t-test, p-value < 2.2e-16). 

~50% of transcripts found in a single cell were novel, while the transcripts found in more than 

150 cells were mostly FSM (Fig. 1H). To investigate whether the exon number affects the 

formation of new novel transcripts, we calculated the correlation between the number of exons 

and novel transcript numbers detected per gene. Interestingly, we observed a higher 
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correlation for ISM than for novel transcripts (Supplementary Figure 3B, R-value between 0.44 

and 0.47, p<2.2e-16). 

 

 

 

 
 

Fig 1. Transcript landscape and cell heterogeneity in normal and ccRCC-PDOs: (A) 

Schematic design of the project showing how patient-derived organoid (PDO) samples are 

established, sequenced using single-cell long-read sequencing, and functionally characterized 

(illustrations were created by Biorender). (B) The brightfield representative images of our 

organoids. The dotted line marks the matched pair. The scale bar is 50um. (C). SQANTI3 

transcript categories. (D). The proportion of transcript categories found across four ccRCC-
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PDO and one normal PDO (please see the (C) for the color code). (E). The number of identified 

transcripts per gene in each PDO. The x-axis denotes the number of transcripts per gene, 

categorized into bins (1, 2, 3, 4, 5, 6, 7, 8, 9, and >10), while the y-axis represents the number 

of genes. The height of each bar reflects the count of genes that express the corresponding 

number of transcripts. (F). The number of identified transcripts per gene per cell in each PDO. 

The x-axis shows the number of transcripts detected per gene per cell, categorized into 

different bins, while the y-axis denotes the total number of genes, with the height of each bar 

reflecting the count of genes that express the corresponding number of transcripts per cell. 

(G). Distribution of transcript lengths for each structural category across samples. (H). 

Proportional distribution of identified transcripts’ structural categories across cell number 

ranges.  

 

 

Filtering out transcripts identified in only one or two cells decreased the number of total 

sequenced transcripts (from 291,459 to 97,412 transcripts on average). Of the remaining 

transcripts, only 22.7% were novel compared to 37% prior to filtering (Supplementary Figure 

1C). The highest UMI counts were found with FSM transcripts, while novel transcripts tend to 

have the lowest UMI (Supplementary Figure 1E, 1F, 1G). Altogether, these results show that 

the majority of novel transcripts are lowly expressed in one or two cells. 

However, there are some exceptions, for example, the novel transcripts of the genes 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), Pyruvate kinase (PKM), Aldolase A 

(ALDOA), Angiopoietin-like 4 (ANGPTL4), Vimentin (VIM) (see Supplementary Table 1 for the 

full list) are expressed in at least 50% of ccRCC2, ccRCC4 or ccRCC5. Among those, GAPDH, 

PKM, and ALDOA are involved in glycolysis, and it is reported that enzymes having a role in 

glycolysis are upregulated in the occurrence of VHL-deficient ccRCC due to the upregulation 

in hypoxia-inducible factor 1alpha (HIF-1a) (Miranda-Poma et al. 2023). ANGPTL4 is another 

hypoxia-inducible gene, and its expression has been shown as a potential diagnostic marker 

for ccRCC (Verine et al. 2010). VIM is a mesenchymal marker overexpressed in epithelial-to-

mesenchymal transition (Landolt et al. 2017; Xu et al. 2020). Our findings suggest that those 

novel transcripts expressed more broadly across cells might play an important role in the 

pathogenesis of ccRCC. 

Transcripts common to many cells have more translation capability 

To assess whether the novel transcripts are protein coding, we predicted the Open Reading 

Frame (ORF) using TransDecoder (Haas BJ.). Based on the occurrence of start and stop 

codons and coding regions, TransDecoder assigned transcripts into varying sub-ORF 

categories, including 3’ partial (transcripts with missing stop codons), 5’ partial (transcripts with 

missing start codons), internal (transcripts that miss both start and stop codons), and complete 

transcripts (including all necessary parts to code a protein). For about 77.5% of the novel 

transcripts, we were able to predict an ORF (Fig. 2A). ISM transcripts had the lowest proportion 

of complete ORFs, which is a consequence of the lack of their terminal exons which might 

lead to truncated or completely missing ORFs (Fig. 2B). We then investigated the prevalence 

of sub-ORF categories across varying cell number ranges. Transcripts commonly expressed 

in a sample tend to show more complete ORFs as compared to cell-specific transcripts (Fig. 

