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ABSTRACT 24 

 25 

Skin serves as both barrier and interface between body and environment. Skin microbes are 26 

intermediaries evolved to respond, transduce, or act in response to changing environmental or 27 

physiological conditions. Here, we quantify genome-wide changes in gene expression levels for 28 

one abundant skin commensal, Staphylococcus epidermidis, in response to an internal 29 

physiological signal, glucose levels, and an external environmental signal, temperature. We find 30 

85 of 2354 genes change up to ~34-fold in response to medically relevant changes in glucose 31 

concentration (0 mM to 17 mM; adj P value ≤ 0.05). We observed carbon catabolite repression in 32 

response to a range of glucose spikes, as well as upregulation of genes involved in glucose 33 

utilization in response to persistent glucose. We observed 366 differentially expressed genes in 34 

response to a physiologically relevant change in temperature (37°C to 45°C; adj P value ≤ 0.05) 35 

and an S. epidermidis heat-shock response that mostly resembles the heat-shock response of related 36 

staphylococcal species. DNA motif analysis also revealed CtsR and CIRCE operator sequences 37 

arranged in tandem upstream of dnaK and groESL operons. We further identified 38 glucose-38 

responsive genes as candidate ON or OFF switches for use in controlling synthetic genetic systems. 39 

Such systems might be used to instrument the in-situ skin microbiome or help control microbes 40 

bioengineered to serve as embedded diagnostics, monitoring, or treatment platforms. 41 

 42 
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INTRODUCTION 48 

  49 

Skin serves as both a barrier to the external environment and home to diverse microbial 50 

communities. Skin bacteria play a significant role in promoting and maintaining human health, 51 

contributing to skin barrier homeostasis (Zheng et al., 2022), influencing our immune system 52 

(Leech et al., 2019), and limiting pathogen invasion (Nakatsuji et al., 2017; Williams et al., 2019). 53 

One abundant skin commensal is Staphylococcus epidermidis, a gram-positive coagulase-negative 54 

bacterium. 55 

  56 

S. epidermidis has emerged as a promising microbial chassis to enable development of engineered 57 

microbes with enhanced functionality. For example, Chen et al. engineered an S. epidermidis strain 58 

to produce tumor-associated antigens unique to melanoma, an aggressive type of metastatic skin 59 

cancer. When mice were colonized with the engineered S. epidermidis strain, a robust antitumor T 60 

cell response against localized and metastatic melanoma was generated (Chen et al., 2023). As a 61 

second example, Azitra, Inc. indicates they are engineering S. epidermidis strains to deliver 62 

therapeutic proteins to treat skin diseases including Netherton Syndrome and to improve skin 63 

appearance (Azitra, 2023).  64 

  65 

Unfortunately, the tools and knowledge needed to study and reprogram S. epidermidis are quite 66 

limited compared to those available for established model organisms such as Escherichia coli or 67 

Saccharomyces cerevisiae. Introduction of new genes and predictable control of heterologous gene 68 

expression remain considerable challenges in bioengineering S. epidermidis. The nascent S. 69 

epidermidis knowledge base and toolkit contains methods for transformation (Monk et al., 2012; 70 

Costa et al., 2017), methods for conjugation (Brophy et al., 2018), and a small number of 71 
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functionally validated promoters for control of gene expression: sarA-P1 (Bayer, Heinrichs and 72 

Cheung, 1996), Ppen (Meredith, Swoboda and Walker, 2008), IPTG-inducible Pspank (Rokop, 73 

Auchtung and Grossman, 2004), and xylose-inducible PxylR (Franke et al., 2007). While successful 74 

attempts have been made to identify and characterize constitutive promoters in related 75 

staphylococcal species including Staphylococcus aureus (Liu et al., 2022), native transcription 76 

control elements that can serve as starting points for endogenous and dynamic control of 77 

bioengineered circuits have not yet been well characterized in S. epidermidis. 78 

  79 

One application of bioengineered skin microbes could be to detect or respond to blood glucose 80 

levels, which could help in the diagnosis or treatment of diabetes. Commensal skin microbes such 81 

as S. epidermidis reside in subepidermal compartments of the skin with proximity to blood vessels, 82 

such as the dermis and subcutaneous adipose tissue (Nakatsuji et al., 2013; Bay et al., 2020). Such 83 

proximity could potentially facilitate the development of an engineered S. epidermidis strain that 84 

can sense and respond to elevated blood glucose levels (i.e., > 7mM) as a therapeutic strategy for 85 

diabetes, a chronic endocrine disorder characterized by elevated blood glucose levels and poor 86 

glycemic control (World Health Organization, 2023). To make such work practical, one would 87 

need to implement within S. epidermidis a transcription-based biosensor responsive to elevated 88 

blood sugar levels that results in well-regulated and rapid production of single-chain insulin. Such 89 

a use case supports the need for better characterization of glucose-inducible S. epidermidis 90 

regulatory elements.  91 

  92 

Another class of applications for bioengineered skin microbes could be in response to 93 

environmental or physiological (e.g., exercise-induced) changes in temperature. With globally 94 
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increasing intensity, frequency, and duration of heat waves (Perkins-Kirkpatrick and Lewis, 2020), 95 

there may be value in better understanding how commensal skin bacteria, including S. epidermidis, 96 

adapt and respond to increases in temperature. While the heat-shock response has been well 97 

characterized in related staphylococcal species and other prokaryotes, only three efforts have 98 

investigated the S. epidermidis heat-shock response by using semi-quantitative protein assays 99 

(Ooronfleh, Streips, and Wilkinson, 1990), focusing on only a small number of genes 100 

(Vandecasteele et al., 2001) or using comparative genomics (Chastanet, Fert, and Msadek, 2003). 101 

We thus chose to also quantitatively explore the genome-wide transcription response of S. 102 

epidermidis to heat shock, both as a reference case for glucose response and, for its own merits. 103 

 104 

We investigated the genome-wide transcription response in the non-biofilm forming, 105 

nonpathogenic S. epidermidis strain (ATCC 12228) to heat shock and medically relevant glucose 106 

concentrations. We performed RNA sequencing on samples exposed to a sudden temperature 107 

increase and a glucose challenge to investigate the ability of the organism to adapt and respond to 108 

changing environmental conditions. We used differential expression analysis of samples taken 109 

during the mid-exponential growth phase to identify candidate genes that are either upregulated or 110 

downregulated in response to each condition. We further curated a subset of glucose-responsive 111 

genes that might serve as templates for ON or OFF switches. 112 

 113 

 114 

 115 

  116 
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MATERIALS AND METHODS 117 

 118 

Bacterial Strain and Culture 119 

We started each S. epidermidis ATCC 12228 culture from a fresh colony plate (< 7 days old) using 120 

a single colony. We used Tryptic Soy Broth (TSB) without Dextrose (BD 286220) as the culture 121 

medium for all experiments.  122 

  123 

Heat-Shock Experiments 124 

We grew overnight broth cultures in fresh medium supplemented with 0.2% w/v glucose for 18 h 125 

at 37°C with shaking. Cultures were then diluted 32-fold in fresh medium supplemented with 0.2% 126 

w/v glucose and grown at 37°C with shaking. When cultures were in mid-exponential phase (OD600 127 

~ 0.5), we transferred them to pre-warmed Erlenmeyer flasks followed by incubation at 45°C for 128 

10 minutes. We then harvested cultures for RNA sequencing (below). Control cultures in mid-129 

exponential phase were not exposed to heat shock but instead were immediately harvested for 130 

RNA sequencing. We performed our heat-shock experiments in triplicate to generate three 131 

biological replicates. 132 

  133 

Glucose Challenge Experiments 134 

We grew overnight broth cultures in fresh medium supplemented with 13.9 mM glycerol for 25 h 135 

at 37°C with shaking. We then diluted cultures 50-fold in fresh medium supplemented with 13.9 136 

mM glycerol and continued growth at 37°C with shaking. When cultures were in mid-exponential 137 

phase (OD600 ~ 0.5), we added glucose and measured the glucose concentration (2 mM, 5 mM, 10 138 
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mM, 17 mM, or 50 mM) of each culture using the Contour NEXT ONE Blood Glucose Monitoring 139 

