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Abstract 
As the number of experiments that employ single-cell RNA-sequencing (scRNA-seq) grows it 
opens up the possibility of combining results across experiments or processing cells from the 
same experiment assayed in separate sequencing runs. The gain in the number of cells that 
can be compared comes at the cost of batch effects that may be present. Several methods 
have been proposed to combat this for scRNA-seq datasets.  
 
We compared seven widely used method used for batch correction of scRNA-seq datasets. 
We present a novel approach to measure the degree to which the methods alter the data in 
the process of batch correction, both at the fine scale comparing distances between cells as 
well as measuring effects observed across clusters of cells. We demonstrate that many of the 
published method are poorly calibrated in the sense that the process of correction creates 
measurable artifacts in the data. 
 
In particular, MNN, SCVI and LIGER performed poorly in our tests, often altering the data 
considerably. Batch correction with Combat, BBKNN and Seurat introduced artifacts that could 
be detected in our setup. However, we found that Harmony was the only method that 
consistently performed well, in all the testing methodology we present. Due to these result 
Harmony is the only method we can safely recommend using when performing batch 
correction of scRNA-seq data. 
 

Introduction 
With the increasing complexity and scale of scRNA-seq experiments, the need to integrate 
and combine differently collected data has also increased. Large scale datasets enable 
researchers to combine and compare different data modalities to gain increased insight and 
accuracy. When scRNA-seq data are collected at different times, with different protocols, 
technologies or sequencing platforms, the integeration becomes increasingly complex. All 
these factors can affect the expressions of genes in complex ways, some of these differences 
can be biological in origin, others from technical artifacts. We aggregate the varation due to 
technical artifacts under the umbrella term of batch effects. 
 
There are some unique challenges in integrating batches of scRNA-seq data that are not 
present when working with bulk RNA-seq data. Cell type composition can differ between 
batches and within cell types there can be systematic differences in gene expression between 
batches (Luecken and Theis 2019). One of the first steps in processing scRNA-seq data is to 
cluster or identify cells by cell type, thus requiring batch correction methods tailored for scRNA-
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seq datasets in order to ensure that cells of the same type are grouped together across 
batches. 
 
Other studies have evaluated the performance of batch correction methods, focusing more on 
measuring how well batch effects are removed rather than how well the variation of interest is 
retained or whether the methods are well calibrated. Early work (Tran et al. 2020) compared 
14 different batch correction methods based on running time, and classical metrics from 
cluster comparison. A recent preprint (Tyler et al. 2021) approached the problem of batch 
correction from both viewpoints, evaluating how well batch effects are corrected and the extent 
to which real biological effects are preserved after batch correction.  
 
Any systematic effects on gene expression, affecting a large number of genes, will affect each 
point of the computational pipeline that starts with the raw sequencing data or count matrix 
and ends with a statistical test that is computed in order to demonstrate a biological difference. 
This systematic bias must be addressed, regardless of whether the effect is biological in origin, 
e.g. cells from different environments or individuals, or technical, i.e. the result of batch effects.  
 
While most of the proposed methods have demonstrated, in their respective manuscripts, that 
they are capable of removing batch effects, they do not show that in the absence of batch 
effects the batch “corrections” do not alter the underlying truth. 
 
We propose a methodology to assess the quality of these methods and to measure the extent 
to which these methods alter the data in the process of batch correction, in particular the case 
when there is little or no batch effect. We perform the batch correction and examine the change, 
if any, the process of each batch correction method has on the data and all downstream 
results.  
 
Ideally, the application of batch effect correction should not correct the data at all as measured 
by a statistical test, i.e. the methods should be well calibrated. Under this null hypothesis, any 
significant change can be classified as an artifact of batch correction.  
 
We present different datasets and use them to establish a ground truth: the distances between 
cells and the KNN structure etc. We then split them into two equal parts to create pseudo 
batches.   
 
We examine the effects of the batch correction on three representative stages of most 
common computational pipelines in scRNA-seq analysis: a. the k-nearest neighbor(KNN) 
graph computed from the count matrix, b. clustering and cell type identification, c. differential 
expression analysis between clusters. We evaluated seven computational methods for batch 
correction that are commonly used in scRNA-seq pipelines. 