2C), independent of the transcript class (Pearson’s chi-square test: p<2.2e-16). To understand 

whether the predicted protein isoforms form a stable protein structure that could hint towards 

a biological function, we predicted intrinsically disordered regions for all isoforms with 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585271doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585271
http://creativecommons.org/licenses/by-nc/4.0/


 

 9 

complete ORFs using iupred2 (Mészáros et al. 2018). The calculations demonstrated  that 

ISM transcripts had the highest proportion of disordered residues (pairwise Wilcoxon rank sum 

test, (ISM-FSM & ISM-NIC, p-value: <2e-16, ISM-NNC, p-value=6.7e-11) (Fig. 2D) while novel 

transcripts with intron retention showed a higher disordered score than those with a new splice 

site or a new combination of a splice site/junction (Fig. 1E). For example, we identified six 

novel transcripts of Nicotinamide-N-methyltransferase (NNMT), each comprising three to four 

exons, and each with a complete ORF. The protein sequences encoded by these transcripts 

are characterized by more than 88% of their residues being ordered in the ccRCC2 PDO. 

NNMT was previously characterized as a promising drug target for ccRCC (Reustle et al. 

2022). These transcripts were found to be expressed in a range of 3 to 250 cells.  On the other 

hand, protein sequences of ADP Ribosylation Factor Like GTPase 6 Interacting Protein 4 

(ARL6IP4) exhibited more than 90% of their residues as disordered. Our observations suggest 

that most novel transcripts are similarly disordered as their canonical counterparts. 

 

 
Fig 2: Distribution of open reading frame (ORF) categories and intrinsically disordered 

protein predictions: (A). Percentage of ORF hits across different structural categories in all 

datasets. (B). The fraction of different ORF types across datasets in each structural category. 

Each color represents various ORF types. (C). Distribution of ORF types in novel transcripts 

as a function of cell number range across datasets. The x-axis categorizes the cell number 
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range, while the y-axis shows the proportion of each ORF type (see (B) for the legends). (D). 

Comparison of disordered scores for the protein sequences of complete-ORF transcripts 

across structural categories. (E). Comparison of disordered scores for the protein sequence 

of NIC and NNC showing complete ORFs across different sub-structural categories.  

ccRCC Cell-Specific Transcripts have a Higher Novel Transcript 

Proportion 

 

Using the Seurat clustering algorithm, we identified six different cell populations among 2598 

cells from one normal and four ccRCC-derived PDO (Fig. 3A). To evaluate the cell types in 

our samples, we examined the expression of ccRCC-specific markers (CA9, ANGPTL4) and 

kidney markers (EPCAM and PAX8). ccRCC markers were predominantly expressed in PDO 

cells from samples ccRCC2, ccRCC4, and ccRCC5 (Supplementary Figure 4C). Interestingly, 

kidney markers were expressed predominantly in the normal sample and in the PDO cells of 

ccRCC3 (Supplementary Figure 4B). The transcript expression profile of ccRCC3 stood out 

compared to the other ccRCC organoids. Looking closely at the VHL mutations (Table 1), 

ccRCC3 had a P25L variant. This variant was previously described as a polymorphic likely 

benign mutation, which could explain the VHL-negative-like expression profile of ccRCC3 

(Rothberg 2001; Nickerson et al. 2008) lacking overexpression of the VHL-HIF pathway. We 

did not observe significant expression of endothelial markers (CDH5 and FLT1) in our PDO 

cells, indicating that organoids contained little or no stromal cells. As ccRCC originates from 

the proximal tubule (PTC), we also found that nearly all cells express PTC markers (GGT1, 

RIDA) (Supplementary Figure 4D). 

 

Moreover, to explore the gene and transcript diversity between typical ccRCC and non-ccRCC 

cells, we categorized cells based on their  CA9 expression. CA9 expression is a result of HIF 

up-regulation due to VHL inactivation. ccRCC2, ccRCC4, and ccRCC5 samples contained 

361, 42, and 217 ccRCC cells, respectively (Figure 3C). Differential gene expression analysis 

between ccRCC and non-ccRCC cells revealed upregulation of several ccRCC-related genes 

in ccRCC cells, including NADH dehydrogenase 1 alpha subcomplex, 4-like 2 (NDUFA4L2), 

Lysyl oxidase (LOX), Vascular Endothelial Growth Factor A (VEGFA), ANGPTL4, Egl-9 Family 

Hypoxia Inducible Factor 3 (EGLN3) (Fig. 3D). Each of these genes is known to have  a role 

in the progression of ccRCC through various mechanisms. NDUFA4L2 and EGLN3 are critical 

for the adaptation of ccRCC cells to hypoxic conditions (Wang et al. 2017a; Tamukong et al. 