System. We added an equivalent volume of fresh medium lacking glucose to the control cultures. 140 

We grew cultures at 37°C with shaking for an additional 20 minutes and then harvested for RNA 141 

sequencing (below). We performed our glucose challenge experiments in triplicate to generate 142 

three biological replicates. 143 

  144 

Step-down Experiments 145 

We grew overnight broth cultures in fresh medium supplemented with 13.9 mM glycerol for 25 h 146 

at 37°C with shaking. We diluted cultures 50-fold in fresh medium supplemented with 13.9 mM 147 

glycerol and continued growth at 37°C with shaking. When cultures were in mid-exponential phase 148 

(OD600 ~ 0.5), we added glucose and measured the glucose concentration (10 mM) of each culture 149 

using the Contour NEXT ONE Blood Glucose Monitoring System. Cultures were then grown at 150 

37°C with shaking for 20 minutes and then pelleted at 5,000 xg for 10 minutes at 24°C. We then 151 

resuspended the pellets in fresh medium supplemented with 2 mM glucose. We grew cultures at 152 

37°C with shaking for an additional 20 minutes and harvested for RNA sequencing (below). We 153 

used the 10 mM glucose challenge condition (above) as the control condition for our step-down 154 

experiments. We performed our step-down experiments in triplicate to generate three biological 155 

replicates. 156 

  157 

Batch Culture Experiments  158 

We grew overnight broth cultures in fresh medium supplemented with glucose (0.2% w/v or 1% 159 

w/v) for 18 h at 37°C with shaking. We measured the glucose concentration of each culture using 160 
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the Contour NEXT ONE Blood Glucose Monitoring System. We diluted cultures 32-fold in fresh 161 

medium supplemented with glucose (0.2% w/v or 1% w/v) and grew at 37°C with shaking. We 162 

harvested mid-exponential phase cultures (OD600 ~ 0.5) for RNA sequencing (below). We 163 

performed our batch culture experiments in duplicate to generate two biological replicates. 164 

  165 

RNA Stabilization and Extraction 166 

Immediately after each experiment, we pelleted samples by centrifugation at 5,000 x g for 10 167 

minutes at 4°C and then resuspended the pellets in RNAlater (Invitrogen AM7021); samples were 168 

incubated in RNAlater at 4°C for 24 h. After incubation, we pelleted samples by centrifugation at 169 

5,000 x g for 10 minutes at 4°C and resuspended the pellets in 1µl of 100X TE Buffer, 50 μl of 170 

lysostaphin (1 mg ml-1), and 50 μl of mutanolysin (5KU ml-1). We performed lysis for 25 minutes 171 

at 37°C with vortexing at 5-minute intervals. We then treated samples with 25 µl of Proteinase K 172 

(Qiagen 19131) and incubated for an additional 30 minutes at 37°C. We added 700 μl of Buffer 173 

RLT (Qiagen 79216) to each sample and vortexed vigorously for 5 to 10 seconds. We transferred 174 

the resulting suspension to a 2 ml Safe-Lock tube (Eppendorf 0030123620) and mechanically 175 

disrupted the samples using a TissueLyser LT (Qiagen 85600) for 5 minutes at maximum speed 176 

with intervals of 30 seconds of bead beating and 30 seconds of resting on ice. After bead beating, 177 

we centrifuged the samples in an Eppendorf MiniSpin (022620100) for 15 seconds at maximum 178 

speed (12,100 x g) and then transferred the supernatant to a new tube. We mixed the supernatant 179 

well with an equal volume of 100% ethanol by pipetting. We applied this mixture to a RNeasy 180 

Mini spin column and extracted RNA according to the manufacturer’s instructions using a RNeasy 181 

Mini Kit (Qiagen 74106). We performed on-column DNase digestion using the RNase-Free DNase 182 

Set (Qiagen 79254). We eluted samples in RNase-free water according to the manufacturer’s 183 
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instructions and stored recovered RNA at -80°C until library preparation. We used RNaseZap 184 

RNase Decontamination Solution (Invitrogen AM9780) on all surfaces to prevent RNA 185 

degradation. RNA quality was analyzed using an Agilent Bioanalyzer and quantified by a Qubit 186 

fluorometer according to manufacturer’s instructions. Our RNA integrity number (RIN) values 187 

ranged from 8.0 to 10. 188 

  189 

Library Preparation and Sequencing 190 

We used Novogene Co., LTD (Beijing, China) to carry out our rRNA depletion, cDNA library 191 

preparation, and sequencing as part of their Prokaryotic RNA Sequencing service. cDNA libraries 192 

were sequenced on an Illumina NovaSeq 6000 Sequencing System with a 150 bp paired-end run 193 

configuration to a depth of ~30 million reads. 194 

 195 

Raw Sequence Data Quality Control & Processing 196 

We processed raw reads (FASTQ files) using FastQC v0.12.1 (Andrews, 2010) with default 197 

settings to assess initial read quality and then examined the results using MultiQC v1.14 (Ewels et 198 

al., 2016). We processed FASTQ files using Trim Galore v0.6.10 (Krueger, 2012) with default 199 

settings to trim low-quality (Phred score < 20) ends from reads and to trim auto-detected adapters. 200 

Reads that became shorter than 20 bp because of either quality or adapter trimming were discarded. 201 

 202 

  203 
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Reference Genome for Mapping 204 

We used the Staphylococcus epidermidis ATCC 12228 genome assembly ASM987345v1 205 

(GenBank accession GCA_009873455.1, RefSeq accession GCF_009873455.1) from NCBI in the 206 

FASTA format along with information on genes and other features in the GFF format. The genome 207 

consists of a chromosome (GenBank accession CP043845.1, RefSeq accession NZ_CP043845.1) 208 

of size 2,504,425 bp and a plasmid (GenBank accession CP043846.1, RefSeq accession 209 

NZ_CP043846.1) of size 21,978 bp. We converted GFF features to GTF format by using the 210 

gffread program in the Cufflinks v2.2.1 package (Trapnell et al., 2010) and to BED format by 211 

using the AGAT v1.0.0 toolkit (Dainat, 2019) for use in downstream analysis. 212 

 213 

Mapping and Transcript Quantification  214 

We used Bowtie2 v2.5.1 (Langmead and Salzberg, 2012) to build a Bowtie index from the S. 215 

epidermidis ATCC 12228 genome assembly ASM987345v1 before mapping the RNA-Seq reads 216 

in the paired-end FASTQ files to this reference genome using default settings. The resulting BAM 217 

files were coordinate-sorted and indexed; alignment summary statistics were reported using 218 

SAMtools v1.17 (Danecek et al., 2021). We ran RSeQC v5.0.1 (Wang, Wang, and Li, 2012) on 219 

the sorted BAM files to determine the strandedness of the reads for the strand-specific RNA-seq 220 

data. We used featureCounts in the Subread v2.0.6 package (Liao, Smyth, and Shi, 2013) to count 221 

mapped reads at both the transcript and gene levels from sorted BAM files for genomic features 222 

such as CDSs, based on previously determined read strandedness. We merged counts from each 223 

sample at both the transcript and gene levels. We used the resulting merged count matrices in 224 

subsequent differential expression analysis. 225 
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 226 

BLASTP Homology Search 227 

The KEGG Pathway Database (Kanehisa and Goto, 2000) Genome Entry T00110 (Org code: sep) 228 

lists genome assembly ASM764v1 (GenBank accession GCA_000007645.1, RefSeq accession 229 

GCF_000007645.1) as the reference genome for S. epidermidis ATCC 12228. Genome assembly 230 

ASM764v1 uses alternate gene designations compared to the genome assembly ASM987345v1 231 

used in this study. To leverage KEGG pathway gene sets for Gene Set Enrichment Analysis 232 

(GSEA), we conducted a BLASTP homology search between the two genome assemblies using 233 