Results 
Batch correction methods 

We selected seven different batch correction methods for evaluation, based on how commonly 
they are used and the difference in their respective methodologies. All of the methods are 
available as stand alone libraries or part of a larger package in Python or R.   
 
Each method approaches the problem of batch correction in a different way. While the 
algorithms and methods in the original publications follow various different workflows, we have 
identified common themes and shared strategies, between the methods, that are highlighted 
in Table 1. The methods differ, not only in how the correction is performed, but which data 
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object is being corrected. Namely, some methods correct the count matrix directly, whereas 
others leave the original matrix intact and correct either the k-NN graph or an embedding used 
to compute the k-NN graph.  
 
We measure the change caused by batch correction in: the count matrix, the low dimensional 
embedding of the count matrix, clustering and differential expression. Not all the methods alter 
the data at the same stage. Combat (Johnson et al. 2007), MNN (Haghverdi et al. 2018) and 
Seurat (Stuart et al. 2019) alter the count matrix, thus we can compare the altered count matrix 
to the ground truth and on any downstream results. Harmony(Korsunsky et al. 2019) corrects 
for batch effects by computing a low dimensional PCA(Principal component analysis) 
embedding and altering the embedding of each cell with respect to batches. BBKNN (Polański 
et al. 2020) changes only the k-NN graph based batch information. SCVI (Lopez et al. 2018) 
learns a low dimensional embedding of the data using a Variational Autoencoder in a Deep 
Learning framework, from which the corrected count matrices can be imputed. LIGER (Welch 
et al. 2019) creates a lower dimensional embedding and a combined KNN graph, which is 
then used to modify the lower dimensional embedding to correct for batch effects.  
 
As Harmony, BBKNN, and LIGER do not modify the count matrix, the batch correction affects 
mainly the k-NN graph and all downstream results that rely on the k-NN graph, e.g. clustering. 
The expression estimates, in the count matrix, must then be corrected for batch effects using 
classical methods such as covariates in a linear model. In our results we have excluded these 
methods from comparisons where the explicit differences in the count matrix are computed.  
 
Simulation Strategy 
The simplest simulation we evaluate is to generate a batch label where there is none. Namely, 
we take public scRNA-seq dataset and randomly label each cell as coming from batch A or 
batch B. This information is then supplied to each method which in turn corrects the dataset. 
If the batch correction methods are well calibrated we expect them to only make minor 
corrections that will not influence downstream analysis to a statistically significant degree. 
 
Rather than simulating both count matrices and the random split, we use publicly available 
datasets on PBMCs from Humans and Neural cells from Mouse (Methods). The dataset were 
processed using standard preprocessing workflows (Methods) to obtain the cell by gene count 
matrix.  
 
To do this we created random pseudo batches for each dataset, repeated 25 times (Figure 
1A). For each iteration we perform the standard preprocessing (Methods) for the unaltered 
data, and randomly split the cells into 2 batches of equal size. We then apply the batch 
correction methods to the uncorrected count matrices with the pseudo batches as input. We 
then proceed with with the workflow, computing principle components, the k-NN graph, Leiden 
clustering and differential expression (Figure 1B, Methods). For each step we compare the 
computed artifact to their companion in the uncorrected data and report median values across 
the 25 iterations.  
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BBKNN  Combat  Harmony LIGER MNN Seurat SCVI 

Input KNN graph Normalized count 
matrix 

Normalized count 
matrix Normalized count matrix Normalized count 

matrix 
Normalized count 

matrix Raw count matrix 

Custom  
embedding None None Corrected embedding Metagene / factor loadings None CCA Learned lower 

dimensional latent space 

Correction  
object KNN graph Count matrix Embedding Embedding Count matrix Embedding Embedding 

Correction  
method 

Umap on 
merged 
neighborhood 
graph 

Empirical bayes - 
linear correction 
method on the 
count values 

Soft k-means - linear 
batch correction within 
small clusters in the 
embedded space 

Quantile alignment of 
factor loadings 

Mutual nearest 
neighbors - linear 
correction 

Aligning canonical 
basis vectors to 
correct the embedding 
- lift the correction of 
the embedding to 
count space 

Variational autoencoder - 
models the batch effect in 
a low dimensional space 
using a deep learning 
model, a new count matrix 
is imputed from the model. 

