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Abstract

Linking sequence-derived microbial taxa abundances to host (patho-)physiology or habitat characteristics in a reproducible
and interpretable manner has remained a formidable challenge for the analysis of microbiome survey data. Here, we
introduce a flexible probabilistic modeling framework, VI-MIDAS (Variational Inference for MIcrobiome survey DAta
analysiS), that enables joint estimation of context-dependent drivers and broad patterns of associations of microbial taxon
abundances from microbiome survey data. VI-MIDAS comprises mechanisms for direct coupling of taxon abundances
with covariates and taxa-specific latent coupling which can incorporate spatio-temporal information and taxon-taxon
interactions. We leverage mean-field variational inference for posterior VI-MIDAS model parameter estimation and
illustrate model building and analysis using Tara Ocean Expedition survey data. Using VI-MIDAS’ latent embedding
model and tools from network analysis, we show that marine microbial communities can be broadly categorized into
five modules, including SAR11-, Nitrosopumilus-, and Alteromondales-dominated communities, each associated with
specific environmental and spatiotemporal signatures. VI-MIDAS also finds evidence for largely positive taxon-taxon
associations in SAR11 or Rhodospirillales clades, and negative associations with Alteromonadales and Flavobacteriales
classes. Our results indicate that VI-MIDAS provides a powerful integrative statistical analysis framework for discovering
broad patterns of associations between microbial taxa and context-specific covariate data from microbiome survey data.
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Introduction7

Microbial species are an integral part of life on earth.8

Ecosystems, ranging from the human gut to the global ocean,9

harbor trillions of bacteria, archaea, viruses, and fungi that10

take on essential functional roles and have developed intricate11

ecological relationships within their respective habitat. Over12

the past decades, advances in amplicon and metagenomics13

sequencing techniques [74, 54, 52, 70] and standardized14

experimental and bioinformatics workflows [63, 10, 9] have15

enabled the large-scale collection and dissemination of16

microbial survey data, including those from the seminal17

Human Microbiome Project [69], several gut-focused surveys18

[28, 64, 32, 45], the Earth Microbiome Project [25], and19

the Tara Ocean Expedition [67]. These surveys have reached20

a level of maturity and complexity that ultimately allow21

the estimation of statistical associations between microbial22

abundances, typically represented as compositional counts of23

Amplicon Sequence Variants (ASVs) or Operational Taxonomic24

Units (OTUs), and habitat properties [67, 7], biogeochemical25

processes[29], and/or host health status [23, 48]. This, in turn,26

provides a starting point for deciphering and understanding 27

the ecological and functional roles of different microbial clades 28

in the ecosystem, nutrient and bio(geo)chemical dependencies, 29

resource limitations of microbial growth, and the presence of 30

ecological taxon-taxon interactions [18]. 31

Here, we introduce an integrative probabilistic modeling 32

framework that is specifically tailored to microbiome survey 33

data and enables joint estimation of habitat-dependent drivers 34

and broad associations patterns of microbial taxa abundances 35

(see Figure 1). Our approach, termed VI-MIDAS (Variational 36

Inference for MIcrobiome survey DAta analysiS), models the 37

observed taxon abundances by simultaneously learning taxon- 38

specific latent representations that leverage the effects of host 39

or environmental factors and taxon-taxon associations via an 40

item-item interaction modeling ansatz, originally proposed for 41

market basket analysis [61]. As such, VI-MIDAS seamlessly 42

extends common statistical methods for microbiome data that 43

only focus on either statistical abundance modeling [31, 39, 13, 44

79, 75, 49] or microbial association estimation[37, 18, 77, 57, 45

26]. 46
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Figure 1: Overview of the VI-MIDAS framework. VI-MIDAS integrates taxa abundances,
host/habitat features, and spatio-temporal information to learn a generative model of the data.
The learned model components allow discovery of broad associations in the dataset via downstream
associative and network analysis.
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Fig. 1. Overview of the VI-MIDAS framework. a. VI-MIDAS integrates microbiome survey data in form of microbial abundance data W , host-associated,

habitat or environmental data, and spatio-temporal information. b. Different data sources are coupled directly or indirectly through a latent space

β to a generative model. An additional latent space taxon interaction model is included. The generative probabilistic model (e.g., Negative Binomial

(NB) model) integrates covariate data via a coupling model. c. Variational approximation and mean-field estimation are used for Bayesian parameter

estimation, resulting in posterior microbial abundance samples Ŵ and model parameter distributions. d. Model components, such as estimated latent

representation and taxon-taxon interactions, can be used for data understanding, visualization, and downstream analysis.