NCBI BLAST+ executable v2.14.0+ (Camacho et al., 2009) to find genes in genome assembly 234 

ASM987345v1 with the highest degree of homology to genes in genome assembly ASM764v1 235 

thereby enabling cross-mapping of the genes represented in KEGG Pathway Gene Sets. 236 

 237 

Differential Expression Analysis 238 

We used principal component analysis (PCA) to first visualize the expression data; we applied a 239 

regularized log (rlog) transformation to all expression data. We then visualized sample-to-sample 240 

distances via PCA and found that one replicate from the step-down experimental condition was 241 

over 4-fold off on the second principal component against all other experimental samples, and over 242 

10-fold off on the first principal component against the other two step-down samples (Figure S1). 243 

We thus excluded the data from this one step-down replicate in all further analyses. We then 244 

analyzed data from non-transformed count matrices using the DESeq2 R package (Love, Huber, 245 

and Anders, 2014), which can evaluate differential expression on as few as two biological 246 

replicates. We defined differentially expressed genes (DEGs) of significance using the following 247 
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criteria: |log2 fold change| (i.e., log2FC) ≥ 1.5 and adjusted P value ≤ 0.05. We applied the apeglm 248 

(log fold change shrinkage) method (Zhu, Ibrahim, and Love, 2018) to the raw counts to stabilize 249 

variability in log fold change calculations. We then constructed volcano plots using the 250 

EnhancedVolcano R package (Blighe, Rana, and Lewis 2023) and further customized them using 251 

ggplot2 (Wickham, 2016). We designed Circle plots using shinyCircos (Yu, Ouyang, and Yao, 252 

2017). We also constructed the two scatter plots, visualizing the relationship between the heat-253 

shock and G17 experimental conditions and between the step-down and G2 experimental 254 

conditions, using ggplot2. 255 

 256 

Pathway and Gene Identification 257 

We explored gene functions using the KEGG and GO pathways database and manually curated a 258 

gene annotation table, drawing from the KEGG (organism code sep), BioCyc (GCF_000007645), 259 

and UniProt databases. After determining gene-to-pathway annotations, we used the GSEA tool 260 

(Subramanian et al., 2005; Mootha et al., 2003) and the fgsea R package (Korotkevich et al., 2021) 261 

to conduct gene set enrichment analysis. We used Fisher's method to combine results that 262 

overlapped across GSEA and fgsea, creating a single P value that reflected the two independent 263 

adjusted P values. We reduced GO term redundancy using REVIGO (Supek et al., 2011), with 264 

default parameters and a “small (0.5)” resulting list. Once KEGG and GO enriched pathways were 265 

identified, we performed independent research to cross-validate the results and combined 266 

pathways that were identified in both KEGG and GO databases. 267 

 268 

 269 
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 270 

Switch Identification 271 

We identified switches using the DRomics package, a tool used for concentration-response (or 272 

dose-response) characterization from -omics data (Marie Laure Delignette-Muller et al., 2023; 273 

Floriane Larras et al., 2018). We modeled all genes with an absolute log fold change ≥  2. We 274 

performed a rlog transform on gene counts and then used DRomics to identify the appropriate best-275 

fit monophasic or biphasic model; genes that failed to model due to a slope near zero were deemed 276 

dose-insensitive.  277 

 278 

Batch Culture Bioinformatics Analysis 279 

Novogene (Beijing, China) completed bioinformatics analyses for our batch culture experimental 280 

condition as part of their Prokaryotic RNA Sequencing standard analysis. Raw Sequence Data 281 

Quality Control: Novogene processed raw reads (FASTQ files) using Fastp (Chen et al., 2018). 282 

Clean data for downstream analysis were obtained by removal of low-quality reads, adapters, and 283 

poly-N sequences. Reference Genome and Mapping: Novogene obtained the reference genome 284 

(GenBank accession GCA_009873455.1, RefSeq accession GCF_009873455.1) and gene model 285 

annotation files from NCBI and aligned clean reads to the reference genome using Bowtie2 286 

(Langmead and Salzberg, 2012). Transcript Quantification: Novogene used FeatureCounts 287 

(Liao, Smyth, and Shi, 2013) to count reads mapped to each gene and then calculated the fragments 288 

per kilobase of transcript per million fragments mapped (FPKM) of each gene based on gene length 289 

and read counts mapped to the gene (Trapnell et al., 2010). Differential Expression Analysis: 290 

Novogene performed differential expression analysis using the DeSeq2 R package (Love, Huber, 291 
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and Anders, 2014) and adjusted P values using the Benjamini and Hochberg method for controlling 292 

the false discovery rate (Benjamini and Hochberg, 1995). Differentially expressed genes (DEGs) 293 

of significance were defined using the following criteria:  |log2 fold change| (i.e., log2FC) ≥ 1.5 294 

and adjusted P value < 0.05.  295 

 296 

Data Deposition and Availability 297 

The original contributions presented in the study are publicly available. The data discussed in this 298 

publication have been deposited in NCBI’s Gene Expression Omnibus (Benjamin et al., 2024) and 299 

are accessible through the GEO Series accession number GSE261664.  300 

  301 
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RESULTS 302 

  303 

The heat-shock response (HSR), a transcription program observed in several eukaryotes and 304 

prokaryotes, is a crucial strategy whereby cells adapt to a sudden temperature increase or other 305 

environmental stresses (Cao et al., 1999). The HSR helps cells maintain protein homeostasis by 306 

protection from heat-induced protein denaturation, misfolding, and aggregation. HSR has been 307 

studied in detail in Escherichia coli, Streptomyces spp., and Bacillus subtilis (Lemaux et al., 1978; 308 

Guglielmi et al., 1991; Schumann, 2003). While the HSR is highly conserved across prokaryotes, 309 

the regulatory mechanisms that govern the expression of heat-shock genes exhibit great diversity 310 

among bacterial species (Roncarati and Scarlato, 2017; Schumann, 2016). Prior studies of the HSR 311 

in S. aureus (Chastanet, Fert, and Msadek, 2003; Anderson et al., 2006; Fleury et al., 2009) and 312 

the gram-positive model organism B. subtilis provide a context from which to increase our 313 

understanding of the HSR of S. epidermidis and other low-GC content gram-positive bacteria. 314 

  315 

Differential Gene Expression in S. epidermidis Under Heat Stress   316 

  317 

To identify differentially expressed genes in heat-shocked S. epidermidis ATCC 12228 cells, we 318 

shifted mid-exponential phase cells from physiological growth (37°C) to heat-shock conditions 319 

(45°C) for 10 minutes (Figure 1A). We used RNA sequencing to analyze gene expression profiles 320 

and then compared the expression profiles of heat-shocked cells to those of unstressed cells. 321 

Differentially-expressed genes (DEGs) of significance were defined using the following criteria: 322 

|log2 fold change| (i.e., log2FC) ≥ 1.5 and adjusted P value ≤ 0.05. By these criteria, we identified 323 

366 of 2354 genes (~15.5% of the genome) with log2FC values ≥ 1.5, among which 235 were 324 
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upregulated and 131 were downregulated (Table S1, Table S2). Downregulated and upregulated 325 

genes were expressed over a -4 to +6 log2FC range (Figure 2A).   326 

  327 

We observed increased expression of several heat-shock genes well-characterized in other 328 

organisms (Anderson et al., 2006; Fleury et al., 2009; Schumann, 2003). For example, transcript 329 

levels of the dnaK (hrcA, grpE, dnaK, dnaJ, prmA), groESL (groES, groL), and clpC 330 

(F1613_RS04215 (CtsR family transcription regulator), F1613_RS04220 (UvrB/UvrC motif-331 

containing protein), F1613_RS04225 (protein arginine kinase), F1613_RS04230 (ATP-dependent 332 

Clp protease ATP-binding subunit clpC)) operons, encoding the major cell chaperones and 333 

proteases, were upregulated ~8-15, ~10-11, and ~42-53 absolute fold, respectively (Table S1). 334 