Returns Corrected 
KNN graph 

Corrected count 
matrix Corrected embedding Corrected embedding Corrected count matrix Corrected count matrix Corrected count matrix 

and corrected embedding 

Changes  
Count 
matrix 

No Yes No No Yes Yes Yes / Imputes new values 

 
 
Table 1: Input is the type of data that that particular method uses as input. The method may perform additional preprocessing steps on the input object 
before any calculations are performed. Custom embedding is the particular lower level embedding, if any, which the data is projected onto. The correction 
object is the actual data object that the method uses to make corrections. The correction method is a informal description of the particular method used for 
batch correction. Returns is the type of object the method returns. Changes count matrix is whether the method edits or returns a new count matrix to be 
used insted of the uncorrected count matrix in any subsequent steps in the workflow. 
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Changes in cell type clusters 

 
The batch corrections performed can influence not only gene expression but the cluster 
assignment of each cell. To investigate the effects we annotated the clusters of the 
uncorrected dataset (Methods, Supplement) and then matched the clusters obtained after 
batch correction. Figure 2 shows the cluster confusion matrix and the imbalance of batches 
within clusters for each correction method. In many cases the corrected data was split into 
more clusters, in those cases we manually ordered the clusters to make the display as 
diagonal as possible.  
 

 

 
 
Figure 1 A: The fundamental steps of the batch correction workflow. Data is ingested in 
samples, combined and preprocessed in various ways, depending on the method. The data is 
then commonly projected onto a custom embedded space, possibly with lower dimension than 
the original data, where some correction takes place, correction can also be performed on the 
original count data or k-NN graph. The corrected object is then returned, depending on the 
method, a count matrix, lower dimensional embedding, NN graph etc. Downstream methods 
then use this corrected object. 
B: The general workflow of the evaluation conducted in this paper. SC rna-seq is split randomly 
into 2 batches. Batch correction methods are applied to these 2 pseudo batches. The change in 
the data, at different stages of the scRNA-seq workflow pipeline, is then measured to assess the 
change the act of batch correction has had on the data. 
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We find that Harmony, Combat, and Seurat show the least amount of  cluster confusion, and 
Harmony and Combat perform better on the imbalance between batches. BBKNN and MNN 
create more clusters, and some clusters show high imbalance, indicating an enrichment of 
batch effect creating a new cluster. On  the other hand, SCVI and LIGER create the largest 
change in cluster number and composition with several of the clusters created being clear 
batch effects.  Additional numerical evaluations of changes in cell type cluster can be found in 
the supplement. 
 
Differential expression 
A common part of single cell RNA-seq workflow is finding those genes that are differentially 
expressed between some condition or state (Luecken and Theis 2019). One of the aims is to 
identify the marker genes that characterize clusters, that can then be used to identify one or 
more cell types that are represented in the cluster. We performed differential expression using 
MAST(Finak et al. 2015). 
 
In order to estimate the effect of batch correction on gene expression we examined the change 
in the differential expression after applying each method, we estimated the degree of change 
using the number of differentially expressed genes between two cell type clusters, before and 
after batch correction. We performed this comparison using two models, one with only the 
cluster type as a covariate and then one model with cluster and batch as covariates in MAST. 
 
We compare the methods using the PBMC3K data and the Mouse brain data. Additionally, to 
establish a positive control for this comparison, we simulate a true batch effect, by reducing 
the expression of the top 100 differentially expressed genes within a cluster for one of the 
batches. 
 
For PBMC3K we found differentially expressed genes between B-cells and CD8+ T-cells, in 
the original dataset this resulted in 179 and 153 differentially expressed genes using cluster 
or cluster and batch as a covariated respectively (Figure 3A). MNN and Seurat report over 
800 differentially expressed genes, indicating that the batch correction leaves a statistically 
significant trace on the gene expression that will result in too many false positives. COMBAT 
finds an unusal number of statistically significant genes when correcting for the batch covariate, 
this turns out to be driven by the fact that COMBAT performs batch correction independent of 
clusters or the KNN graph (Supplementary). Overall, SCVI finds a similar number of 
differentially expressed genes, but has a lower overlap with the results from original dataset. 
BBKNN, recovers 90% of the differentially expressed genes, but Harmony has the best 
performance overall.  
 