2022), VEGFA is a key factor for new blood vessel formations, essential for tumor metastasis, 

and LOX contributes to ccRCC progression by increasing the stiffness of the collagen matrix, 

which in turn, facilitates the cellular migration (Di Stefano et al. 2016).  

 

Next, we explored the splicing diversity between ccRCC and non-ccRCC cells and found that 

ccRCC cell-specific transcripts show a high proportion of novel transcripts (Fig. 3E). 840 genes 

commonly found expressing ccRCC-cell specific novel transcripts in ccRCC2 and ccRCC5-

PDOs (see Supplementary Figure 5 and Supplementary Table 2), and they were mostly 

associated with ccRCC-relevant pathways, including glycolysis and oxidative stress response 

(Fig. 3F). For example, more than 20 novel transcripts of the NDUFA4L2 gene were found to 

be expressed in CA9+ cells in the ccRCC5 and ccRCC2 samples. The upregulation of novel 
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transcripts of these genes in ccRCC is yet another demonstration of the heterogeneity of the 

splicing landscape in ccRCC malignancies.  

 

 

Fig 3:  Categorizing cells as ccRCC and non-ccRCC in PDOs and the fraction of 

transcript categories. (A). UMAP plot of batch-corrected analysis of all datasets displaying 

each cluster by different colors. (B). UMAP plot of the ccRCC marker CA9 expression across 

cells, with darker colors indicating higher expression levels. (C). The table shows the number 

of ccRCC and non-ccRCC cells in each PDO categorized based on their CA9 expression. (D). 

The heatmap shows the differential gene expression between ccRCC and non-ccRCC cells. 

(E). The proportion of explicitly expressed transcripts’ structural categories across ccRCC and 

non-ccRCC cells (bottom). (F). Over-representation analysis of genes expressing novel 

transcripts explicitly in ccRCC cells.  

Matched Transcripts are widespread across cells 

Next, we explored the number of overlapping transcripts to understand the intertumor 

heterogeneity of alternative splicing between patients. As the PacBio Iso-Seq pipeline assigns 

transcript IDs randomly, we matched the transcripts based on their exon-boundaries as 

described before by Healey et al. (Healey et al. 2022). Using the Tama tool, we could detect 

15,939 common transcripts from 11,518 genes expressed in at least three cells of each 
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sample. 2,244 transcripts from 1,799 genes were found only in ccRCC2, ccRCC4, and 

ccRCC5 PDOs, not in the Normal and ccRCC3. ( Fig 4A). Interestingly, we could see that 

common transcripts in all samples were expressed in more cells than transcripts unique to 

each sample (Figure 4B, Wilcoxon test, p-value < 2.2e-16). A comparison of the number of 

matched transcripts based on the Jaccard similarity index revealed the highest similarities 

between Normal:ccRCC5 and ccRCC2:ccRCC5 PDOs. In total, we identified 35-41% matched 

transcripts between ccRCC5:Normal (ccRCC5: 41,984/101,597, normal: 41,984/121,865) and 

ccRCC2:ccRCC5 (ccRCC2: 37,882/98,275, ccRCC5: 37,882/101,597) which was followed by 

ccRCC2:Normal (ccRCC2: 40,920/98,275, normal: 40,920/121,865). However, we observed 

the highest similarity of ISM transcripts between ccRCC2:Normal PDOs (Supplementary 

Figure 7). In addition, little similarity between ccRCC3 and the other ccRCC samples was 

detected, providing evidence that ccRCC3 is not a typical ccRCC sample and most likely 

resembles a VHL- phenotype. 

 

The comparison of transcripts found explicitly in CA9+ or CA9- cells in each sample revealed 

593 transcripts commonly detected only in ccRCC cells of ccRCC2 and ccRCC5 PDOs 

(Supplementary Fig 6). Of those, 251 are annotated as novel transcripts coded by 166 genes. 