Other known heat-shock genes including clpB, clpP, the Hsp33 family molecular chaperone hslO, 335 

and MecA, an adaptor protein necessary for ClpC chaperone activity (Schlothauer et al., 2003) 336 

were upregulated by 71-, 8.9-, 4.14-, and 3.84-fold, respectively (Table S1). Among the most 337 

upregulated genes (~22-61-fold) were members of the lac operon (lacA, lacB, F1613_RS11920 338 

(tagatose-6-phosphate kinase), lacD, F1613_RS11910 (PTS lactose/cellobiose transporter subunit 339 

IIA), F1613_RS11905 (lactose-specific PTS transporter subunit EIIC), lacG), vraX, 340 

F1613_RS03870 (ArgE/DapE family deacylase), cytochrome ubiquinol oxidase subunits I and II 341 

(F1613_RS06745 and F1613_RS06750), F1613_RS01555 (MarR family transcription regulator), 342 

F1613_RS12445 (hypothetical protein), F1613_RS01550 (NAD(P)/FAD-dependent 343 

oxidoreductase), and F1613_RS03780 (MFS transporter) (Table S1). 344 

 345 

We observed other upregulated genes of potential interest. For example, BlaZ, blaI, and blaR1, 346 

components of the bla operon that encode for a β-lactamase (Llarrull, Prorok and Mobashery, 347 
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2010) were upregulated ~4.8-18.3-fold. Members of the urease operon (F1613_RS12320, ureE, 348 

F1613_RS12330) along with two competence protein ComK orthologs (F1613_RS10000 and 349 

F1613_RS06475) displayed increased transcript levels, consistent with previous observations of 350 

genes induced by heat shock in S. aureus (Anderson et al., 2006; Fleury et al., 2009). Twenty-three 351 

hypothetical proteins and 24 uncharacterized genes (47 total) were also upregulated under heat-352 

shock conditions.  353 

 354 

Among the most downregulated genes (~10-21-fold) were F1613_RS05940 and dltABCD, 355 

components of the dlt operon required for the d-alanylation of teichoic acids in gram-positive 356 

bacterial cell walls (Kovacs et al., 2006) (Table S2). Several genes encoding ribosomal proteins 357 

(rplJ, rplL, rplT, rpmI, rpsF, rpsO, rpsR) and tRNA-ligases (ileS, thrS, serS) were also 358 

downregulated (~2.9-8.3-fold) (Table S2), consistent with the transient inhibition of protein 359 

synthesis that occurs in response to heat shock in other organisms (Duncan and John W.B. 360 

Hershey, 1989). Components of the psmβ operon (F1613_RS07060, F1613_RS07065, 361 

F1613_RS07070, F1613_RS07075) that encode for β-class phenol-soluble modulins (PSMs) 362 

(Cheung et al., 2014; Wang et al., 2011), and the PSM transporter system (pmtA, pmtB, and pmtC) 363 

(Chatterjee et al., 2013) were downregulated ~3-5-fold. In total, 24 genes involved in transport 364 

were downregulated up to ~11-fold (Table S2), with more than half of them belonging to the ATP-365 

binding cassette (ABC) transporter superfamily. Two cold-shock genes (cspA and 366 

F1613_RS05710) displayed decreased transcript levels, consistent with previous observations of 367 

genes repressed by heat shock in S. aureus  (Fleury et al., 2009). Two helix-turn-helix transcription 368 

regulators (F1613_RS10440 and F1613_RS09035) were downregulated ~8.5 and ~3.5-fold, 369 

respectively (Table S2). We also observed downregulation of other transcription regulators 370 
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including rsp, F1613_RS11065 (GntR family transcription regulator), and pyrR by 5.5-, 4.6-, and 371 

4.1-fold respectively (Table S2). Sixteen hypothetical proteins and 23 uncharacterized genes (39 372 

total) were also downregulated under heat-shock conditions.  373 

  374 

Functional Classification of Differentially Expressed Genes in S. epidermidis Under Heat 375 

Stress   376 

  377 

The genome of Staphylococcus epidermidis ATCC 12228 contains 2354 protein-coding genes, of 378 

which 207 are hypothetical and 71 are uncharacterized (278 total or ~12% of all genes), indicating 379 

their biological functions are unknown or not yet established. We manually grouped 280 of 366 380 

heat shock DEGs (~77%) into functional groups using GO and KEGG databases (Figure 2B); 23% 381 

of heat shock DEGs had no assigned functions. We observed known functional classes that are 382 

upregulated under heat-shock conditions in all domains of life (Richter, Haslbeck, and Buchner, 383 

2010), namely Metabolism, Transport, Regulation, DNA/RNA Repair, Molecular Chaperones, 384 

Protein Degradation, and Detoxification (Figure 2B). A significant proportion (85; ~36%) of 385 

upregulated genes were involved in metabolism, including sugar, amino acid, and fatty acid 386 

metabolism (Table S1; Figure S2). We also observed increased expression of genes in the 387 

Virulence Factors, Secretion, and Stress Response functional classes (Figure 2B). 388 

Ribosome/Translation, tRNA Biosynthesis, and Ribosome Biogenesis functional classes 389 

accounted for a significant proportion (22; ~17%) of downregulated genes (Figure 2B; Table S2), 390 

consistent with a transient inhibition of protein synthesis. Genes involved in Transport, 391 

Metabolism, Cell Wall Structure, Regulation, DNA/RNA Repair, and Stress Response were also 392 

downregulated under heat-shock conditions (Figure 2B). We assigned DEGs grouped into minor 393 
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functional classes that contained only a small number of genes to the “Others” category in each 394 

pie chart (Figure 2B). Fourteen upregulated genes and 10 downregulated genes were assigned to 395 

the “Others” category and their functions are detailed in the supplementary material (Table S1; 396 

Table S2).  397 

 398 

Transcription Responses to Glucose in S. epidermidis 399 

  400 

Six-carbon sugars (hexoses) such as glucose are the preferred carbon and energy sources for many 401 

prokaryotes including S. epidermidis. Prior studies in staphylococcal species demonstrated that 402 

glucose utilization supports faster growth and higher metabolic rates (Halsey et al., 2017). The 403 

presence of glucose also inhibits the expression of genes required for uptake and utilization of 404 

alternative carbon sources, an adaptive regulatory mechanism called carbon catabolite repression 405 

(CCR) (Görke and Stülke, 2008). We performed RNA sequencing on cultures exposed to 20-406 

minute glucose spikes across a range of concentrations and to persistent glucose to better 407 

understand the ability of S. epidermidis to adapt and respond to glucose. Our underlying goal was 408 

to support development of commensal microbes bioengineered to diagnose, monitor, or treat 409 

diabetes. 410 

  411 

Identifying Genes that Might be Useful Starting Points for Controlling Bioengineered 412 

Bacteria in Treating Diabetes 413 

  414 

We challenged mid-exponential phase cells by subjecting them to 2 mM, 5 mM, 10 mM, 17 mM, 415 

or 50 mM glucose spikes for 20 minutes (Figure 1B). We used RNA sequencing to analyze gene 416 
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expression profiles and compared the resulting expression profiles of glucose-challenged cells to 417 

those of unchallenged cells (Figure 3A). Differentially expressed genes (DEGs) of significance 418 

were identified using the following criteria: |log2 fold change| (i.e., log2FC) ≥ 1.5 and adjusted P 419 

value ≤ 0.05 (Table S3-S7). We examined rlog transformed counts data from the medically 420 

relevant (G2-G17) glucose concentrations, searching for candidate transcripts that might be 421 

potential starting points for glucose-responsive switches. We found 38 potential switches by 422 

modeling all genes with absolute log2 fold change values ≥ 2 in at least one medically relevant 423 

glucose challenge experimental condition (Figure S3).  424 

 425 

We selected twenty genes as representative candidates with potentially interesting glucose-426 

responsive switch properties (Figure 3B). Among the potential switches that exhibited an OFF-to-427 