VI-MIDAS uses the parametric structure of the Negative47

binomial distribution [46, 49] to account for the overdispersed48

nature of the amplicon count data and comprises two main49

model components: (i) a component that allows for full50

adjustment of taxon abundances from a user-defined subset of51

covariates and (ii) taxa-specific latent vectors that incorporate,52

e.g., spatio-temporal or environmental covariates and taxon-53

taxon interactions, thus providing a marginal characterization54

of each taxon. We resort to mean-field variational inference55

for parameter estimation of VI-MIDAS’ intractable posterior56

distribution [8], thus complementing other recent variational57

approaches to microbiome data modeling, such as, e.g., Poisson58

principal component analysis [14], microbiome dynamics59

modeling [24], Dirichlet Multinomial modeling [30], multi-level60

modeling [42], and microbiome ordination [78].61

To illustrate the complete workflow of the VI-MIDAS62

framework, we focus on integrative analysis of global marine63

microbiome survey data. The ocean microbiome is of64

fundamental importance for life on earth, being responsible for65

about half of all primary production (i.e., the production of66

chemical energy in organic compounds) and holds enormous67

potential for climate remediation [50]. Several initiatives such68

as the Tara Oceans Project [56] and the Simons CMAP [4]69

provide well-structured sequencing data, biogeochemical and70

environmental covariate data, and satellite-derived products71

that are amenable to statistical analysis. Here, we re-analyze72

Tara expedition data 1, originally considered in [67] to study73

1 http://ocean-microbiome.embl.de/companion.html

the structure and function of the global ocean microbiome. 74

The expedition collected ocean water samples from 68 distinct 75

geographical locations at varying levels of depth. We will 76

make extensive use of this dataset to motivate and describe 77

the details of the VI-MIDAS framework as well as the 78

learned representations and associations of the global ocean 79

microbiome. 80

We start with an overview of the Tara Oceans data 81

under study, introduce the generative model components of 82

VI-MIDAS, and show how different data types enter the 83

modeling framework. We then give a high-level overview 84

of the variational parameter estimation procedure, including 85

the selection of VI-MIDAS’ hyperparameters, such as the 86

choice of the priors and the dimensionality of the latent 87

representation. Following model parameter inference, we 88

illustrate how standard modularity analysis of VI-MIDAS’ 89

learned latent representation of the Tara data identifies five 90

distinct groups of microbial consortia. We analyze the inferred 91

modules in terms of their composition of ecologically relevant 92

clades and discuss the derived module-specific environmental 93

and spatiotemporal signatures. Finally, we highlight the 94

emerging interaction pattern among ecologically relevant clades 95

and discuss the framework in the larger context of other 96

microbiome survey data. Further methodological details are 97

summarized in the Supplemental Material. Code for the 98

presented VI-MIDAS workflow is available at http://github. 99

com/amishra-stats/vi-midas) and requires minimal adjustment 100

to analyze other microbiome survey data. 101
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Fig. 2. Illustration of the Tara ocean data: a. Taxon abundance profiles, agglomerated to expert-derived ecologically relevant classes (ERCs) for two

samples (red and green, marked as 1 and 2 in Figure 2b). b. Tara ocean sample locations. c. Environmental features associated with the samples marked

as 1 and 2 in Figure 2 (b); d. Abundance profiles log(W + 1) of q = 1379 taxa at n = 139 distinct locations with rows highlighting province of the

sample and columns grouped by ERC. e. Abundance profiles clustered into five modules (M1-M5) as identified by modularity analysis of the latent

space β (see Section Modularity analysis for more details). The dashed vertical lines separate the latent modules. The five microbial modules (M1-M5)

comprise 524, 400, 307, 112 and 35 taxa/OTUs, respectively. The first column shows ocean depth layer, the second column the province indicator.

Materials and Methods102

Tara ocean data and ecologically relevant taxa103

re-classification104

We consider the processed Tara expedition data, as105

provided at http://ocean-microbiome.embl.de/companion.html.106

The expedition collected water samples from 68 distinct107

geographical locations (Figure 2b) across different depths,108

resulting in n = 139 distinct samples. Across these samples, the109

original data comprises microbial taxa abundances profiles of110

more than 35,000 bacterial taxa in form of metagenomic OTUs111

(mOTUs) (derived using the miTAGS framework [68]).112

Here, we focus on the most abundant taxa by taking the113

union of all mOTUs that, in each individual sample, contribute114

to 40% of the total library size. This filtering allows us to115

cover the abundance profiles of the q = 1378 taxa with the116

most significant variability and reduces the number of excess117

zero counts. To account for the highly variable sequencing118

depth across the samples, we normalize the abundance data119

with respect to the lowest library size via common-sum scaling120

[46]. Figure 2d shows the log-transformed abundance profiles121

W ∈ Rn×q. Since the original taxonomic affiliations of 122

the miTAGS are difficult to interpret, we next developed 123

a partitioning of the selected taxa into ecologically relevant 124

classes (ERCs). The original full taxonomy strings are too long 125

to understand at a glance, and parsing by taxonomic level is 126

not a good option since taxa vary widely in the depth of their 127

annotations. For example, cyanobacteria should be annotated 128

at the genus level or higher, but many other abundant but 129

less described taxa do not have any taxonomic information at 130

that level. We manually curated the data to provide a short 131

relevant taxonomic indicator that provides a rough indicator 132

of the ecological niche of an organism while remaining short 133

enough to be interpreted at a glance. Some taxonomies have 134

been altered to preserve the updated SILVA taxonomy (i.e., 135

Betaproteobacteria is now Burkholderiales). New SILVA 138 136

[58] taxonomies have been used wherever possible (i.e., when 137

the original ID was still in SILVA 138), but in cases where 138

there was only the SILVA 108 taxonomic information, we have 139

used our best guess. For example, if an organism had the same 140

classification as other organisms in SILVA 108, we have often 141
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Table 1. Environmental and spatiotemporal variables included in the VI-MIDAS model

Model component Variables Description

Environmental η
[E]
ij

Environ-

mental

covariates

Sea surface temperature (and its gradient), salinity,

chlorophyll, nitrate, Nitrogen Dioxide, Phosphate,

Silicon, and oxygen concentration.

(Depth)

SRF Surface water layer; up to 5 m below the surface

Spatial DCM Deep chlorophyll maximum; approximately 17 m to 188

m below the surface; region below the surface with

maximum chlorophyll concentration

η
[D]
ij

MIX Subsurface epipelagic mixed layer; approximately 25 m

to 150 m below the surface

MES Mesopelagic zone; approximately 250 m to 1000 m below

the surface

Spatial

Polar biome Polar region in the northern and southern hemisphere

characterized by low taxonomic diversity at all trophic

levels.

(Longhurst Province) Westerlies

biome

High-latitude region below the westerly winds

η
[P ]
ij

Trades

biome

Low-latitude region below the easterly trades

characterized by high taxonomic diversity

Coastal

biome

Region in the upper part of the continental slope

Seasonal η
[S]
ij

Q1, Q2, Q3,

Q4

Derived indicator of seasonal quarter when sample was

taken (January to March; April-June; July-September;

ctober-December)

given it the same name as its counterparts in SILVA 138. We142

present all our findings in terms of these 29 ERCs.143

Each Tara sample also contains environmental and144

spatiotemporal information, including geolocation, the derived145

Longhurst province (biome) indicator, sampling date, ocean146

depth information (depth from sea surface), environmental147

covariates, such as, e.g., sea surface temperature (SST), and148

biogeochemical features such as salinity, chlorophyll, nitrate,149

and oxygen concentration (see Figure 2c for illustration).150

Table 1 summarizes the measured covariates and derived151

spatiotemporal indicator variables that are included in the152

VI-MIDAS framework and their corresponding mathematical153

representation.154

Generative Modeling in VI-MIDAS155

We seek to model the abundance profiles of q microbial taxa156

where we denote a single sample by the random variable w ∈ Rq157

and the observed data from n samples by W = [wij ]n×q ∈158

Rn×q. For concreteness, we illustrate model building and159

analysis using the Tara abundance profiles (see Figure 2(d))160

of q = 1378 taxa but the modeling strategy is applicable to any161

multimodal microbiome survey.162

Distributional model163

VI-MIDAS posits that the overdispersed microbial count data

W are reasonably well modeled with the Negative Binomial

distribution [11, 44, 48]. While other generative statistical

modeling approaches are available, including the Dirichlet

Multinomial (mixture) framework [31, 71], latent Dirichlet

allocation [62], and Poisson distribution models [39, 5, 75],

we found the Negative Binomial model to be an excellent

choice for the Tara ocean data (see Figure S1 (b) of the

Supplementary Material for the over-dispersion analysis). Using

the Negative Binomial distribution with mean and dispersion

parameterization [11], VI-MIDAS models the jth taxa in the

ith sample as:

p(wij ; τjµij , φj) = NB(wij ; τjµij , φj)

