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Summary 

Infinium DNA methylation BeadChips are widely used for genome-wide DNA methylation 
profiling at the population scale. Recent updates to probe content and naming conventions in 
the EPIC version 2 (EPICv2) arrays have complicated integrating new data with previous 
Infinium array platforms, such as the EPIC and the HumanMethylation450 (HM450) BeadChip. 
We present mLiftOver, a user-friendly tool that transfers probe ID, methylation level, and signal 
intensity data across different Infinium platforms. It manages probe replicates, missing data 
imputation, and platform-specific bias for accurate data conversion. We validated the tool by 
applying HM450-based cancer classifiers to EPICv2 cancer data, achieving high accuracy. 
Additionally, we successfully integrated EPICv2 healthy tissue data with legacy HM450 data for 
tissue identity analysis and produced consistent copy number profiles in cancer cells. 

Availability and implementation: mLiftOver is implemented R and available in the 
Bioconductor package SeSAMe (version 3.21.13+):  
https://bioconductor.org/packages/release/bioc/html/sesame.html  

Analysis of EPIC and EPICv2 platform-specific bias and high-confidence mapping is available at 

https://github.com/zhou-
lab/InfiniumAnnotationV1/blob/main/Anno/EPICv2/EPICv2ToEPIC_conversion.tsv.gz 

The source code is available at https://github.com/zwdzwd/sesame/blob/devel/R/mLiftOver.R 
under the MIT license.  

 

1 INTRODUCTION 

The Infinium DNA methylation BeadChips (Illumina, Inc., San Diego, CA, USA) are widely used 
tools for large-scale DNA methylation profiling, contributing significantly to our understanding of 
DNA methylation biology over the past two decades (Bibikova et al., 2006). Combining bisulfite 
conversion with a genotyping array technology, this platform has been instrumental for consortia 
projects, such as The Cancer Genome Atlas (TCGA), and has accumulated over 80,000 HM450 
samples (Maden et al., 2021) and a comparable number of EPIC array methylation profiles in 
the Gene Expression Omnibus (GEO). Designed for population research, including meQTL 
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studies (Hawe et al., 2022; Min et al., 2021), epigenetic risk scoring (Thompson et al., 2022; 
Aref�Eshghi et al., 2020), and epigenome-wide association studies (EWAS) (Battram et al., 
2022; Li et al., 2019), Infinium arrays offer cost-effectiveness, high quantitative resolution, ease 
of use, and the ability to accommodate a wide range of DNA inputs (Lee et al., 2024). Their high 
throughput capabilities have accelerated clinical applications in areas such as cancer diagnosis 
(Capper et al., 2018), liquid biopsies (Li et al., 2022), and forensic science (Mannens et al., 
2022). More recently, this technology has supported the creation of an extensive pan-
mammalian DNA methylome atlas (Haghani et al., 2023; Ding et al., 2023; Arneson et al., 2022).  

The arrays’ probe naming system (i.e., cg number), beginning with the Infinium 
HumanMethylation27 BeadChip (HM27), has been a cornerstone for cross-referencing probes 
with unique CpG sites within the genome. Each cg number corresponds to a unique 122-mer 
sequence centered on the target cytosine-guanine dinucleotide (CpG site), with array probes 
designed against these sequences. Originally, the Infinium arrays featured a one-to-one 
design—one probe set per 122-mer sequence—enabling a unique mapping to the human 
genome and facilitating cross-referencing 122-mer IDs, or cg numbers, with genomic CpG 
locations. This method of referencing, common in EWAS literature (Battram et al., 2022; Xiong 
et al., 2020) and studies of methylation-genotype interactions (Hawe et al., 2022; Min et al., 
2021), provided a convenient yet imperfect system for indexing probe sequences or CpG sites 
within a genome assembly.  

The main limitation of the original cg number system arises from its non-specificity—a single cg 
number could correspond to multiple probe designs targeting the same 122-mer sequence. 
Additionally, this framework did not allow the inclusion of multiple replicate probes (Bibikova et 
al., 2009), which would enhance the robustness of measurements. With the advent of newer 
Infinium array generations like the EPICv2 (Noguera�Castells et al., 2023; Kaur et al., 2023) 
and other non-human arrays (Zhou et al., 2022; Arneson et al., 2022), a more precise naming 
system was introduced. This new system retains the cg number as a prefix but adds additional 
information to distinguish between probes, accounting for Infinium chemistry, strand orientation, 
and replicate indices (Zhou et al., 2022). However, the introduction of additional probe details, 
while methodologically sound, can impede the integration of newly generated methylation data 
with legacy datasets using the antiquated probe naming system. 