MNN, Seurat and SCVI perform better on the Mouse brain data compared to the PBMC3K 
data. BBKNN and LIGER perform worse. Similarly to the PBMC3K dataset, Seurat and MNN 
report a considerably higher number of differentially expressed genes compared to the other 
methods. For all the methods tested we see an improvement when using the clustering 
created on the uncorrected data. 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.19.585562doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.19.585562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 2: Confusion matrix of Leiden cell type clustering for the PBMC3K data. On the left the squares are colored by number of cells.  On the right the 
coloring is by the ratio of cells in batch 1 with the color intensity altered by the number of cells in that square . On the y axis the cell types before batch 
correction and on the x are the cell types after. The best case result here is only values on the diagonal, where cells in a certain cell type cluster remain 
with the cells they shared a cluster with, after correction and for all ratios on the graph on the right to be 0.5.  
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Figure 3: A: Number of statistically significant genes, out of the 2000 most variable, in the PBMC3K dataset. The best result here being those closest to 
the unaltered original data. B: Number of statistically significant genes, out of the 2000 most variable, in the PBMC3K dataset, when using the original 
uncorrected count data but with clusters calculated on the corrected count data. C: Percentage of the statistically different genes after correction in the 
PBMC3K dataset, that are also found in uncorrected data for the cluster only model. The color indicates which count matrix was used for modelling. For 
uncorrected counts the uncorrected count matrix was used for the model testing but with cell type clusters calculated on the corrected count matrix. A 
lower ratio indicates that the process of batch correction alters the genetic expression profiles of clusters. D,E and F, respectively, are the same but 
created using the Mouse brain dataset.  
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To isolate whether the differences between the results on the original dataset and the batch 
corrected versions, we repeated the differential expression analyses, but used the uncorrected 
count matrices and the cluster assignments from the batch corrected datasets. Comparing 
panels A and B for the PBMC3K dataset and panels D and E for the Mouse brain dataset in 
Figure 3 we see that the poor performance of MNN, Seurat and COMBAT is driven by the 
modifications of the count matrix rather solely the cluster assignments, whereas Harmony, 
Liger and BBKNN do not adjust the count matrix. 
 
We repeated the analysis on the PBMC3K and Mouse brain datasets with batch effects 
simulated an identified the same patterns as in the absence of batch effects (Supplement).  
 
Nearest neighbor rank – embeddings 
The KNN graph is a fundamental object that is used as input in several widely used algorithms 
in single cell RNA-seq data analysis, e.g. graph based clustering (Leiden) and the creation of 
UMAP figures. Thus, we want to measure the extent of the change in the neighborhood 
composition of cells, created by the process of batch correction.  

 
Comparing the rank displacement in the lower dimensional embedding, we see that, Combat 
and Harmony consistently have the smallest rank displacement, while SCVI, Liger and MNN 
have the highest displacement, representing on average no overlap between the top 30 
neighbors.  
 
These comparisons use dimensionality reduced data, top 50 PCA components for count-
based methods (Combat, MNN, Seurat), corrected embedding (Harmony, Liger, SCVI), while 
BBKNN was left out since it alters the KNN graph, but not the distances required to order 
neighbors. 

 
Figure 4: A:The PBMC3K data, B: Mouse brain data, Median change in absolute rank difference 
for the top 30 nearest neighbors of each cell for each method in the lower dimensional 
embedding, after batch correction.  
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We observe a similar performance of the count-based methods, when the rank displacement 
is computed on the full count matrix, rather than a lower dimensional embedding (Supplement). 
 
 

Discussion 
 
We tested seven methods for batch correction and by constructing randomized pseudo 
batches, we examined the degree of change, in various metrics, before and after batch 
correction.  
 
Overall we see that the methods tend to fall in 3 categories of performance. Combat and 
Harmony perform the best or close to it in all the evaluations we perform. Those two methods 
introduce the fewest artifacts into the data during the process of batch correction. Seurat 
introduces artifacts that are more easily identifiable, but seems to retain the overall structure 
of data when comparing clusters. Finally, MNN, SCVI, LIGER and BBKNN, all introduce a 
significant change that alters local neighborhood structure, clusters and differential expression 
results.  
 
While Combat performs well in the tests performed in this paper, it has been found to be 
outperformed by more modern methods when it comes to removing batch effects (Haghverdi 
et al. 2018) (Tran et al. 2020). Harmony is well suited for a variety of integration with a low 
amount of artifacts being introduced, in cases where there is little batch difference.  
 