=
(wij + φj − 1

wij

)( τjµij

τjµij + φj

)wij(
φj

τjµij + φj

)φj
. (1)

Here, the mean parameter τjµij is the product of a taxon-164

specific shape parameter τj ∈ (0, 1) and the entry-specific165

parameter µij ∈ R+. The parameter φj ∈ R+ is the taxon- 166

specific dispersion parameter. Let us denote the dispersion and 167

shape parameters for q outcomes by Φ = [φ1, . . . , φq] and 168

τ = [τ1, . . . , τq], respectively. The shape parameter τ accounts 169

for the disparity in abundance among microbial taxa. The 170

generative model (1) of VI-MIDAS thus implies E(wij) = τjµij 171

and Var(wij) = τjµij +
τ2
j
µ2
ij

φj
. Consequently, Var(wij) > 172

E(wij), thus making the parametric framework (1) suitable for 173

modeling the overdispersed count data. 174

Modeling strategy and model components 175

One novelty in VI-MIDAS is the combination of ideas 176

from generalized linear modeling [11] and compositional data 177

analysis [2] to associate the microbial relative count data 178

with spatiotemporal, environmental, and taxa information. 179

Specifically, we model the log-transformed mean parameter 180

µ = [µij ]n×q of the generative model (1) with two components, 181

a consistent zero-aware geometric mean estimate ti and a linear 182

predictor η = [ηij ]n×q ∈ Rn×q as follows: 183

log µij = log ti + ηij , . (2) 184
185

The sample-wise parameter ti is estimated by a zero-aware 186

geometric mean estimator, introduced in [16], which provides 187

a principled approximation to the geometric means across all 188

n samples in the presence of excess zeros. We detail the 189

exact formulation of ti and its approximation guarantees in 190

Section 3.1 of the Supplementary Material. Including O = 191

[log t1, . . . , log tn] as an offset term in the model is necessary 192

since we do not have access to absolute microbial abundance 193

data, thus requiring transforming the compositional data 194

appropriately. The second term η effectively models centered 195

log-ratio (clr) transformed (rather than the original count) 196

data and is the key component to couple habitat (or host) 197

information to the microbial abundance profiles. VI-MIDAS 198

introduces a novel decomposition of the component η that 199

allows the incorporation of three distinct coupling mechanisms: 200

(i) a direct coupling term for covariates, (ii) an indirect coupling 201

term for covariates via a latent space representation, and (iii) 202

a latent taxon-taxon interaction term. 203

In our ocean application, the first component, denoted by 204

η
[E]
ij , includes all relevant environmental attributes (see first 205

row in Table 1). All spatiotemporal features, i.e., the Longhurst 206

Province indicator, the Depth information, and the Seasonal 207
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indicator (see second to last row in Table 1) are handled by the208