ON transition were two DUF2871 domain-containing proteins (F1613_RS03065 and 428 

F1613_RS02965), F1613_RS00340 (ABC transporter ATP-binding protein), F1613_RS00345 429 

(ABC transporter permease), pyrR (bifunctional pyr operon transcriptional regulator), ffs (signal 430 

recognition particle sRNA), and four tRNA genes. We also identified genes likely subject to 431 

carbon catabolite repression (CCR) that might serve as potential ON-to-OFF switches, including 432 

F1613_RS01060 (PTS sugar transporter subunit IIC), lacA, pfkB, and F1613_RS09950 (proline 433 

dehydrogenase) (Görke and Stülke, 2008; Nuxoll et al., 2012). Other promising ON-to-OFF switch 434 

candidates include pflB (formate C-acetyltransferase), raiA (ribosome-associated translation 435 

inhibitor), mqo (malate dehydrogenase (quinone)), F1613_RS05750 (hypothetical protein), 436 

F1613_RS07845 (homoserine dehydrogenase), and F1613_RS06465 (IDEAL domain-containing 437 

protein) (Figure 3B).  We examined counts data from the medically relevant (G2-G17) glucose 438 

concentrations and also noted a class of genes whose expression did not change in response to a 439 
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glucose spike compared to an unchallenged (0 mM) control. These glucose-independent genes 440 

included lqo (L-lactate dehydrogenase (quinone)), F1613_RS08490 (transglycosylase domain-441 

containing protein), typA (translational GTPase TypA), rnr (ribonuclease R), and noc (nucleoid 442 

occlusion protein).  443 

 444 

Genes Repressed in Response to 20-minute Glucose Spikes 445 

 446 

We observed 18 genes that were downregulated across all five glucose spike conditions and an 447 

additional ten genes that were downregulated across the top four glucose spike conditions (Figure 448 

4B; Figure S4). For example, genes involved in lactose metabolism (F1613_RS11920 (tagatose-449 

6-phosphate kinase), lacB, and lacA), ribose transport (rbsU, rbsD), fructose utilization 450 

(F1613_RS05160 (PTS fructose transporter subunit IIABC), pfkB, and F1613_RS05150 451 

(DeoR/GlpR family DNA-binding transcription regulator)), proline catabolism (F1613_RS09950 452 

(proline dehydrogenase)), the glyoxalase pathway (F1613_RS05685 (glyoxalase)), the succinate 453 

dehydrogenase complex (F1613_RS07025 (succinate dehydrogenase cytochrome b558 454 

subunit)), and ethanol degradation (adhP) were downregulated, consistent with previous 455 

observations of gene expression changes that occur during CCR (Gutierrez-Ríos et al., 2007; 456 

Penninckx, Jaspers, and Legrain, 1983; Nam, 2005; Arndt and Eikmanns, 2007; Görke and Stülke, 457 

2008; Nuxoll et al., 2012; Halsey et al., 2017) (Table S3-S7). We also observed decreased 458 

expression of sdaAB (L-serine ammonia-lyase iron-sulfur-dependent subunit beta), raiA, 459 

F1613_RS03360 (universal stress protein), F1613_RS00870 (GntR family transcription 460 

regulator), F1613_RS06465 (IDEAL domain-containing protein), F1613_RS10135 (AAA family 461 

ATPase), F1613_RS07845 (homoserine dehydrogenase), F1613_RS10140 (DUF4238 domain-462 
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containing protein), F1613_RS06500 (fatty acid desaturase), and genes involved in formate 463 

metabolism (pflA and pflB) across at least four glucose spike conditions. Four hypothetical proteins 464 

and one uncharacterized gene (five total) were also downregulated across at least four glucose 465 

spike conditions (Table S3-S7). 466 

 467 

 S. epidermidis Transcription Response to a 20-minute 17 mM Glucose Spike 468 

 469 

We identified 85 of 2354 genes (~4% of the genome) that change in response to a 17 mM glucose 470 

spike with log2FC values ≥ 1.5, among which 43 were upregulated and 42 were downregulated 471 

(Table S6). Downregulated and upregulated genes were expressed over a -5 to +5 log2FC range 472 

(Figure 4A). While gene expression changes are similar across all glucose levels, we observed a 473 

more robust change (i.e., -5 to +5 log2FC), a higher number of upregulated genes, and a higher 474 

total number of DEGs in the 17 mM glucose condition (Table S3-S5; Table S7).  475 

 476 

Among the most downregulated genes (~6-34-fold) in the 17 mM glucose spike condition were 477 

pflB and members of the glpR-pfkB operon, which plays an essential role in the utilization of 478 

fructose, (F1613_RS05150 (DeoR/GlpR family DNA-binding transcription regulator), pfkB, and 479 

F1613_RS05160 (PTS fructose transporter subunit IIABC)) (Ge et al., 2024) (Table S6). We found 480 

that L-serine ammonia-lyase iron-sulfur-dependent subunits alpha and beta (sdaAA and sdaAB), 481 

raiA, F1613_RS01060 (PTS sugar transporter subunit IIC), and F1613_RS00520 (nitrate reductase 482 

subunit alpha) were also downregulated (~6-10-fold) (Table S6). Six hypothetical proteins and one 483 

uncharacterized gene (seven total) were downregulated in the 17 mM glucose spike condition. 484 

tRNA genes accounted for almost 60% (24 of 43) of the upregulated genes in the 17 mM glucose 485 
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spike condition, consistent with increased protein synthesis and faster growth rates in the presence 486 

of glucose (Halsey et al., 2017). F1613_RS07200 (solute carrier family 23 protein) and ffs were 487 

among the most upregulated genes (~7 to 11-fold) in the 17 mM glucose spike condition. Two 488 

hypothetical proteins and three uncharacterized genes (five total) were also upregulated.  489 

  490 

Functional Classification of Downregulated Genes in S. epidermidis in Response to a 17 mM 491 

Glucose Spike 492 

 493 

To further understand the functions of significantly downregulated genes we used the data from 494 

the 17 mM glucose spike condition to assign functional pathways against the GO and KEGG 495 

databases. We ordered pathways based on increasing significance level (P value) (Figure 4C). 496 

Functional pathways with decreased expression include Carbohydrate Metabolism, Butanoate 497 

Metabolism, TCA Cycle, Propanoate Metabolism, Lipoic Acid Metabolism, Carbohydrate 498 

Transport, Hexose Metabolism, Oxidative Phosphorylation, Phosphoenolpyruvate-Dependent 499 

Sugar Phosphotransferase system (PTS), and Amino Acid Metabolism (Figure 4C; Table S6). We 500 

observed several downregulated pathways likely consistent with carbon catabolite repression 501 

(CCR) (Görke and Stülke, 2008). 502 

 503 

S. epidermidis Transcription Response to Persistent Glucose via Batch Culture 504 

 505 

To identify differentially expressed genes in S. epidermidis exposed to persistent glucose via batch 506 

culture, we grew cells overnight in medium containing 0.2% w/v or 1% w/v glucose. We used 507 

RNA sequencing to analyze gene expression profiles and compared the expression profiles of cells 508 
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exposed to 1% w/v glucose against cells exposed to 0.2% w/v glucose. Differentially expressed 509 

genes (DEGs) of significance were defined using the following criteria: |log2 fold change| (i.e., 510 

log2FC) ≥ 1.5 and adjusted P value < 0.05. By these criteria, we identified 195 of 2354 genes 511 

(~8% of the genome) with log2FC values ≥ 1.5, among which 133 were upregulated and 62 were 512 

downregulated (Table S8). We observed more upregulated genes, a higher total number DEGs, 513 

and unique gene expression changes in the persistent glucose via batch culture experimental 514 

condition compared to the 20-minute glucose spike experimental condition (Table S3-S7; Table 515 