Among those 251 novel transcripts, one of the frequently found novel transcripts belongs to 

Transmembrane protein 176A (TMEM176A), found in 186 and 13 ccRCC cells of ccRCC2 and 

ccRCC5 PDOs, respectively (ccRCC2 ID: PB.72551.11, ccRCC5 ID: PB.99360.3). This 

transcript is categorized as NIC and formed by a combination of known junctions comprising 

seven exons and has a complete ORF. Compared to the FSM transcripts, they differ in their 

5’ terminal region (Fig. 4C). TMEM176 has previously been shown to have a role as a tumor 

suppressor in esophageal squamous cell carcinoma in colorectal cancer, and its methylation 

has been defined as a prognostic biomarker (Gao et al. 2017; Wang et al. 2017b). In addition 

to this common novel transcript, the most frequently expressed transcript across cells are two 

distinct NNC transcripts (ccRCC2 ID: PB.72551.1, ccRCC5 ID: PB.99360.1) in both samples, 

and both transcripts have an additional exon at their 5’ ends (Fig. 4C). ORF prediction of 

transcripts showed that both NIC and NNC transcripts express CD20-like family domain 

(PF04103). The occurrence of the NIC novel transcript, specifically in CA9+ cells, makes it a 

potential diagnostic biomarker candidate. In contrast, the NNC transcript is found across both 

CA9+ and CA9- cells, suggesting a potential contribution of transcripts to the total protein 

expression.  
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Fig 4: Overlapping transcripts among ccRCC and non-ccRCC cells and exon structures 

of TMEM176A transcripts: (A). The number of overlapping transcripts across samples. (B) 

Density plots show the distribution of the number of cell barcodes corresponding to 

overlapping (matched) and non-overlapping (unmatched) transcripts. The x-axis categorizes 

the transcripts into 'Matched' and 'Unmatched' groups, while the y-axis indicates the number 

of cell barcodes in which these transcripts are detected (Wilcoxon test, p < 2.2e-16). (C). Exon 

structure of four TMEM176A transcripts. Transcripts from ccRCC2 and ccRCC5 are depicted 

in red and blue, respectively. The table next to the transcript structures lists the SQANTI3 

category of transcripts, aligned reference transcripts, and the number of cells in which the 

transcripts were identified. The most frequently observed transcripts in samples are 

highlighted in purple, and the common novel transcript is marked in green. 

 

 

Most Dominant Transcripts Switching Events in ccRCC Cells 

As alternatively spliced transcripts can have different exons, they may result in different protein 

domains, disrupt protein interactions, or form interaction with new protein partners. Previous 

research has shown that most protein-coding genes have one most dominant transcript (MDT) 

expressed at a significantly higher level than any other transcript of the same gene. These 

dominant transcripts can be tissue-specific (Ezkurdia et al. 2015; Gonzàlez-Porta et al. 2013; 

Tung et al. 2022). We previously demonstrated that these MDTs switch during malignant 

transition in cancer, including in ccRCC (Kahraman et al. 2020). To explore variations in MDT 

profiles between ccRCC and non-ccRCC cells, we analyzed MDT switches between ccRCC 

and non-ccRCC cells across three PDOs, ccRCC2, ccRCC4, and ccRCC5. In total, we 

identified 1,450 unique cancer-specific MDTs in 547 single cells (Supplementary Table 3), 

ranging between 1 and 26 switches per cell (Fig. 5A). 549 of the cancer-specific MDTs were 

found to have a complete Open Reading Frame (ORF), of which 96 were found in only one 

cell as a cancer-specific MDT. Among MDTs with complete ORF, 47 genes with MDT switch 

were found in both ccRCC2 and ccRCC5 PDOs (Fig. 5B). Over-representation analysis of the 

genes revealed functional roles in mRNA-splicing pathways, respiratory electron transport, 

and G2/M transitions. One of the cancer-specific MDT that was expressed in 135 cells of 
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ccRCC2 was MYL6 (Fig. 5D). The MYL6 gene encodes the myosin light chain 6 protein, which 

is a component of the Myosin ATPase cellular motor protein complex. Both transcripts of MYL6 

(ccRCC MDT: PB.105063.81, non-ccRCC MDT: PB.105063.80) have been annotated as full-

splice matches having alternative 5’ end with SQANTI3. While the ccRCC MDT aligns to 

ENST00000550697.6, non-ccRCC MDT maps to ENST00000547649.5. Both transcripts 

translate to 151 amino acids long proteins but  with distinct  C-terminal sequences. 