Moreover, the static probe content selection in Infinium technology reflects the evolving 
understanding of methylation biology (Zhou et al., 2017). Each array generation—HM27, 
HM450, EPIC, and EPICv2—has refined probe content to represent better emerging biological 
insights, like gene body methylation (Yang et al., 2014) and cis-regulatory element methylation 
(Neiman et al., 2017). However, integrating legacy data generated on previous platforms with 
missing probes remains technically challenging, especially for applications like epigenetic clocks 
(Horvath, 2013) and cancer classification models (Capper et al., 2018), which require specific 
CpGs in a model. Although data imputation strategies can help fill missing values within 
samples, many methods, such as matrix factorization (Mazumder et al., 2010), cannot 
accommodate the complete missingness of a specific probe in the query dataset. How to 
continue leveraging the legacy data and predictive models on the ever-evolving Infinium 
platforms has become a pressing technical need. 
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To respond to this need, we introduce methylation LiftOver (mLiftOver), a tool designed to 
harmonize Infinium data efficiently across platforms, including the EPICv2 array. mLiftOver, 
handles ID conversion, replicate probe measurement resolution, and missing data imputation 
(Figure 1A). It is compatible with the R/Bioconductor ecosystem and enables data conversion 
with varying stringency levels. We demonstrate its utility by applying it to public EPICv2 
datasets, showcasing its high performance and utility in bridging different Infinium platforms. 

 

2 DESCRIPTION 

mLiftOver, developed in R, is a feature in the SeSAMe package (Zhou et al., 2018) and 
leverages the ExperimentHub (Pasolli et al., 2017) and the sesameData packages to organize 
empirical data for its operation (Figure 1A). This tool can convert various data types: Probe IDs 
as a string list, DNA methylation levels (beta values) as numerical matrices, and signal 
intensities as SeSAMe::SigDF objects. mLiftOver is also capable of translating data to and from 
new and previous Infinium platforms. The tool generically identifies replicate probes as those 
sharing the same cg number prefix but differing in other design aspects, such as strand 
specification and Infinium chemistry (Figure 1B). When integrating data between platforms with 
and without these suffixes, mLiftOver offers two data aggregation strategies: averaging beta 
values across replicates or selecting the replicate with the most significant signal detection, 
informed by detection p-values. The latter method can exclude probes with potential design 
issues as indicated by the mask column within the SigDF object. When converting platforms 
without replicates to platforms with replicates, the same readings will be assigned to different 
replicates. mLiftOver is compatible with all existing Infinium platforms, including HM27, HM450, 
EPIC, EPICv2, and MM285. It also facilitates the conversion of raw signals stored as SigDF 
class objects, enabling integrated analyses such as copy number variation studies. Beyond 
signal conversion based on probe IDs, mLiftOver can incorporate empirical benchmarks from 
analyses where two platforms have profiled identical cell lines to filter platform-specific biases, 
thus enhancing data translation fidelity. 

mLiftOver integrates publicly available datasets to facilitate the back-conversion of EPICv2 data 
to its antecedent platforms, EPIC and HM450. This reverse conversion process involves three 
steps: translating probe IDs, filtering platform-specific biases, and imputing missing data by 
mapping the sample using the nearest neighbor approach to samples within our comprehensive 
DNA methylome repository. By aligning with the closest matching tissue type, mLiftOver fills in 
gaps without relying on methylation levels from other samples in the dataset, thereby enabling 
single-sample dataset operations. We have conducted extensive analyses on 10,631 EPIC and 
10,726 HM450 samples to establish a robust imputation baseline when either EPIC or HM450 is 
the target platform (Supplemental Table S1). This baseline collection of datasets spans 20 and 
19 tissue types for HM450 and EPIC datasets, respectively, with blood as a focal tissue due to 
its prevalence in EWAS studies (Figure S1A). Additionally, we calculated the variance of beta 
values for each CpG site within the target tissue type to gauge the confidence of imputation for 
probes completely absent from the original array. Figure S1B shows the standard deviation 
distribution by tissue type and assay platforms. These variance metrics are critical as they can 
serve as filters to eliminate methylation influences stemming from unaccounted variables, such 
as age. The imputation reference data is housed within the sesameData package, accessible 
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via the sesameDataGet function. When mLiftOver detects missing data, it substitutes these 
gaps with the median methylation value for the respective tissue type. This tissue type is either 
deduced algorithmically or specified by the user, thereby ensuring the replaced values align with 
the most probable biological context. 