The role of batch correction in single cell RNA-seq analysis it twofold. First, we want account 
batch effect so that cells of the cell type are clustered together in the combined dataset. 
Second, after forming clusters, we need to account for the batch effect in other downstream 
methods, e.g. differential expression or finding marker genes. 
 
The count-based methods, MNN, Seurat, and Combat, aim to solve both problems by altering 
the count matrix, whereas the other methods only tackle the first issue. Based on our results 
we can only recommend Harmony for general purposes since it performs the best all metrics. 
While Harmony does not correct the count matrix, the batch covariate can be used as input in 
statistical methods, e.g. MAST, to account for the batch effects. 
 
In general, we would advise future method developers to focus solely on correcting local 
structure for batch effects and use classical methods to account for batch effects in statistical 
tests. 
 

Methods 
Simulated data 
 
We simulated a difference in expression level for a particular cell type by performing ad hoc 
clustering and reducing the UMI counts by 50%, before any normalization or correction, for 
the top 100 most differentially expressed genes. The clusters modified were microglial cells in 
the mouse brain dataset and in B-cells in the PBMC3K dataset. 

Analysis workflow 
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For all the datasets we used Scanpy (Wolf et al. 2018) to perform basic preprocessing. In 
addition to filtering out cells with few detected genes, and genes detected in few cells, cells 
with high fraction of mitochondrial counts were also removed. Library size normalization was 
then performed before log-transformation. In the case of the mouse brain data, in addition to 
this the data was scaled and variation was regressed out.  
 
To standardize the comparison the same 2000 highly variable genes, calculated on the 
uncorrected data, were used as input except in the case of the the alternative workflows of 
LIGER and Seurat, where we find the most variable genes using methods provided in the 
libraries themselves, as is recommended by the authors (Butler et al. 2018) (Welch et al. 2019). 
This alternative comparison is presented in the supplement. 
 
A k-NN graph was created using the PCA embedding using Scanpy with default values. 
Following that cell clusters were calculated using the Leiden algorithm with default settings 
(Traag et al. 2019).  
 
Each step in the workflow was run in Scanpy or a python library if possible. For those batch 
correction methods that only provide libraries in R, the preprocessing was performed in python 
then the batch correction was run in R using Seurat where possible. All the datasets were kept 
in the Anndata format in python (Virshup et al. 2023). The data was exported to files and 
imported in R when required.  
 

Downsampling 
To estimate a baseline of technical variation to expect when integrating datasets with different 
modalities we compare our results to simulated batch effects with downsampling. Our aim is 
to provide a lower bound of change in our evaluation criteria. We want to evaluate if the batch 
correction methods alter the data more than simply downsampling one batch and using the 
combined data without additional correction. For the Heart and PBMC4K Fastq files, we 
downsampled the data using BUStools (Melsted et al. 2019).For both datasets we 
downsampled the reads of all cells within one batch to 50%. To standardize these results we 
used only cells found in one of the pseudo batches in the original uncorrected dataset. There 
is therefore no cell filtering performed on the Anndata file created using the downsampled 
BUS files. 
 
For each method there exists a plethora of different configurations and parameters that can 
be configured to adapt the method to different scenarios. In this case the default parameters 
were used whenever possible. In some cases we selected parameters to enable easier 
comparison between the different methods, e.g. selecting the top 2000 most variable genes 
instead of using the default method in Scanpy. This ensured that for each method the number 
of highly variable genes was the same. Additionally, whenever possible we provided a seed 
to make a randomized method return deterministic results.  
 
Evaluation criteria 
Change in nearest neighbor rank 
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Neighborhood structure is an important part of downstream analysis in scRNA-seq. The 
neighborhood of different cells allows us to get an understanding of the local structure. 
Commonly a k-NN graph is created to define the k nearest neighbors of each cell for all 
cells.  An important downstream result that depends on the k-nn graph is the cluster analysis. 
The commonly used leiden (Traag et al., 2019) method uses the NN graph to perform 
clustering. In each case the k-NN graph was calculated using the default parameters in 
Scanpy. 
 