Interestingly, Ensembl (v.111) annotates the ccRCC MDT as canonical), while the non-

canonical non-ccRCC MDT is the top-ranked transcript in the Kidney Corext and Medulla 

tissue on GTEx (https://www.gtexportal.org). The difference between transcript exon 

structures is that the ccRCC MDT transcript has one additional exon (exon 6) (Fig. 5E), making 

it the gene’s longest transcript. Exon inclusion and exclusion of MYL6 have been previously 

shown to be cell type-specific, with exon inclusion observed more in the muscle tissue than 

non-muscle tissue (Olivieri et al. 2021). In contrast to our finding in ccRCC CA9+ cells, exon 

skipping has been shown to increase in metastatic pancreatic cancer samples (Jbara et al. 

2023). 

 

Fig 5: MDT Switches between ccRCC and non-ccRCC cells: (A). Distribution of number of 

switches in ccRCC2, ccRCC4, and ccRCC5 PDOs. (B) The number of overlapping genes 

showing transcript switching events across three datasets. (C). Reactome pathway over-

representation analysis of genes commonly showing transcript switching events in ccRCC2 
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and ccRCC5 PDO datasets. (D). Normalized expression profile of two MYL6 transcripts 

showing different MDTs in ccRCC and non-ccRCC cells. PB.105063.81 is ccRCC MDT, while 

PB.105063.80 represents the non-ccRCC MDT. (E). Exon structures of ccRCC 

(PB.105063.81) and non-ccRCC (PB.105063.80) MDTs.   
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Discussion 

The recent advent of single-cell long-read sequencing technologies provides a unique 

opportunity to gain insight into intra- and inter-tumor heterogeneity of tumors and to discover 

potential novel predictive biomarkers. To reveal the heterogeneity in ccRCC, we utilised the 

MAS-Seq single-cell long-read sequencing protocol of PacBio. We generated a 

comprehensive catalogue of known and novel transcripts for one normal and four ccRCC 

Patient-Derived Organoids (PDOs) without employing short-read single-cell sequencing data. 

PDOs with the highest number of sequenced cells, had, as expected, the least number of 

detected transcripts per gene per cell. However, sequencing a low number of cells might also 

cause a loss the essential cell diversity in the samples.  

 

Here, for the first time, we uncovered over 300,000 unique isoforms across samples, of which 

27% are novel transcripts with new combinations of known exons or new junctions. To 

interpret the biological impact of transcripts sequenced, we investigated the prevalence across 

cells together with their protein-coding capability. Our analysis revealed that, on average, 66% 

of identified novel transcripts were found only in a few cells, suggesting they might be artifacts 

with limited biological relevance. In contrast, widely expressed transcripts found corresponded 

mainly to known transcripts. In addition, frequently identified known and novel transcripts had 

more complete open reading frames, underscoring their protein-coding capability. 

 

Even though the highest proportion of transcripts in our data was found to be ISM transcripts, 

they showed the least fraction of complete ORFs and the highest disordered score for 

complete ORFs. This finding suggests that proteins encoded by these transcripts may exhibit 

enhanced functional diversity or regulatory capacity due to their lack of stable protein structure.  

To understand the splicing diversity between ccRCC and non-ccRCC cells, we investigated 

explicitly expressed transcripts in each category, revealing that the ccRCC cells have more 

unique novel isoforms having a role in ccRCC-related pathways, including oxidative stress, 

and glycolysis, proposing functional contribution of those novel transcripts to cancer 

progression in ccRCC. Our most dominant switch analysis between ccRCC and non-ccRCC 

cells showed that many switching events are cell-specific. Nevertheless, genes showing 

switching events have a main role in mRNA-splicing pathways, highlighting that these 

transcripts are pivotal in regulating cell function through alternative splicing. The detected 

transcripts in long-read sequencing data must be validated using proteomics since the 

transcript expression is known to be buffered before protein expression. However, as Miller et 

al. show, long-read data can also be exploited during the validation process to detect new 

protein isoforms. The authors constructed a protein reference database based on the full-

length transcript sequences. They used the reference database to search for matched mass-

spectrometry-based proteomics data. They were able to confirm novel peptide sequences in 

the proteomics data as well as translated intronic sequences. The total number of these 

identifications was low but highlighted the possibility of transcript translations commonly 

ignored or overseen in classical proteomics experiments.  