 

3 RESULTS 

To show the performance of mLiftOver, we benchmarked the accuracy of converted probe-level 
methylation readings using the EPIC and EPICv2 data profiling the same cell lines (GM12878, 
K562, and LNCaP) (Kaur et al., 2023). We first compared native EPIC data and converted data 
from EPICv2, then native EPICv2 data and harmonized data from EPIC, all profiling the same 
cell line (GM12878 or HCT116) (Figure 1C). Conversions in both directions highly correlate with 
the native measurements from the target platform (Spearman �=0.988) (Figure 1C, first panel, 
Figure S1C). EPIC to EPICv2 conversion yields more probes due to the replicate probes with 
the same cg number prefix in EPICv2. Next, compared to native EPIC data, both replicate probe 
aggregation methods yielded similarly high measurement accuracy on 3,481 probes with design 
replicates in EPICv2, with the methylation level averaging method slightly surpassing the 
detection p-value method (Figure 1C, second panel, Figure S1D). For EPICv2 to EPIC 
conversion, we further considered data imputation. The imputed values alone also highly 
correlated with the native EPIC data (Spearman �=0.82), albeit lower than in the probe sets of 
direct probe conversion (Figure S1E). The Spearman’s correlation remains at 0.977 for 
converted measurements and imputed values combined (Figure S1F). Filtering out 86,678 
probes with higher methylation variation (SD>0.08) in the public datasets reduces the number of 
imputed readings but increases the overall correlation to greater than 0.9 (Figure 1C, third 
panel). Lastly, we tested the filtering of platform-specific biases (Figure 1D). We first examined 
five experiment pairs on three cell lines (GM12878, K562, and LNCaP). We defined a set of 
high-confidence mapping as those with delta methylation levels no greater than 0.05 in four 
experiment pairs (see Data Availability). This yielded a mapping of 542,491 EPICv2 probes with 
539,513 EPIC probes. mLiftOver then uses this mapping to convert unpaired EPIC and EPICv2 
experiments on the HCT116 cell lines grown from different labs (Kaur et al., 2023). The 
conversion with the empirical filter yielded a slightly higher correlation (0.898 vs 0.784) with the 
native data than without filtering platform-specific bias (Figure 1D).  

To demonstrate the utility of mLiftOver in integrating Infinium data across multiple platforms, we 
applied it to integrate EPICv2 and HM450 data that profiled primary healthy tissue samples. We 
downloaded two healthy endometrium tissue methylomes and seven lung tissue methylomes 
(Noguera�Castells et al., 2023). We co-clustered the mLiftOver-converted methylomes with 
HM450 datasets of tumor-adjacent normal tissues from The Cancer Genome Atlas (TCGA). As 
shown in Figure 1E, the EPICv2-originated datasets correctly cluster with the corresponding 
lung and endometrium tissue samples, respectively. This suggests that mLiftOver faithfully 
maintained the tissue-specific signature and epigenetic identity of these biological samples.  

Next, we evaluated whether cancer classification models trained on HM450 data can be used 
on mLiftOver-harmonized methylomes. We downloaded 22 primary cancer methylomes of lung 
cancer, breast cancer, and leukemia (Noguera�Castells et al., 2023) and applied a random 
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forest classifier trained on 33 TCGA cancer types (Figure 1F). The HM450-based classifier 
accurately predicts the cancer types of these methylomes except one, leading to an accuracy of 
95%.  

Lastly, we tested the functionality of mLiftOver in converting signal intensities. Infinium array 
signal intensities are extensively used in discovering copy number aberrations. We 
benchmarked this functionality on EPIC and EPICv2 datasets profiling the K562 cell lines, a 
leukemia cell line associated with a characteristic copy number gain at chromosome 22 and loss 
of chromosome 9p (Zhou et al., 2019). As expected, mLiftOver can produce consistent copy 
number profiles from EPICv1 native and EPICv2-harmonized data, capturing this hallmark 
structural variation (Figure 1G).  