In order to measure the effect that the batch correction methods have on the nearest neighbor 
structure we examine the location or rank, in terms of order of closest to furthest, of nearest 
neighbors of each cell before and after batch-correction. For those methods that change the 
count matrix we use the log normalized count matrix to calculate the change in NN rank. The 
neighborhood structure is commonly determined in some lower dimensional space. In order 
to get a concise measure of the extent of the nearest neighbor displacement we additionally, 
examine the change in nearest neighbor structure in the lower dimensional embedding. We 
compare the NN rank on the PCA embedding on the uncorrected data to a PCA embedding 
created on the corrected count matrices, except in the case of Harmony, LIGER and SCVI, 
which return a corrected embedding that is used for comparison. 
 
We calculate the following for each cell i and nearest neighbor(NN) j. 
 

𝑚𝑒𝑑!"(𝑎𝑏𝑠(𝑟𝑎𝑛𝑘+𝑁𝑁#$- − 𝑟𝑎𝑛𝑘+𝑁𝑁#$∗ -) 
 
Where 𝑚𝑒𝑑!" is the median over the top 30 nearest neighbors and 𝑟𝑎𝑛𝑘(𝑁𝑁#$∗ ) is the rank of 
the j-th NN of cell i after batch correction. 

Differential expression 
 
In order to assess if batch correction methods have an effect on differential expression results 
we compare the number of statistically different genes  between 2 distinct cell clusters in the 
data, before and after correction. As we only tested the top 2000 most variable genes, the 
maximum number will be 2000. For the PBMC3K dataset we compared clusters that 
represented B-cells and CD8+ T-cells. For the mouse brain data we considered smooth 
muscle cells and microglial cells. These cell types were chosen because they have highly 
differentially expressed, unique markers (Tasic et al. 2016) (Li et al. 2022). 
 

 
Figure 5: We see a NN graph of the center cell c, in blue, before and after batch correction. Before batch correction the 
orange cell has a rank of 1, i.e. it is the closest neighbor to cell c. After batch correction it has a rank of 7. We define rank 
displacement as this change in NN rank. 
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We used 2 different MAST models and each model is then run for each gene. We use as input 
into  the model, only on the cells in the clusters being compared. The MAST model is a two-
part hurdle model that models the rate  and level of expression for cells for each gene. Which 
allows for the controlling of covariates. We included batch and cluster as covariates to assess 
the statistical significance of each on gene expression. The models we implemented are as 
follows: 
 

𝑌	~	𝑐𝑙𝑢𝑠𝑡𝑒𝑟 
𝑌	~	𝑏𝑎𝑡𝑐ℎ	 + 	𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

 
 
A likelihood-ratio test(LRT) is then performed to assess the significance of the covariate in 
question. The cluster covariate in the cluster only model, and then both covariates in the batch 
and cluster model. An LRT is performed for each gene. 
 
 We used as a ground truth, the genes determined to be differentially expressed in the original 
dataset without any batch correction. For each batch correction method we determined the 
differentially expressed genes between the two clusters. The clusters used the analysis were 
chosen as the two clusters that have the same particular marker genes as the clusters in the 
original dataset. We also performed the differential expression analysis using the exact set of 
cells as in the analysis without batch correction. Finally, we repeated the differential 
expression analysis using the cluster assignment from batch corrected data, but the original 
count matrix as input to MAST. 
 
As an additional comparison of the effect of correcting the original count matrix, we run the 
same models using MAST, but instead of using the corrected count matrix we use the 
corrected cluster assignments provided by the methods or calculated after using the methods, 
but the count matrix contains the uncorrected original counts.  
 
 
 
Data access 
Publicly available datasets from 10X Genomics were used for analysis and simulations.The 
PBMC3K  data is derived from Peripheral blood mononuclear cells from a healthy donor, 
generated by 10x Genomics, with a sequencing depth of 69000 reads per cell. The Mouse 
brain dataset is derived from brain tissue of two E18 mice, with around 18500 reads per cell. 
We use a 20k cell sample provided by 10x Genomics. The PBMC4K dataset is similar to the 
PBMC3K dataset except the sequencing depth is higher at around 87000 reads per cell. The 
Mouse heart data was derived from the whole heart of a mouse, with a sequencing depth of 
around 83000 reads per cell. All code used to perform the analysis is available at 
https://github.com/pmelsted/AM_2024  
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