 

Some of our results might be due to artefacts in PCR amplification which is an essential part 

of the MAS-ISO-seq protocol. However, a recent study by Lee et al, who performed long-read 

sequencing on PCR amplified cDNA molecules and direct RNA sequencing using Oxford 

Nanopore sequencing, demonstrated a good overlap between differentially expressed genes 

using both complementary methods (Lee et al. 2023). Additional problems can arise when 
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equivalent transcripts are merged under a single transcript ID. Iso-Seq uses exon-boundaries 

and sequence similarity to determine the equivalency of transcripts. However, Iso-Seq is 

meant to work only on single samples, why the identification of equivalent transcripts over 

multiple samples is challenging. The merging over multiple samples is however important for 

studying the intertumor heterogeneity of tumor samples, where equivalent transcripts must be 

compared over multiple samples. We have used Tama’s merge function for our study, 

however, more in depth analysis and benchmarking are required for this crucial step.  

 

In conclusion, single-cell long-read sequencing of patient-derived organoids offers an 

unprecedented and detailed view of the transcriptome landscape of individual cancer patients. 

It reveals hundreds of thousands of novel transcripts, of which only the minority are commonly 

expressed in single and multiple patients, highlighting the intra- and intertumor heterogeneity 

of ccRCC. The discovery of frequently found novel transcripts provides insights into cancer 

progression and a new avenue for discovering potential novel biomarkers or therapeutic 

targets. The functional role of the commonly expressed novel transcripts remains to be further 

explored and validated. 

 

Methods 

Generation and Characterization of ccRCC Patient-Derived Organoid 

Samples 

Patient tissue samples were provided by the Department of Pathology and Molecular 

Pathology at University Hospital Zürich. They were collected and biobanked according to 

previously described procedures (Bolck et al. 2019). The study was approved by the local 

Ethics Committee (BASEC# 201 9-01 959) and in agreement with Swiss law (Swiss Human 

Research Act). All patients gave written consent. Organoids were established as previously 

described (Bolck et al. 2021). Surgically resected renal tissue was reviewed by a pathologist 

with specialisation in uropathology (Holger Moch) and suitable specimens were stored at 4 °C 

in transport media (RPMI (Gibco) with 10 % fetal calf serum (FCS, Gibco) and Antibiotic-

Antimycotic® (Gibco)). For organoid derivation, tissue specimens were further processed 

within 24 hours by rinsing them once with PBS, finely cutting and digesting them in 0.025 

mg/ml Liberase (Roche) for 15 min at 37 °C.  The slurry was then passed through a 100 µm 

cell strainer and centrifuged at 1000 rpm for 5 min. Cells were washed once with PBS and 

erythrocytes were lysed in ACK buffer (150 mM NH4Cl, 10 mM KHCO3, 100 mM EDTA) for 2 

min at room temperature. After a final wash with PBS, appropriate amounts of cell suspension 

were resuspended in CK3D medium (Advanced DMEM/F12 (Gibco) with 1X Glutamax 

(Gibco), 10 mM HEPES (Sigma-Aldrich), 1.5X B27 supplement (Gibco), Antibiotic-Antimycotic 

(Gibco), 1 mM N-Acetylcysteine (Sigma-Aldrich), 50 ng/mL Human Recombinant EGF (Sigma-

Aldrich), 100 ng/mL Human Recombinant FGF-10 (Peprotech), 1 mM A-83-01 (Sigma-

Aldrich), 10 mM Nicotinamide (Sigma-Aldrich), 100 nM Hydrocortisone (HC, Sigma-Aldrich), 

0.5 mg/ml epinephrine (Sigma-Aldrich), 4 pg/mL Triiodo-L-thyronine (T3, Promocell), R-

Spondin (conditioned media, self-made) and mixed with a two volumes of growth factor 

reduced Matrigel (Corning). Drops of cell suspension/Matrigel were distributed in a 6-well low 

attachment cell culture plate (Sarstedt) and allowed to solidify for 30 min at 37 °C, upon which 
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CK3D media was added to cover the drops. To evaluate the growth of PDOs, bright-field 

images were captured using a microscope. Organoids at approximately 100-500 um were 

passaged, and at least 10,000 cells were collected for cell model validation using targeted 

DNA sequencing of the VHL gene. To achieve this, DNA was isolated using the Maxwell® 16 

DNA Purification Kit (Promega) and corresponding Maxwell instrument. PCR and sequencing 

of VHL were performed as previously described (Rechsteiner et al. 2011). 