S8).  516 

 517 

Among the most upregulated genes (~13-30-fold) in the persistent glucose condition were 518 

members of the nrdDG operon (nrdD and nrdG), which encodes for an oxygen-independent 519 

ribonucleotide reductase (Masalha et al., 2001), and the dha operon (F1613_RS03960 (glycerol 520 

dehydrogenase), dhaK, dhaL, dhaM)), which encodes for components of the glycerol 521 

dehydrogenase- and PTS-dependent dihydroxyacetone kinase system (Céline Monniot et al., 2012) 522 

(Table S8). Genes involved in nitrate/nitrite reduction (narGHJI, nirBD, nreABC, and 523 

F1613_RS00485 (NarK/NasA family nitrate transporter)) were also upregulated (~4.8-11.9-fold) 524 

(Kamps et al., 2004) (Table S8). Sixteen genes involved in glycolysis, gluconeogenesis, and the 525 

TCA cycle including the glycolytic gapA operon (gap, F1613_RS05590 (phosphoglycerate 526 

kinase), tpiA, gpmI, and eno), the alsS/budA operon, F1613_RS00620 (2,3-diphosphoglycerate-527 

dependent phosphoglycerate mutase), F1613_RS01410 (fructose bisphosphate aldolase), fdaB, 528 

F1613_RS01355 (L-lactate dehydrogenase), sdaAA, pyk, ilvB, F1613_RS06110 (glucose-6-529 

phosphate isomerase) and sdhB were slightly upregulated (~3-8 fold) in the persistent glucose 530 
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condition, consistent with previous observations of glucose-responsive genes in S. aureus (Seidl 531 

et al., 2009). Seven hypothetical proteins were also upregulated (Table S8). 532 

  533 

We observed downregulation (up to ~7 fold) of the energy-coupling factor (ECF) transporter 534 

module components (F1613_RS11970 (energy-coupling factor transporter ATPase), 535 

F1613_RS11965 (energy-coupling factor transporter ATPase), F1613_RS11960 (energy-coupling 536 

factor transporter transmembrane protein EcfT)) (Slotboom, 2013), F1613_RS03610 537 

(isoprenylcysteine carboxyl methyltransferase family protein), and ugpC (Table S8). 538 

F1613_RS05940, dltC, and dltD, components of the dlt operon required for the d-alanylation of 539 

teichoic acids in gram-positive bacterial cell walls (Kovacs et al., 2006), were also downregulated 540 

(~3-4 fold). We observed downregulation of four transcription regulators including rsp, 541 

F1613_RS01465 (GbsR/MarR family transcription regulator), F1613_RS08735 (AraC family 542 

transcription regulator), and F1613_RS10440 (helix-turn-helix transcription regulator) by 3.3-, 543 

3.5-, 3.7-, and 4.2-fold, respectively (Table S8). Two hypothetical proteins were also 544 

downregulated in the persistent glucose condition (Table S8). 545 

  546 

S. epidermidis Transcription Response to a Step Down in Glucose Concentration from 10 547 

mM to 2 mM 548 

  549 

To identify differentially expressed genes in S. epidermidis exposed to a step down in glucose 550 

concentration, we challenged mid-exponential phase cells by subjecting them to a 10 mM glucose 551 

spike for 20 minutes immediately followed by a 2 mM glucose spike for 20 minutes (Figure 1B). 552 

We used RNA sequencing to analyze gene expression profiles and compared the expression 553 
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profiles of cells exposed to a step down in glucose concentration against cells exposed to a 10 mM 554 

glucose spike only. Differentially expressed genes (DEGs) of significance were defined using the 555 

following criteria: |log2 fold change| (i.e., log2FC) ≥ 1.5 and adjusted P value ≤ 0.05. By these 556 

criteria, we identified 43 of 2354 genes (~1.8% of the genome) with log2FC values ≥ 1.5, among 557 

which 10 were upregulated and 33 were downregulated (Table S9; Figure S5).  Downregulated 558 

and upregulated genes were expressed over a -6 to +3 log2FC range (Figure 5A). 559 

 560 

We observed upregulation (~3-6-fold) of F1613_RS03760 ((NAD(P)-binding domain-containing 561 

protein), betB, betA, F1613_RS03755 (nucleoside recognition domain-containing protein), rpsN, 562 

F1613_RS06020 (NAD(P)-binding domain-containing protein), F1613_RS00615 (putative metal 563 

homeostasis protein), F1613_RS02245 (putative sulfate exporter family transporter), 564 

F1613_RS03765 (zinc ABC transporter substrate-binding protein), and F1613_RS01245 565 

(aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme) in the step-down 566 

experimental condition. Among the most downregulated genes (~5-50-fold) were members of the 567 

purine biosynthetic operon (purEKCSQLFMNHD), which encodes for 11 enzymes that convert 568 

phosphoribosyl pyrophosphate (PRPP) to inosine-5′-monophosphate (IMP) (Goncheva et al., 569 

2019), purine biosynthesis-associated gene purB, and glycine cleavage system genes (gcvT, 570 

gcvPA, gcvPB). One hypothetical protein was also downregulated in the step-down experimental 571 

condition (Table S9). 572 

 573 

  574 
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Functional Classification of Differential Expressed Genes in S. epidermidis in Response to a 575 

Step Down in Glucose Concentration from 10 to 2 mM 576 

  577 

We used the data from the step-down experimental condition to assign functional pathways against 578 

the GO and KEGG databases. We ordered pathways based on increasing significance levels (P 579 

value) (Figure 5C). Functional pathways with decreased expression include Purine Metabolism, 580 

Nucleotide Biosynthesis, Amino Acid Metabolism, Nitrogen Compound Metabolism, Vitamin 581 

Metabolism, Lipid Acid Metabolism, Organic Compound Biosynthesis, and Sulphur Compound 582 

Metabolism (Figure 5C; Table S9). Among upregulated pathways Protein Transport scored the 583 

highest significance, according to both GO and KEGG pathway enrichment analysis, under the 584 

step-down experimental condition (Figure 5B).   585 

  586 

We constructed a Venn diagram to understand the relationship between our step-down, 10 mM 587 

glucose spike (G10), and 2 mM glucose spike (G2) data sets (Figure S5); we observed no shared 588 

differentially expressed genes (DEGs) in common among the step-down condition (from 10 to 2 589 

mM glucose) and G10 (from 0 to 10 mM glucose). There were also no shared differentially 590 

expressed genes among the step-down (from 10 to 2 mM glucose) and G2 (from 0 to 2 mM 591 

glucose) experimental conditions either, indicating potentially unique gene expression changes as 592 

a function of increasing versus decreasing glucose concentrations (Figure S5; Table S3; Table S9). 593 

 594 

We sought to further understand if and how genes might be differentially expressed at an 595 

intermediate glucose concentration (2 mM glucose) as a function of whether cells had been 596 

previously exposed to a lower (0 mM) or higher (10 mM) glucose concentration. If prior glucose 597 
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concentrations do not matter, we would expect no such differences. We performed scatter plot 598 

analysis of expression levels for all genes at 2 mM glucose as a function of prior glucose 599 

concentration (Figure 6).  Most genes differentially expressed under a 0 to 2 mM glucose spike 600 

were similarly expressed under a 10 to 2 mM glucose step down (Figure 6 blue dots).  Over 14 601 

genes differentially expressed under a 10 to 2 mM glucose step down were not similarly expressed 602 

under a 0 to 2 mM glucose spike (Figure 6 red dots; Discussion). Further analysis indicated these 603 

genes are primarily involved in purine metabolism (above; Table S9).    604 

 605 

Discriminating Between Glucose and Heat Shock Conditions 606 

Differential gene expression analysis of and within the skin microbiome might be useful as a 607 

potential platform for clinical diagnosis. To explore this idea, we compared gene expression levels 608 

during heat shock to those observed during high (17 mM) glucose levels. Most (~93.6%) genes 609 

are similarly expressed (95% c.i.) under both conditions (Figure 7).  However, 341 and 60 genes 610 

are differentially expressed under heat shock or high glucose, but not both conditions, respectively. 611 

Such genes may offer a starting point for developing nucleic acid amplification-based methods for 612 

determining the current or prior physical experience of  microbes on patients.     613 