latent coupling term and are denoted by η
[D]
ij , η

[P ]
ij , and η

[S]
ij ,209

respectively. Lastly, statistical associations among co-occurring210

taxa are included via a latent interaction term η
[I]
ij , leading the211

following model:212

ηij = η
[E]
ij + (η

[P ]
ij + η

[D]
ij + η

[S]
ij ) + η

[I]
ij . (3)213

214

The following paragraphs detail the parametric form of each of215

the components, the nature of the underlying covariate data,216

and their biological relevance.217

Direct coupling of environmental features218

Let us denote the p covariates in the direct coupling term by219

X = [x1, . . . ,xn]T = [xij ]n×p. VI-MIDAS models the direct220

component for the jth taxa in the ith sample via221

η
[E]
ij = x

T
i γ.j . (4)222

223

with γ = [γij ]p×q ∈ Rp×q denoting the matrix of all224

coefficients. For the Tara data, we opted to model η
[E]
ij using225

following p = 9 covariates: sea surface temperature (SST)226

(and its gradient grad SST), salinity, chlorophyll, nitrate,227

nitrogen dioxide, phosphate, silicon, and oxygen concentration.228

All variables are mean-centered prior to incorporation into229

the model. In the original Tara analysis [67], temperature230

and oxygen have been identified as key drivers of taxonomic231

compositions. The VI-MIDAS analysis will allow a refined232

picture of the these general tendencies.233

Latent space coupling of spatiotemporal features234

VI-MIDAS offers a second mechanism for including variables235

of interest through latent space modeling. We denote q taxa-236

specific shared latent variables of size k by β = [βij ]k×q ∈237

Rk×q. The size factor k is an application-specific hyper-238

parameter that controls the expressiveness of the latent space.239

Features are then coupled to the latent space in a multiplicative240

fashion.241

For the Tara data, we illustrate this mechanism by coupling242

all available spatial and temporal indicators to the latent space243

component. We first consider the r = 4 primary provinces (or244

biomes): polar, Westerlies, coastal, and Trades [43]. We denote245

the model matrix indicating the r distinct regions of the n246

samples by R = [r1, . . . , rn]T ∈ Rn×r and connect it to the247

joint latent space via the coefficient matrix α = [α]r×k ∈ Rr×k,248

leading to249

η
[P ]
ij = riαβ.j . (5)250

251

Similarly, the Tara data includes samples across b = 4252

ocean depths: surface water (SRF), deep chlorophyll maximum253

(DCM), the subsurface epipelagic mixed layer (MIX), and the254

mesopelagic zone (MES). We denote the depth indicator matrix255

of the n samples by D = [d1, . . . ,dn]T ∈ Rn×d and connect it256

to the joint latent space via the coefficient matrix δ = [δ]b×k ∈257

Rb×k, leading to258

η
[D]
ij = diδβ.j . (6)259

260

Finally, by parsing the sampling dates at the different Tara261

locations, we can associate a temporal indicator with each262

sample. Here, we group the samples into m = 4 seasons: the263

1st (Q1, January-March), 2nd (Q2, April-June), 3rd (Q3, July-264

September), and 4th (Q4, October-December) yearly quarter,265

and construct the season indicator matrix S = [s1, . . . , sn]T ∈266

Rn×s. The coefficient matrix ϑ = [ϑ]m×k ∈ Rm×k couples S to 267

the latent space β, leading to 268

η
[S]
ij = siϑβ.j . (7) 269

270

In summary, the coupling of the described features to 271

a shared latent space via the coefficient matrices α, δ,ϑ 272

allows to quantify to what extent spatiotemporal information 273

influences each taxon’s (latent) abundance after discounting the 274

contribution of the environmental component. 275

Latent modeling of taxon-taxon associations 276

It is well-established that the abundances of species in 277

an ecosystem are not only driven by environmental or 278

spatiotemporal factors but also by interactions among the 279

species themselves [41]. While discovering detailed ecological 280

interactions among taxa, such as, e.g., competition, mutualism, 281

or commensalism, is beyond the reach of coarse-grained 282

statistical models, VI-MIDAS’ latent space modeling offers 283

a principled mechanism to assess the influence of taxa co- 284

occurrences on their respective abundances. We achieve this 285

by borrowing recent ideas from market basket analysis and 286

adopt the so-called SHOPPER utility model for interaction 287

analysis [61]. In SHOPPER, Ruiz et al. [61] proposed 288

a probabilistic model based on the basket data from a 289

supermarket to learn about the latent characteristic of each 290

item and exchangeable/complementary interactions among 291

items. The approach uses item-specific latent variables to define 292

an item-item interaction component. Following their setup, 293

the “interaction”, or, in the biological context, association of 294

the jth taxa with any mth taxa is given by ρT
.jβ.m where 295

ρ = [ρ]k×q ∈ Rk×q comprises length-k latent variables for each 296

of the q taxa. The entries of VI-MIDAS’ interaction component 297

η[I] for the jth taxon in the ith sample are thus given by 298

η
[I]
ij =

0, wij = 0

1
ai−1ρ

T
.j

∑
m6=j 1wim 6=0β.m, wij 6= 0 ,

, (8)

where ai =
∑q
m=1 1wim 6=0 is the total number of taxa present 299

in the ith sample. Note that the interaction term ρTβ is not 300

symmetric. However, we can derive a symmetrized I = [Ii,j ] ∈ 301

Rq×q with each entry being computed as: 302

Ii,j = (ρ
T
·iβ·j + ρ

T
·jβ·i)/2 (9)

This allows easier downstream network analysis of potentially 303

positive (mutualistic) and negative (competitive) associations 304

among the taxa, or in our case, among the ecologically relevant 305

clades. 306

Variational inference in VI-MIDAS 307

The generality and flexibility of VI-MIDAS poses a considerable 308

challenge for fast and accurate model parameter estimation. 309

We introduce a variational inference framework that makes 310

estimation in VI-MIDAS feasible and illustrate its performance 311

and parameter sensitivities using the Tara data. For ease 312

of presentation, we summarize the key ingredients below 313

and refer to the extensive Supplementary Information and 314

the documented code base available at https://github.com/ 315

amishra-stats/vi-midas) for details. 316

Bayesian model and variational approximation 317

We begin by denoting all (latent) parameters in the VI-MIDAS 318

framework by ` = {α,ϑ,β,γ,ρ, τ ,Φ} (see Table S1 of the 319
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Supplementary Material). Given the microbial abundance data320

W, the (direct) covariates X, and the model parameters `, we321

integrate the generative model (1) into a Bayesian framework322

where the posterior distribution reads:323

p(`; W,X, t) =
p(W; `,X, t)p(`)