 

 

Full-length single-cell isoform sequencing and data processing of PDO 

cells via MAS-ISO-Seq 

To obtain single cell suspension, cell culture media was removed and PDOs from one well of 

a ULA 6-well plate were collected in ice-cold Cell Recovery Solution (Corning) and incubated 

for 1 hour at 4oC to resolve the Matrigel. Subsequently, PDOs were dissociated with TrypLE 

by incubation on a thermal shaker set to 37 °C, 300 rpm. Every 2 min, the samples were 

picked up and mechanically dissociated by pipetting up and down and the progress of 

dissociation was evaluated under a microscope using a small fraction of the cells and tryphan 

blue. After dissociation, PBS supplemented with 20 % FBS, was added to stop the reaction. 

Samples were centrifuged at 1000 g for 5 min and the supernatant was aspirated. The pellet 

was washed once in 1X PBS with 0.04 % BSA and filtered through a 70 µm strainer. Finally, 

cells were counted and diluted to the target cell concentration using PBS with 0.04 % BSA.  

 

Generation of full-length cDNA with 10x Genomics platform and PacBio MAS-Seq 

library preparation and sequencing 

10x Genomics Chromium platform was used to analyze the dissociated organoid cells (Zheng 

et al. 2017). Library preparation was conducted following the 10x Genomics Single Cell 3’ 

Reagent Kits v3.1 (Dual Index) User Guide. We targeted to recover 700 cells per library 

preparation to have a greater sequencing depth using the PacBio platform. The single-cell full-

length cDNAs were directed for single-cell MAS-Seq (Multiplexed Arrays Sequencing) library 

preparation using the MAS-Seq 10x Single Cell 3’ kit (Pacific Bioscience, CA, USA). Each 

single-cell MAS-seq library was used to prepare the sequencing DNA-Polymerase complex 

and further sequenced on a single 8M SMRT cell (Pacific Bioscience), on Sequel IIe 

sequencer (Pacific Bioscience) yielding in ~ 2 M HiFi reads and~ 30M segmented reads per 

sample. The method is described in detail in Zajac N. et al., (accompanying submission). 

 

 

SMRTLink Iso-Seq pipeline 

In our study, we utilized the "Read Segmentation and Iso-Seq workflow" from SMRTLink 

version 11.1 to process our long-read sequencing data. For two specific samples, Normal and 

ccRCC2, we combined the data from three SMRTcells to enhance coverage. HiFi reads were 

converted into segmented reads using the skera tool, followed by the IsoSeq protocol in 

SMRTLink (Zajac N. et al., (accompanying submission)). We aligned the reads to the human 

genome (GRCh38.p13) using pbmm2 and analyzed them with the GenomicAlignments R 

package, ensuring compatibility with selected Illumina cell barcodes (Lawrence et al. 2013). 

Piegon was used to identify and filter the unique isoforms to remove various artifacts. The 

gene and isoform count matrices were generated with the make-seurat function. 
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Full-length single-cell data analysis 

Transcript Types and Their Prevalence Across Cells 

The transcripts were categorized into structural categories by SQANTI3 in SMRT-Link. We 

calculated the percentage of each transcript structural category and their length in each 

sample using scisoseq_classification.filtered_lite_classification.txt files. We then checked 

transcript prevalence across varying cell number ranges, and the number of transcripts per 

gene and cell.  

  

Functional Annotation of Long-read Sequencing Transcripts  

Open Reading Frames (ORFs) were identified on long-read transcript sequences listed in 

fasta files from the Iso-Seq collapse function using Transdecoder v5.7.1 (Haas BJ.). 

Transdecoder.LongOrfs function was used to predict all possible ORFs with a minimum ORF 

length of 100 nucleotides. To calculate protein sequences from the predicted ORFs, an 

extensive human reference database containing 226,259 canonical and alternatively spliced 

isoform protein sequences was generated using Uniprot (release date: 2023-11). The 

predicted ORFs were aligned to this database via blastp, setting the e-value to 1e-5. In 

addition, hmmscan v3.4 was applied to predict potential Pfam domains using the Pfam 

database (release date: 2023-09-12) with a maximum e-value of 1e-10. The results from both 

hmmscan and blastp were used to predict the final ORFs using Transdecoder.Predict function. 