 614 

DISCUSSION 615 

To support bioengineering of skin microbes to diagnose, monitor, or treat disease, we sought to 616 

understand how S. epidermidis responds to environmental perturbations including heat shock and 617 

medically relevant glucose levels. We used RNA sequencing to investigate differential gene 618 

expression followed by gene set enrichment analysis (GSEA) to understand the functions of 619 

differentially expressed genes. We observed an S. epidermidis heat-shock response that mostly 620 
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resembles the heat-shock response of related staphylococcal species and other gram-positive 621 

bacteria (below). We observed carbon catabolite repression in response to a range of glucose 622 

spikes, upregulation of genes involved in glycolysis, gluconeogenesis, and the TCA cycle in 623 

response to persistent glucose via batch culture, as well as a potentially unique gene expression 624 

signature in response to a step down in glucose concentration from 10 to 2 mM. Building upon our 625 

analyses we curated a subset of glucose-responsive genes that might serve as starting points for 626 

engineering endogenous dynamic control of circuits in S. epidermidis. 627 

  628 

We observed contrasting patterns of gene expression depending on whether cells were exposed to 629 

a spike or persistent level of glucose. For example, we observed downregulation (up to ~34 fold) 630 

across all five glucose spike conditions for genes involved in lactose metabolism, ribose transport, 631 

fructose utilization, proline catabolism, the glyoxalase pathway, the succinate dehydrogenase 632 

complex, and ethanol degradation (Table S3-S7). We believe this repression of genes involved in 633 

secondary carbon source utilization to be convincing evidence of carbon catabolite repression 634 

(CCR) in our glucose spike data (Görke and Stülke, 2008). By contrast, we found no evidence of 635 

CCR in our persistent glucose via batch culture data. (Table S8). As a second example, while we 636 

observed the induction (~3-8 fold) of several essential glycolytic genes, the dha operon, 637 

gluconeogenesis genes, and TCA cycle genes in our persistent glucose via batch culture samples 638 

(Table S8), we did not observe such gene expression patterns among the upregulated genes in our 639 

glucose spike data. Instead, tRNA genes accounted for most of the upregulated genes in our 640 

glucose spike data (Table S3-S8). One explanation could be that S. epidermidis first adapts to 641 

glucose exposure by preferentially downregulating genes involved in secondary carbon source 642 

utilization to avoid the production of proteins that are not useful in the presence of glucose; only 643 
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following sufficiently prolonged exposure to glucose does S. epidermidis adjust its transcriptome 644 

to upregulate genes involved in glucose utilization. We note that Seidl et al. found in S. aureus that 645 

a 30-minute exposure to 10 mM glucose was sufficient to realize gene expression changes similar 646 

to our prolonged exposure conditions, suggesting that between 20 to 30 minutes could be sufficient 647 

to fully transition to a persistent glucose transcriptome in S. epidermidis (Seidl et al., 2009).  648 

 649 

Under heat shock conditions we found patterns of gene expression similar to other Staphylococcus 650 

species. For example, at 45°C, we observed upregulation of F1613_RS04215 (CtsR family 651 

transcription regulator) and hrcA (Table S1), known heat-shock gene expression regulators in 652 

Staphylococcus aureus, Bacillus subtilis, and other firmicutes (Derre, Rapoport, and Msadek, 653 

1999; Chastanet, Fert, and Msadek, 2003; Schumann, 2003). We also observed rapid induction of 654 

clpB, clpP, and the dnaK, groESL, and clpC operons (Table S1). Our data also provides evidence 655 

of an S. epidermidis heat-shock regulatory network that utilizes both the hrcA- and ctsR-encoded 656 

repressors. For example, we carried out DNA motif analysis and found CtsR (GGTCAAA/T) and 657 

CIRCE (controlling inverted repeat of chaperone expression) operator sequences arranged in 658 

tandem upstream of the dnaK and groESL operons consistent with previous observations of dual 659 

heat-shock regulation by HrcA and CtsR in S. aureus and S. epidermidis (Derre, Rapoport and 660 

Msadek, 1999; Chastanet, Fert, and Msadek, 2003) (Figure S6). We also found CtsR recognition 661 

sequences upstream of clpB, clpP, and the clpC operon also consistent with previous observations 662 

of CtsR regulons in B. subtilis and Streptococcus pneumoniae (Derre et al., 1999; Chastanet et al., 663 

2001) (Figure S6). 664 

 665 
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While we observed upregulation of universal stress proteins (F1613_RS09680 and 666 

F1613_RS09700), we did not detect upregulation of the general stress-responsive alternative 667 

sigma factor sigB, which is a component of the heat-shock regulon in S. aureus, B. subtilis, and 668 

Listeria monocytogenes (Kullik and Giachino, 1997; Schumann, 2003; Ferreira, O’Byrne, and 669 

Boor, 2001). By contrast, we did observe upregulation (~5 fold) of F1613_RS09995, another 670 

sigma-70 family RNA polymerase sigma factor (Table S1). This difference suggests that the S. 671 

epidermidis heat-shock regulatory network may differ slightly from that of S. aureus and other 672 

gram-positive bacteria. 673 

 674 

We compared the genome-wide S. epidermidis heat-shock response to the 17 mM glucose spike 675 

(G17) and step-down responses (Figure 8). We observed a more robust increase in gene expression 676 

in response to heat shock (i.e., -4 to +6 log2FC range) compared to G17 (i.e., -5 to +5 log2FC) and 677 

step down (i.e., -6 to +3 log2FC range) and detected more differentially expressed genes (DEGs) 678 

in the heat-shock condition (366 genes) compared to G17 (85 genes) and step-down conditions (43 679 

genes) (Figure 2A; Figure 4A; Figure 5A). In response to acute heat stress and subsequent loss of 680 

protein homeostasis (e.g., due to heat-induced protein denaturation, misfolding, and aggregation), 681 

we observed a rapid and global reprogramming of gene expression, unlike the transcription 682 

changes observed when S. epidermidis adapts to a preferred carbon source (e.g., glucose) at non-683 

toxic concentrations (Figure 8; Figure 3A). We believe these disparate gene expression profiles 684 

could be of limited clinical utility; more specifically, DEGs unique to heat shock (341 genes) or 685 

high glucose (60 genes) may be a promising starting point for the development of simple nucleic 686 

acid-based tools for the diagnosis and monitoring of disease (Figure 7).   687 

 688 
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We observed downregulation (up to ~50-fold) of genes involved in purine biosynthesis 689 

(purEKCSQLFMNHD) in response to a step down in glucose concentration from 10 to 2 mM 690 

(Table S9). We did not observe such downregulation in the G2 (from 0 to 2 mM glucose) or G10 691 

(from 0 to 10 mM glucose) glucose spike conditions (Table S3; Table S5). Further, we found no 692 

differentially expressed genes (DEGs) in common among the step-down and G10 conditions and 693 

the step-down and G2 conditions (Figure S5). Taken together we wondered if there is a unique 694 

step-down gene expression signature that does not resemble that of G2 or G10. We performed 695 

scatter plot analysis to visualize the relationship between the step-down and G2 conditions (Figure 696 

6). We noticed that, while most genes are similarly expressed under both conditions, over 14 genes 697 

differentially expressed under step-down conditions were not similarly expressed under G2 698 

conditions (Figure 6, red dots). Further analysis revealed that these genes were mainly involved in 699 

purine biosynthesis. We note that our step-down samples underwent two rounds of centrifugation 700 

while our G10 samples underwent a single round of centrifugation prior to RNA  harvesting 701 

(Methods); this methodological difference may account for the unique step-down gene expression 702 

signature observed here. 703 

 704 

Finally, we sought to identify glucose-responsive promoters that might eventually be used to 705 

control the expression of an insulin gene in a bioengineered S. epidermidis strain developed to aid 706 

in treating diabetes. To this end, we constructed glucose concentration-response curves across 707 

medically relevant (G2-G17) glucose levels. We identified 38 glucose-responsive genes that might 708 

serve as ON or OFF switches for controlling synthetic genetic systems (Figure S3; Figure 3B). 709 