p(W; X, t)
, (10)324

325

where p(W; `,X, t) =
∏
i,j p(wij ; τjµij , φj) denotes the326

likelihood of W and p(`) = p(α)p(δ)p(β)p(γ)p(ρ)p(Φ)p(τ )p(ϑ)327

the prior distribution, respectively. To achieve good328

generalizabilty and interpretability of VI-MIDAS’ over-329

parameterized model, we place sparsity-inducing Laplace priors330

with scale parameter λ on each of the unconstrained latent331

variables in the set {α, δ,β,γ,ρ,ϑ}. For example, the prior332

on α reads p(α) =
∏
i,j p(αij) with p(αij) = Laplace(0, λ).333

Furthermore, we place an inverse-Cauchy prior on the334

dispersion parameter Φ, i.e., p(φj) = inverse-Cauchy(0, υ) and335

p(Φ) =
∏
j p(φj), and a Uniform(1,2) prior for the shape336

parameter τ , i.e., τj ∼ Beta(1,1) and p(τ ) =
∏
j p(τj).337

Choosing suitable hyperparameters for the priors will be338

discussed below.339

In the high-dimensional setting, computing the posterior340

distribution is challenging because of the intractable form of the341

marginal distribution p(W; X, t) and the non-conjugate priors342

on the model parameters. Markov Chain Monte Carlo (MCMC)343

sampling provides a helpful paradigm for obtaining samples344

from the posterior distribution in the Bayesian framework.345

However, since MCMC lacks computational efficiency in346

large/high-dimensional problems, we use mean-field Variational347

Inference (VI) [34, 72, 8] and approximate the posterior with348

a variational posterior distribution of the latent variable `.349

Briefly, let q(`;ν) be the variational posterior distribution with350

parameter ν. VI approximates sampling of the posterior by351

minimizing the Kullback-Leibler (KL) divergence,352

min
ν

KL(q(`;ν) || p(`; W,X, t))353
354

such that supp(q(`;ν)) ⊆ supp(p(`; W,X, t)). It can be shown355

that the above optimization problem simplifies to maximizing356

the evidence lower bound (ELBO) given by357

L(ν) = Eq(`;ν)[logP (W, `; X, t)]− Eq(`;ν)[log q(`;ν)], (11)358
359

which is a lower bound on the logarithm of the joint probability360

of the observations logP (W; X, t) [34]. Replacing the joint361

distribution P (W, `; X, t) with a product of likelihood and362

prior distribution P (W, `; X, t) = P (W; `,X, t)P (`) further363

simplifies the objective.364

Model estimation, hyperparameter tuning, and posterior365

estimates366

The non-convexity of the variational objective and the large367

number of model parameters require careful assessment of368

all aspects of model parameter estimation, hyperparameter369

tuning, and generalization capability. To estimate the370

parameters of the variational posterior distribution, we employ371

stochastic gradient descent within the automatic differentiation372

variational inference (ADVI) framework [36]. The key steps373

of ADVI are outlined in Algorithm 1 of the Supplementary374

Material. A prerequisite for model parameter estimation375

is the identification of suitable model hyperparameters. In376

VI-MIDAS, the key hyperparameters are the scale of the377

sparsity-inducing Laplace prior, the scale of the inverse-378

Cauchy prior, and the intrinsic dimensionality k of the latent379

space β, respectively. VI-MIDAS tunes these parameters via 380

random search (see Section 3.3 of the Supplementary Material 381

for details) where the out-of-sample log-likelihood posterior 382

predictive density (LLPD) is used for assessing optimality of the 383

hyperparameters [22]. Due to the non-convexity of the objective 384

and the use of stochastic optimization in VI initialization, we 385

further evaluate the suitability of hyperparameter setting across 386

fifty random initializations and select the hyperparameter 387

set leading to the best averaged LLPD (see Section 3.5 of 388

the Supplementary Material). The computational workflow is 389

implemented in Python using the probabilistic programming 390

language Stan [12] and is available in the GitHub repository 391

(https://github.com/amishra-stats/vi-midas). 392

After hyperparameter tuning, we re-estimate the final model 393

parameters on complete data. VI-MIDAS generates m = 100 394

posterior samples of each of the latent variables in the set ` 395

and estimates the model parameters ` using the mean of the 396

samples from the variational posterior distribution. The model 397

fit is numerically evaluated using the posterior predictive check 398

[60, 22] on the full data. The procedure requires generating m 399

posterior samples, denoted by the random variables Wrep = 400

[wrepij ] ∈ Rn×q+ , and then computing the p-value of the model 401

fit as p-value := p(t(Wrep) < t(W)), where t is the test 402

statistic. In practice, we use the test statistics t(Wrep) = 403

E(log p(Wrep|`)) and t(W) = E(log p(W|`)). 404

Results 405

VI-MIDAS recapitulates broad statistical patterns of the 406

observed species abundances 407

VI-MIDAS’ hyperparameter tuning revealed that the setting 408

k = 200, λ = 0.246, and ν = 0.10063 achieved the highest 409

average LLPD of 3.332 on the Tara data (see Figure S7 in 410

the Supplementary Material). For this setting, a posterior 411

predictive check on the generated samples achieved a p-value = 412

0.53. We thus fail to reject the null hypothesis that the posterior 413

samples are different from the observed W. Figure 3a and 3b 414

the observed and estimated abundance profiles (averaged over 415

m = 100 samples), respectively. Figure 3c shows the count 416

histograms of data and model (pooled across all samples and 417

species), and Figure 3d the Q-Q plot. We observe that, apart 418

from the low-abundance tail of the distribution, VI-MIDAS 419

broadly recapitulates the statistical abundances patterns across 420

all samples and species. 421

VI-MIDAS identifies depth and environmental features as main 422

drivers 423

We next assessed the contribution of each model component 424

toward explaining the species abundance patterns in the Tara 425

data. The modularity of the VI-MIDAS framework facilitates 426

an “ablation” study (see Section 3.4 of the Supplementary 427

Material) where each model component is excluded, followed 428

by a re-evaluation of the out-of-sample LLPD. Table S4 429

(see Supplementary Materials) shows the LLPDs of the full 430

model and the model after ablation of the environmental(E), 431

province(P), ocean depth(D), seasonality(S), and latent 432

interaction (I) component, respectively. 433

Firstly, the ablation study confirmed that all components 434

helped improve model generalization since every ablated model 435

has reduced out-of-sample LLPDs. While the seasonality 436

component(S) shows comparatively little influence on explaining 437

the abundance pattern in the current model, as previously 438

observed for this dataset [67], the out-of-sample LLPD is 439

reduced the most when the ocean depth(D) component is 440
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Figure 3: Model fit diagnostic: a) Heatmap showing the abundance profile logpW ` 1q of 1378
species at n “ 139 distinct geographical locations across the globe; b) Expected value of the abun-
dance using the hyperparameter corresponding to best model fit; c) Error plot representing the
absolute value of the di↵erence between the observed and expected species abundance, denoted by
| log EpW q ´ log W|; d) Convergence of the ELBO with conformable rank k “ 16 and hyperparam-
eter � “ 398.199 and � “ 0.04904; e) Q-Q plot comparing the observed and estimated abundance
profile of the species; f) Scatter plot comparing entries of the CLR transform of the observed
and estimated microbial species abundance, given by log W{T and log EpWq{T, respectively; g)
Histogram comparing the distribution of the observed and expected species abundance in terms of
log W and log EpWq.

ELBO using ADVI. Finally, we compare the observed and estimated abundance profiles of the species using

the Q-Q plot (for distribution) and the scatter plot; see Figure 8(e-f).

VI-MIDAS identifies known taxon-environment relationships

VI-MIDAS identifies five latent sub-communities The generative model (1) of VI-MIDAS

utilizes shared taxa-specific latent variables � P Rkˆq to define the spatiotemporal e↵ect and taxonomic

interaction components. One can interpret the latent variables � as k-length feature vectors providing a

hidden marginal characteristics of each of q taxa after discounting the e↵ect of geochemical/environmental

features. The analysis using the VI-MIDAS approach selects k “ 200 (after hyperparameter tuning) and

estimates � from the posterior samples. However, the marginal characteristics of each of the taxa learned

using � are unknown. By using feature vectors, we can identify related taxa that have similar characteristics,

either biologically (shared phylogenetic history) or functionally (performing similar metabolic functions).

14

a b c

d e f gObserved:  log W Estimated:  log E[W] Error: |   -  | log E[W] log W

Figure 3: Model fit diagnostic: a) Heatmap showing the abundance profile logpW ` 1q of 1378
species at n “ 139 distinct geographical locations across the globe; b) Expected value of the abun-
dance using the hyperparameter corresponding to best model fit; c) Error plot representing the
absolute value of the di↵erence between the observed and expected species abundance, denoted by
| log EpW q ´ log W|; d) Convergence of the ELBO with conformable rank k “ 16 and hyperparam-
eter � “ 398.199 and � “ 0.04904; e) Q-Q plot comparing the observed and estimated abundance
profile of the species; f) Scatter plot comparing entries of the CLR transform of the observed
and estimated microbial species abundance, given by log W{T and log EpWq{T, respectively; g)
Histogram comparing the distribution of the observed and expected species abundance in terms of
log W and log EpWq.