We then selected one ORF for each transcript based on the highest score assigned by 

TransDecoder. We applied iupred2a on the transcripts having complete ORFs to predict their 

intrinsically disordered regions (IDRs). A residue was annotated as ordered or disordered, if 

its iupred2a score was below or above 0.5, respectively. We calculated the percentage of 

disordered residues for each transcript and assigned a percentage disordered score for each 

transcript.  

  

Correlation between Number of Exons, Gene Length, and Number of Transcripts 

To calculate the correlation between the number of exons, gene length, and number of FSM, 

ISM, and novel transcript per gene identified in each sample, we downloaded information on 

genes, transcripts, gene lengths, and exons from  Biomart, Ensembl v110 by selecting Gene 

stable ID, Transcript stable ID, Gene name, and Exon stable ID fields. The correlation of 

number of exons and transcripts were calculated in R. 

  

Cell Type Annotations 

Seurat (Hao et al. 2024) was used for quality control and integration of the samples using the 

output files of the Iso-Seq make-seurat function. For gene-level analysis, each sample was 

normalized by the SCTransform function. 3000 features were selected using 

SelectIntegrationFeatures, and anchors for integration were identified with 

FindIntegrationAnchors. The samples were integrated with the IntegrateData function using 

the SCT normalization. Subsequently, the Seurat object was scaled with the ScaleData 

function and PCA, and UMAP analyses were performed using the RunPCA and RunUMAP 

functions, respectively. Markers for each cluster were defined with the PrepSCTFindMarkers 

and FindAllMarkers functions. To categorize the cells in each PDO, we analyzed the samples 

separately. SCT normalized gene expression matrices were scaled, and the cells were 

categorized into two categories using the scGate R package (Andreatta et al. 2022) by defining 

the CA9 as a ccRCC positive marker. The other cells were assigned as non-ccRCC. The 

genes expressing distinct transcripts in ccRCC cells of ccRCC2 and ccRCC5 were analyzed 
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with ClusterProfiler’s enrichWP function for overrepresentation analysis. We used SCpubr R 

package to visualize marker expressions and clusters (Blanco-Carmona 2022). 

 

Transcript Matching among Samples 

Due to Iso-seq assigning transcript IDs randomly, we first converted all 

sqanti_classification.filtered_lite.gff files to the bed format using bedparse gtf2bed function 

(Healey et al. 2022). The columns were modified to include gene ID separated by transcript id 

by semicolon. Tama’s tama_merge.py function was used to combine all transcript ids among 

samples using their exon and junction coordinates, allowing for 50 and 100 nucleotide 

flexibilities at the 5' and 3' ends, and 5 nucleotides flexibility at the exon junctions. The 

similarities of the samples were calculated in R using the Jaccard similarity matrix, i.e. the 

number of overlapping transcript IDs divided by the total number of transcripts found in two 

samples. The heatmaps were visualized using the pheatmap function in R, and the number of 

overlapping transcripts was plotted by UpsetR’s upset function (Conway et al. 2017). 

 

Most Dominant Transcripts Switches between ccRCC and non-ccRCC cells 

To assess the Most dominant Transcripts (MDTs), we have used transcript UMI counts in each 

sample. Each MDT was required to have  at least two times higher UMI counts than the second 

most abundant transcript (Kahraman et al. 2020). The MDT identifications were compared 

between ccRCC and non-ccRCC cells in the ccRCC2, ccRCC4, and ccRCC4 PDO samples 

based on the following strict rules:  

- MDT in a ccRCC cell is not found as MDT in any non-ccRCC cell. 

- At For at least 50% of non-ccRCC cells, a distinct MDT should be identified 

- UMI counts  of MDTs in ccRCC cells should be higher than the mean of the MDTs UMI 

count in non-ccRCC cells. 

 

An MDT switch event was called, only when an MDT fulfilled all criteria. ClusterProfiler’s 

enrichPathway function was used for the overrepresentation analysis of genes showing MDT 

switches between ccRCC2 and ccRCC5 PDOs. ggVennDiagram R package was used to 

generate a Venn diagram of overlapping cancer-specific MDTs among samples (Gao et al. 

2021), and exons structures of the transcripts were generated with ggtranscript R package 

(Gustavsson et al. 2022).
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Data Access 

The raw single-cell long-read RNA sequencing data will be available at ENA under the 

accession number PRJEB73513. 

The files and the codes used in the manuscript can be found at: 

https://github.com/KarakulakTulay/ccRCC_scLongRead  
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