Most (~70%) of the potential switches that exhibited an OFF-to-ON transition were tRNA genes 710 

(Figure S3). We suspect these switches are not specific to glucose given that increased tRNA 711 
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expression might also occur in response to various other carbon sources (Dong, Nilsson and 712 

Kurland, 1996). We also observed 19 potential ON-to-OFF switches (Figure S3). Each glucose-713 

responsive gene reported here is a starting point requiring additional characterization (e.g., 714 

response specificity) to identify those most appropriate for any given application (e.g., controlling 715 

expression of insulin in a glucose-dependent manner).  716 

  717 

The human skin microbiome is a diverse and dynamic microbial community that plays an essential 718 

role in maintaining our health and well-being. A more intimate understanding of how our skin 719 

microbes adapt to environmental perturbations (e.g., stress or increased glucose levels) is required 720 

to ultimately enable development of bioengineered skin microbes that can help diagnose and treat 721 

disease. We hope our investigation of the genome-wide transcription response in S. epidermidis to 722 

heat shock and medically relevant glucose concentrations helps further motivate ongoing work. 723 

We are excited to imagine a future in which the bioengineering of skin microbes has been made 724 

routine, helping doctors and patients to realize healthier lives and better clinical outcomes. 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

  733 
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Figure 1 | Environmental Perturbation of Staphylococcus epidermidis. Log-phase cultures were exposed to (A) a 10-minute increase in temperature from 37°C 

to 45°C or (B) a range of 20-minute glucose spikes (concentrations as noted) and a 10 mM spike followed by a step down to 2 mM.  
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Figure 2 | A Sudden Temperature Increase Causes Transcript Levels to Change up to ~71-fold. (A) Volcano plot showing the differentially expressed genes 

(DEGs) for the heat-shock experimental condition with |log2 FC|≥ 1.5 and adjusted P value ≤ 0.05 as the threshold. The red dots represent 235 significantly 

upregulated genes, and the blue dots represent 131 significantly downregulated genes. (B) Summary of the significantly upregulated and downregulated genes during 

the heat-shock response in S. epidermidis assigned to functional groups according to GO and KEGG pathways (in %).      
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Figure 3 | Eighty-five S. epidermidis Genes Change Expression Levels in Response to Glucose. (A) Circular transcriptome map showing normalized gene 

expression levels in the S. epidermidis genome in response to glucose. Log2 fold change relative to control for cells exposed to 2 mM (G2), 5 mM (G5), 10 mM 

(G10), 17 mM (G17), or 50 mM (G50) glucose spikes. Each bar denotes a single gene; red bars represent significantly upregulated genes and blue bars represent 

significantly downregulated genes. Roman numerals i (sdaAB, rbsU), ii (pflB), iii (glpR-pfkB operon), iv (F1613_RS07845 (homoserine dehydrogenase), and v 

(members of the lac operon) correspond to select groups of genes that are downregulated across all five glucose spike conditions. (B) Glucose concentration-response 

curves for a representative subset of genes that have potentially interesting glucose-responsive switch properties.  
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Figure 4 | A 17 mM Glucose Spike Causes Transcript Levels to Change up to ~34-fold. (A) Volcano plot showing the differentially expressed genes (DEGs) for 

the 17 mM glucose spike experimental condition with |log2 FC|≥ 1.5 and adjusted P value ≤ 0.05 as the threshold. The red dots represent 43 significantly upregulated 

genes, and the blue dots represent 42 significantly downregulated genes. (B) Venn diagram illustrating the number of unique and shared DEGs from the 10 mM, 17 

mM, and 50 mM glucose challenge experimental conditions. (C) Summary of the significantly downregulated genes for the 17 mM glucose spike experimental 

condition assigned to functional classes according to GO and KEGG pathways.    
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Figure 5 | Genes Involved in Purine Metabolism Are Significantly Downregulated in Response to a Step Down in Glucose Concentration From 10 mM to 2 

mM. (A) Volcano plot showing the differentially expressed genes (DEGs) for the Step-down experimental condition with |log2 FC|≥ 1.5 and adjusted P value ≤ 0.05 

as the threshold. The red dots represent 10 significantly upregulated genes, and the blue dots represent 33 significantly downregulated genes. Summary of the 

significantly upregulated (B) and downregulated (C) genes for the Step-down experimental condition assigned to functional classes according to GO and KEGG 

pathways.  
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Figure 6| Expression levels of purine biosynthesis genes at intermediate glucose levels are sensitive to prior glucose levels. Scatter plot visualizing the 

relationship between the step-down and 2 mM glucose spike (G2) experimental conditions. Each dot denotes a single gene. The red and blue dots represent step-

down, and G2 differentially expressed genes (DEGs) respectively. The gray dots represent genes with no significant change. A 95% confidence interval was 

calculated around the residuals of gene expression differences between the two experimental groups. Genes that fall within the green highlighted region are predicted 

to have near identical average expression levels with 95% certainty. 
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Figure 7| Heat shock and glucose spikes create statistically unique signatures. Scatter plot visualizing the relationship between the heat-shock and 17 mM 

glucose spike (G17) experimental conditions. Each dot denotes a single gene. The red and blue dots represent heat-shock, and G17 differentially expressed genes 

(DEGs) respectively. The green dots represent DEGs found in both conditions and the gray dots represent genes with no significant change. A 95% confidence 

interval was calculated around the residuals of gene expression differences between the two experimental groups. Genes that fall within the green highlighted region 

are predicted to have near identical average expression levels with 95% certainty.  
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Figure 8| The Genome-wide Transcription Response of Staphylococcus epidermidis to Perturbations. Circular transcriptome map showing normalized gene 

expression levels in the Staphylococcus epidermidis genome. Log2-fold change relative to control for cells exposed to Heat Shock (HS), a 17 mM glucose spike 

(G17), or Step Down (SD) experimental conditions. Each bar denotes a single gene. The red bars represent significantly upregulated genes, and the blue bars represent 

significantly downregulated genes.   
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Figure S1 | Principal Component Analysis (PCA) Reveals One Step-Down Replicate is an 

Outlier. PCA plot of RNA-seq data for three biological replicates for the Glucose Challenge and Step-

Down experimental conditions.  
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Figure S2 | Genes Upregulated During Heat-shock Span Metabolism and Cell Signaling. 

Summary of the significantly upregulated genes for the heat-shock experimental condition assigned 

to functional classes according to GO and KEGG pathways.   
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Figure S3 | Thirty-eight Candidate Genes that Have Potentially Interesting Glucose-Responsive 

ON or OFF Switch Properties. Concentration-response curves generated for genes with absolute 

log2 fold change values ≥ 2 in at least one medically relevant (G2-G17) glucose challenge 

experimental condition. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2024. ; https://doi.org/10.1101/2024.03.18.585582doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
 

 

Figure S4 | Twenty-eight Genes are Downregulated in Common in Response to Increasing 

Glucose Spike Concentrations. Venn diagrams illustrating the number of unique and shared 

upregulated (A) and downregulated genes (B) from the 2 mM (G2), 5 mM (G5), 10 mM (G10), 17 

mM (G17), and 50 mM (G50) glucose challenge experimental conditions.  
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Figure S5 | Step-down Samples Have a Unique Gene Expression Profile Distinct from the 2 mM 

and 10 mM Glucose Spike Profiles. Venn diagram illustrating the number of unique and shared 

DEGs from the 2 mM, 10 mM, and step-down experimental conditions.  
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Figure S6 | DNA Motif Analysis Revealed CtsR and CIRCE Operator Sequences Arranged in 

Tandem Upstream of dnaK and groESL Operons. CIRCE (TTAGCACT-N11-AGTGCTAA) (red) 

and/or CtsR (GGTCAAA/T) (blue) operator sequences arranged upstream of the (A) dnaK operon, 

(B) groESL operon, (C) clpC operon, (D) clpB and, (E) clpP. Start codons are shown in green.   
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