ELBO using ADVI. Finally, we compare the observed and estimated abundance profiles of the species using

the Q-Q plot (for distribution) and the scatter plot; see Figure 8(e-f).

VI-MIDAS identifies known taxon-environment relationships

VI-MIDAS identifies five latent sub-communities The generative model (1) of VI-MIDAS

utilizes shared taxa-specific latent variables � P Rkˆq to define the spatiotemporal e↵ect and taxonomic

interaction components. One can interpret the latent variables � as k-length feature vectors providing a

hidden marginal characteristics of each of q taxa after discounting the e↵ect of geochemical/environmental

features. The analysis using the VI-MIDAS approach selects k “ 200 (after hyperparameter tuning) and

estimates � from the posterior samples. However, the marginal characteristics of each of the taxa learned

using � are unknown. By using feature vectors, we can identify related taxa that have similar characteristics,

either biologically (shared phylogenetic history) or functionally (performing similar metabolic functions).

14

a b

c d

sa
m

pl
es

sa
m

pl
es

Observed log(W+1) Estimated log(W+1)

Es
tim

at
ed

 lo
g(

W
)

Observed log(W)Observed log(W) Estimated log(W)

Fig. 3. Comparison of observed abundances and VI-MIDAS posterior samples: a. Heatmap showing the abundance profile log(W + 1) of 1378 species

for n = 139 samples. b. Expected value of the abundance using the hyperparameter corresponding to best model fit. c. Histograms of observed and
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a b

Fig. 4. Summary of the estimated average effect sizes of the influence of a. ocean depth (VI-MIDAS model component δβ) and b. environmental

covariates (VI-MIDAS model component γ) on all ecologically relevant classes (ERCs).

ablated (LLPD=-3.3882). This reflects the well-known depth441

stratification of marine species between the sunlit ocean and442

aphotic deep ocean ecosystems. Figure S3 in the Supplementary443

material illustrates the learned depth stratification across all444

taxa, as reflected in the component δβ. The environmental445

component was identified as the second most important446

component with an LLPD reduction of -3.3554.447

Figure 4 summarizes the estimated effects δβ of the448

ocean depth features and the environmental effects γ on449

the abundance of species aggregated into ERCs, respectively.450

The ocean depth summary (Fig. 4a) reveals three distinct451

sets of occurrence patterns for two different groups of ERCs.452

One group (right most in Fig. 4a) comprises ERCs such 453

as Nitrosopumilius, Pseudomonadales, SAR 324 clade, and 454

Sphingomonadales which thrive in the Mesopelagic (MES) 455

zone. A second group includes species like Prochlorococcus, 456

SAR 116 clade, and Synechococcus, which flourish within 457

the ecosystem of the ocean’s Deep Chlorophyll Maximum 458

(DCM) and Surface Mixed Layer (SRF) zones. The third 459

group comprises marine Actinobacteria, Verrucomicrobiota, 460

and others that show no dependence on depth. A summary 461

of geochemical features highlights temperature (the top 462

row in Fig. 4b) as the primary positive factor influencing 463

the abundance of Synechococcus, Prochlorococcus, and 464
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Puniceispirillales (SAR116 clade). Oxygen concentration465