Collectively, we demonstrate that mLiftOver enabled the integration of recent Infinium data with 
legacy data and allowed for legacy predictive models to be continuously used on data from 
updated platforms. 

 

4 DISCUSSION 

The Infinium DNA methylation BeadChip has evolved significantly since its inception, with each 
subsequent generation enhancing genome coverage while ensuring backward compatibility with 
existing datasets and models. This progression is exemplified by the seamless transition from 
the HumanMethylation450 (HM450) to the EPIC array, where most HM450 probes were 
incorporated into EPIC. Similarly, EPICv2 retained a substantial proportion of probes from EPIC 
(83%) and HM450 (81%) to preserve continuity. Nonetheless, challenges persist in predictive 
modeling or longitudinal studies, where comparative analyses are ideally conducted using the 
same platform. The introduction of replicate probes and more adaptable probe designs has led 
to the addition of suffixes to the conventional cg numbers, hindering the transfer of data across 
different platform generations and maximizing the use of historical data and models. In this 
study, we introduce a user-friendly tool designed to streamline data harmonization across three 
dimensions: probe names, beta values (methylation levels), and raw signal intensities. 

With the introduction of new probes and the removal of others in the newer platform iterations, 
the necessity for imputing missing probe readings has arisen. Our tool, mLiftOver, addresses 
this need by harnessing publicly available data, primarily focusing on tissue-specific differences, 
which have been identified as principal influencers of DNA methylation patterns in various 
studies, including our own (Ding et al., 2023; Zhou et al., 2022). However, we acknowledge that 
other factors, such as age, sex, cellular malignancy, and mitotic history, have not been 
incorporated into our model. Moreover, our approach only supports target platforms with enough 
available data, and tissues with uncharacterized methylomes are absent from our reference 
database, posing a potential limitation. One possible solution is to utilize the methylation 
correlation structure, for instance, inferring methylation levels in genomic proximity, to aid in 
imputing missing data. This approach could exploit co-methylated regions identified in 
comprehensive genome-wide methylome analyses (Sofer et al., 2013). The feasibility of 
imputation could inform the design of future Infinium arrays. It is important to note that while 
DNA methylation levels can be imputed, the imputation of signal intensities for absent probes is 
not yet supported, potentially impacting the analysis of copy number alterations in converted 
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versus native datasets. Nonetheless, mLiftOver addresses the problem of probes missing 
completely between array platforms by utilizing a large database of publicly available DNA 
methylation array data across multiple tissues and leveraging the variability in methylation levels 
to assess the imputation accuracy. Our imputation solution for entirely missing probe values can 
be helpful for predictive models requiring specific probe values, where the alternative would be 
a missing value. In sum, mLiftOver provides user-friendly functionality for projects seeking to 
analyze DNA methylation data using different versions of Infinium arrays.  
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FIGURES LEGENDS 

Figure 1. mLiftOver harmonizes Infinium DNA methylation BeadChip data across array 
platforms. (A) Schematic illustration of the core features and workflow of mLiftOver from data 
input to harmonization output. (B) Depiction of the probe naming convention employed in the 
EPICv2 and MSA arrays. (C) Evaluation of the mLiftOver's accuracy using the GM12878 cell 
line data, contrasting measurements from EPICv1 and EPICv2. The panel is divided into three 
sub-panels, demonstrating 1) direct probe ID translation, 2) signal averaging across replicates, 
and 3) imputation of missing probe readings (excluding those with methylation level standard 
deviation >0.08). Spearman's correlation coefficients are displayed atop each subpanel, with all 
correlations being significant (p-value <1E-6). D) Removal of platform-specific biases (tested on 
a pair of HCT116 cell line data that did not participate in the platform-specific bias analysis), p-
value <1E-6. (E) Illustrates the integration process of mLiftOver for primary healthy tissue data 
and TCGA tumor-adjacent normal tissue data, showcasing its utility in harmonizing diverse 
datasets. (F) Demonstrates the application of cancer classification models, initially trained on 
HM450 data using a random forest framework, to primary tumor datasets harmonized from 
EPICv2 data through mLiftOver. (G) Compares copy number variation profiles obtained from 
native EPIC data and profiles harmonized from EPICv2 data, showing the consistency of 
mLiftOver in signal data conversion. 
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