emerges as the main positive driver of abundance for466

Cytophagales, Flavobacteriales, and Roseobacter clades, while467

Nitrates, Nitrites, and Phosphate are identified as key drivers468

for the SAR324 clades, Nitrosopumilus, and Oceanospirillales469

(four right most columns in Fig. 4b). The estimated patterns470

broadly recapitulate known biology about ocean microbial471

ecosystems.472

VI-MIDAS reveals five latent microbial sub-communities473

The generative model (1) of VI-MIDAS includes the taxon-474

specific latent variables β ∈ Rk×q to integrate spatiotemporal475

features and taxon-taxon associations. For the Tara data,476

VI-MIDAS’ hyperparameter tuning scheme identified k =477

200 as best latent dimension. After model estimation, the478

resulting k−dimensional latent vectors can be thought of as479

representing the hidden marginal characteristics of each of480

the q taxa after discounting spatiotemporal and species-species481

association effects, and adjusted for environmental covariates.482

The latent space representation thus provides an excellent483

opportunity to partition the different taxa into coherent sub-484

groups (or modules) that likely reflect functionality or niche485

occupation in the global ocean, independent of environmental,486

taxonomic or phylogenetic relatedness.487

To quantify similarity between microbial taxa in the latent488

space, we first computed cosine distances of all pairs of the489

q latent vectors. This particular choice of distance allows490

us to bypass the non-identifiability issue of the parameter491

β. We used the resulting distance matrix to construct a k-492

nearest neighbors graph (knn = 10). Figure 5 shows the493

latent space embedding using a force-directed layout of the494

k-nn graph. The latent space representation reveals several495

distinct microbial sub-communities, dominated by a few ERCs,496

including one sub-community dominated by Prochlorococcus497

and SAR11 clades and one dominated by Nitrosopumilus.498

We next performed Clauset-Newman-Moore greedy modularity499

analysis of the nearest neighbor graph [15] and identified five500

distinct modules in the latent space (see M1-M5 in Fig. 5 with501

top five ERCs highlighted and color-coded). Module 1 (M1)502

comprises Flaviobacteriales, SAR86 clades, and the Chloroplast503

class. SAR11 clade, SAR86 clade, and Flavobacteriales are504

heterotrophs with functional similarity in oxidizing carbon in505

the ocean [3]. Both SAR86 clade and SAR11 clade follow506

a similar seasonal pattern (in the Bermuda Atlantic Time507

Series oceanographic stations) and coexist in oligotrophic508

regions with less nutrient supply [73]. Module 2 (M2) includes509

Nitrosopumilus, Marinimicrobia, and SAR324 clades. Existing510

literature supports that SAR11 clade (a subgroup of a species),511

Marinimicrobia, and MGII Archaea are more abundant in deep512

sea water [76]. Module 3 (M3) comprises Prochlorococcus,513

SAR11, Marine Actinobacteria, and SAR86 clades, among514

others, all comprising dominant taxa of the sunlit ocean. The515

two smallest modules 4 and 5 (M4 and M5, respectively) are516

dominated by Alteromonadales and are separating M2 from M1517

and M3. Interestingly, Module 4 also comprises Synechococcus518

species. This module thus hints at the known metabolic519

dependency of certain Alteromonadales taxa on Synechococcus520

(a photoautotroph) [80]. Although the latent representation521

does separate the majority of ERCs into distinct subgroups, we522

nonetheless observe that taxa of certain ERCs are spread out523

over the latent space, indicating different niche specialization.524

For instance, the SAR11 clade, one of the most abundant525

marine microbial taxa, is present in three different modules.526

Likewise, taxa in the SAR86 clade are present in both modules527

M1 and M3. For ease of identification, Table S3 summarizes 528

each module in terms of the composition of the ERCs and their 529

abundance. 530

Global associations between biogeography and latent microbial 531

sub-communities 532

VI-MIDAS’ integrative model also enables a quantitative 533

description of the identified microbial sub-communities in 534

terms of the direct and indirect coupling covariates. Figure 6 535

illustrates how the compositions of ERCs in each of the five 536

modules are related to the most important environmental and 537

spatial covariates. 538

Using the mean of the posterior sample from the VI-MIDAS 539

model, we used the estimated γ as the effect sizes of the 540

environmental features X, δβ as effect sizes of depth, and αβ as 541

the effect sizes of the r provinces, respectively Figure 6 reports 542

the average effect sizes of association to the four modules. 543

The module M1 represents taxa coexisting in the SRF 544

and DCM zone of the ocean. The abundance of taxa 545

in the module is associated with a higher concentration 546

of oxygen, PO4, and NO2NO3 and lower temperature 547

and salinity. In addition to representing the taxa SAR11 548

clade, SAR86 clade, Chloroplast, and Flavobacteriales, the 549

module also includes Synechococcus, Oceanospirillales, and 550

Poseidoniales. Synechococcus is a unicellular prokaryotic 551

autotrophic picoplankton that participates in the marine 552

ecosystem as a primary producer via photosynthesis. Similarly, 553

Chloroplast sequences are a signature of eukaryotic phytoplankton, 554

though their host eukaryote is not identified in the TARA 555

Oceans dataset. The presence of both taxa in M1 thus 556

is consistent with environments that have higher oxygen 557

concentrations due to photosynthesis and gas exchange with 558

the atmosphere. 559

Module M2 mainly represents the species coexisting in the 560

MES zone (200 m to 1000 m) of the ocean (see Figure 2 (e)). 561

M2 almost exclusively represents the ERCs Nitrosopumilus 562

and SAR324 clade. The abundance of the species in the 563

group is associated with a lower concentration of oxygen and 564

temperature, and higher concentrations of nitrates, PO4, and 565

NO2NO3. In the oxygen-depleted environment, Nitrosopumilus 566

survives by oxidizing ammonia to nitrite, confirming the 567

observed association pattern [6]. Marinomicrobia (SAR406 568

clade) in groups M1 and M2 allow us to distinguish subgroups 569

of species that can survive in both deep and shallow water [76]. 570

Module M3 comprises the highest mean abundance of 571

all taxa is highest, primarily representing the taxa SAR11 572

clade, SAR86 clade, and Prochlorococcus (cyanobacteria). 573

The abundance of the species in the group is positively 574

associated with depth indicators {DCM, MIX, SRF} and 575

negatively associated with MES. Among the geochemical 576

factors, temperature, salinity, and oxygen concentration are 577

positively associated, whereas the concentration of nitrates, 578

PO4, and NO2NO3 is negatively associated with the taxa. 579

Module M4 primarily represents Alteromonadales (Proteobacteria)580

and some Pseudomonadales (Proteobacteria) and Synechococcus. 581

Their abundance is associated with factors such as lower 582

salinity and higher oxygen concentration. Module M5 also 583

primarily represents Alteromonadales. Based on its association 584

with the ocean depth indicators and geochemical features, 585

we conclude that these taxa can survive in a deep-sea 586

environment characterized by lower temperatures and oxygen 587

concentrations. Associative patterns of Alteromonadales in M4 588

and M5 differ significantly, suggesting distinct ERC sub-groups 589

that populate different niches. 590
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Fig. 5. Low-dimensional embedding of the latent representation β using a k-nearest-neighbor (knn = 10) graph of cosine distances. Modularity analysis

reveals five distinct graph modules. We highlight 825 out of a total of 1378 taxa, comprising the top five ERCs (color-coded) in each of the five modules

(see main text for further information).

Positive and Negative interactions among ERCs591

VI-MIDAS includes a mechanism for learning microbial592

interactions adjusted for direct (here, environmental) covariates.593

Contrary to prominent (partial) correlation-based methods594

[21, 38], VI-MIDAS follows the SHOPPER utility model [61]595

and quantifies pairwise interactions Iij between any two taxa i596

and j in terms of the latent variables ρ and β (see Eq. 9).597

To get a high-level view of the estimated interactions,598

we aggregated the adjacency matrices of significant positive599

and negative interactions among taxa by ERCs (for a more600

detailed view of the most significant taxon-level interactions,601

we refer to Section 4 of the Supplementary Materials). Figure 7602

illustrates the aggregated positive (lower triangle) and negative603

(upper triangle) interactions among ERCs. The diagonal entry604

highlights the maximum of the two types of interactions to605

avoid confusion (see also Section 4 of the Supplementary606

Materials for the matrix of ratios between positive and607

negative interactions). We observe that SAR11 clade and608

Rhodospirillales form positive interactions with almost all609

other ERCs. SAR11 clade and Rhodospirillales belong to the610

Alphaproteobacteria phylum that play a critical role in carbon611

and nitrogen fixation [40, 51], potentially explaining the large612

number of interactions. However, members of the SAR11613

clade also form many negative interactions with other ERCs.614

Alteromonadales exhibits primarily negative interactions with 615

other ERCs (the strongest one with SAR11). 616

Discussion 617

In recent years, multimodal and multi-omics microbiome survey 618

data have emerged for a wide range of microbial habitats [68, 619

67, 47, 27, 65, 1]. These data collections hold the promise to 620

describe and understand the functional interplay between the 621

underlying microbial ecology and the host or the environment 622

the microbiota resides in. Learning interactions among species 623

and habitat characteristics from observational data remains, 624

however, a challenging problem. To this end, we have proposed 625

VI-MIDAS (Variational Inference for MIcrobiome survey DAta 626

analysiS), a flexible and efficient probabilistic framework for 627

microbiome survey data analysis. 628

VI-MIDAS uses the negative binomial distributional 629

framework in combination with a principled centering 630

transformation to model overdispersed amplicon abundance 631

data and comprises three mechanisms to integrate concomitant 632

covariate data into the generative model: (i) a direct coupling 633

mechanism, (ii) an indirect latent coupling mechanism, and 634

(iii) a latent interaction term. These terms are linearly linked 635

to the probability distribution’s mean parameter. Because of 636

the intractable form of the marginal distribution of data, we 637
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apply mean-field variational inference framework to learn an638

approximate posterior distribution of the parameters.639

VI-MIDAS is available in Python and uses the probabilistic640

programming language Stan [12]. The implementation641

is available on GitHub (https://github.com/amishra-stats/642

vi-midas). The repository also includes Python scripts and643

Jupyter notebooks for VI-MIDAS’ three-stage parameter644

estimation framework: hyperparameter tuning, component645

contribution analysis, and sensitivity analysis.646

To illustrate the VI-MIDAS modeling and analysis workflow,647

we have used data from the global Tara expedition [67],648

connecting the available spatiotemporal and environmental 649

characteristics with generative modeling of the amplicon count 650

data. To ease interpretability, we also grouped the amplicon- 651

derived taxa into expert-annotated ecologically relevant classes 652

(ERCs) which may be of independent interest for the analysis 653

of other marine sequencing data. Focusing on the q = 1378 654

most abundant taxa representing 23 ERCS, we integrated 655

the geochemical data using the direct coupling mechanism, 656

effectively removing influence of common environmental factors 657

such as temperature, salinity, and elemental compositions on 658

microbial abundances. The remaining spatiotemporal features, 659
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Fig. 6. Global associations between biogeography and covariates: Each row presents the average effect size of the association between the microbial

abundances of taxa in a module (M1-M5) to the geochemical features, ocean depth and province/location (from left to right). A module (leftmost) is

shown as the composition (in %) of the ERCs. Each module comprises different number of taxa {524, 400, 307, 112, 35}, respectively. Modules M1-M3

cover the majority of taxa, and M4-M5 two smaller Alteromonadales-dominated sub-communities.
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Fig. 7. Summary of taxonomic interactions: The adjacency matrices of

significant positive and negative interactions among taxa are grouped

and aggregated by their ERCs type. Interactions summary by the ERCs

types. Lower triangle reports positive interactions, the upper triangle

reports negative interactions. Diagonal entries show the maximum of

either (positive or negative) self-interaction.

including season, ocean province, and depth, as well as660

species-species associations are integrated through the latent661

coupling and interaction mechanism, thus delivering a latent662

species representation, adjusted for the influence of all available663

covariates. The learned VI-MIDAS’ model thus not only664

provides a convincing generative count model for the Tara665

data but also allows integrated statistical analysis of covariate666

feature effects and taxa abundances.667

Modularity analysis of the similarity network of VI-668

MIDAS’ latent species representation revealed that the669

majority of taxa (¿1200) can be categorized into three global670

microbial communities (M1-M3 in Figure 5), including a671

low-temperature/high-oxygen community (M1), dominated by672

Flavobacteriales and the Chloroplast ERC, a mesopelagic673

community (M2) dominated by SAR11, SAR324, and674

Nitrosopumilus, and a high-temperature community (M3)675

dominated by SAR11 and Prochlorococcus, the later of676

which is the most abundant clade in the oligotrophic677

subtropical and tropical oceans (see e.g., [66] and references678

therein). Furthermore, our analysis suggests two distinct679

Alteromonadales-dominated communities that show different680

depth and province dependencies (M4-M5) (see Figure 6681

for further global associations overview). It is noteworthy682

that Alteromonadales also play a pivotal role in the latent683

interaction analysis, showing widespread negative associations684

with other ERCs. We posit that the potentially distinct role of685

Alteromonadales in the global ocean might be of interest for686

follow-up analysis on other data sets, including recent data on687

the global mesopelagic zone [59].688

While our ablation study showed evidence that all VI-689

MIDAS components for the Tara data contribute to the690

quality of the generative model, the model is just one of691

several available alternatives. For covariate inclusion, we692

deliberately chose to directly adjust the microbial abundances693

for geochemical covariates to better carve out “hidden”694

relationships among the species. Nonetheless, the VI-MIDAS695

framework naturally enables other model constructions. For696

instance, one could have removed the direct coupling697

component and link all concomitant features to the latent 698

space representation, or alternatively, remove the latent 699

representation altogether and directly adjust for all covariates. 700

We will explore such modifications in future studies. Moreover, 701

while we chose the Negative Binomial model as base 702

distribution for the most abundant taxa, the variational 703

formulation lends itself to other statistical models for microbial 704

count data, including zero-inflated or hurdle- type extensions of 705

the Negative Binomial model [19] or the Dirichlet-Multinomial 706

model [30, 53]. Finally, in its current state, VI-MIDAS is built 707

on Stan [12] with tailored Python code for optimization, model 708

selection, and analysis. The advent of extensive statistical 709

packages in modern deep learning tools, such as Tensorflow 710

distributions [17] or PyTorch [55], may enable efficient porting 711

of VI-MIDAS into these general-purpose ecosystems. Paired 712

with variational inference tools [35], would potentially allow for 713

faster model adaptation and alternative optimization routines. 714

In summary, VI-MIDAS provides a novel probabilistic 715

framework for learning environment- or host-specific feature 716

associations, latent species characterization, and species- 717

species interactions from microbiome survey data. With 718

minimal adjustment, the framework is readily available for 719

the analysis of other large-scale survey data, including gut 720

microbiome surveys [33, 45, 20], thus representing a potentially 721

valuable general-purpose tool for the integrated analysis of 722

modern microbiome data collections. 723

Data availability 724

We have used microbial species abundance data from the Tara 725

Ocean Expedition, available at (http://ocean-microbiome.embl. 726

de/companion.html). 727

Code availability 728

The source code required to reproduce the results in this article 729

is freely available at (https://github.com/amishra-stats/ 730

vi-midas). 731
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et al. Open science resources for the discovery and analysis 1000

of tara oceans data. Scientific data, 2(1):1–16, 2015. 1001

57. Stefanie Peschel, Christian L Müller, Erika von Mutius, 1002

Anne-Laure Boulesteix, and Martin Depner. NetCoMi: 1003

network construction and comparison for microbiome data 1004

in R. Briefings in Bioinformatics, 2020. 1005

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.585474doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585474
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 Aditya Mishra et al.

58. Christian Quast, Elmar Pruesse, Pelin Yilmaz, Jan 1006

Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, and 1007
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