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Abstract 13 

Cellular anatomy and signaling vary across niches, which can induce gradated gene expressions in 14 
subpopulations of cells.  Such spatial transcriptomic gradient (STG) makes a significant source of intra-15 

tumor heterogeneity and can influence tumor invasion, progression, and response to treatment. Here we 16 
report Local Spatial Gradient Inference (LSGI), a computational framework that systematically 17 
identifies spatial locations with prominent, interpretable STGs from spatial transcriptomic (ST) data. To 18 
achieve so, LSGI scrutinizes each sliding window employing non-negative matrix factorization (NMF) 19 
combined with linear regression. With LSGI, we demonstrated the identification of spatially proximal 20 

yet opposite directed pathway gradients in a glioblastoma dataset. We further applied LSGI to 87 tumor 21 
ST datasets reported from nine published studies and identified both pan-cancer and tumor-type specific 22 
pathways with gradated expression patterns, such as epithelial mesenchymal transition, MHC complex, 23 
and hypoxia. The local gradients were further categorized according to their association to tumor-TME 24 
(tumor microenvironment) interface, highlighting the pathways related to spatial transcriptional 25 

intratumoral heterogeneity. We conclude that LSGI enables highly interpretable STG analysis which can 26 
reveal novel insights in tumor biology from the increasingly reported tumor ST datasets. 27 

  28 
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Introduction 29 

Tumor tissues contain heterogeneous cell populations with distinct transcriptional, genetic, and 30 
epigenetic features in complex cellular microenvironment1–3. Dissecting such multifactorial intratumoral 31 
heterogeneity (ITH) is fundamental to understand tumor initiation, metastasis, and therapeutic 32 
resistance4–10. One source of transcriptional variation in cells is their microenvironments, which shape 33 

the gene expression through different ways, such as cell-cell communication (e.g., ligand-receptor 34 
signaling) or local signaling cues (e.g., pH, oxygen, metabolites). As a result, some cells would display 35 
gradated transcriptional variation along with their spatial localizations, therein termed ‘spatial 36 
transcriptomic gradient’ (STG). Identification of STGs can greatly enhance our understanding of spatial-37 
phenotypic relationship of cells, enhancing discovery of multicellular signaling11 that are elusive in 38 

current cell-type-centric investigations. For instance, oxygen gradient has been shown to shape intra-39 
tumoral heterogeneity affecting tumor proliferation in over 19 tumor types12–14. 40 

The development of spatial transcriptomics (ST) technologies15–17 allows simultaneous characterization 41 
of gene expressions and tissue context of cells in a high-throughput manner, and thus provide sufficient 42 
information for systematic identification of STGs in tissue samples. For instance, hallmark pathway 43 

gradients have been observed across tumor-TME boundary in liver cancer slides along the pre-defined 44 
axis perpendicular to that boundary18. However, there is an unmet analytical need to perform de novo 45 
discovery of STGs without prior pathological annotations, and to discover molecular-spatial 46 

heterogeneity beyond apparent pathological annotations.  To our best knowledge, no method exists that 47 

can detect simultaneously the existence and direction of STGs, which can vary abruptly and substantially 48 
across neighboring niches. Trajectory inference (TI) approaches19,20 developed for single-cell 49 
transcriptomic data analysis cannot be readily applied due to their assumptions on continuity.  50 

Here, we report a novel computational framework, LSGI (Local Spatial Gradient Inference), that 51 
performs de novo detection, characterization, and visualization of STGs from ST data. LSGI aims at 52 
reconstructing salient STGs across spatial niches. As a highly flexible framework, LSGI combines cell 53 
phenotype quantification (e.g., pathway activity) with linear models to simultaneously detect the 54 
existence and direction of linear spatial gradient in each small niches. It applies NMF to derive 55 
quantitative, interpretable cell phenotypes from the gene expression matrix of a ST data. We 56 
demonstrated the utility of LSGI in detecting STGs of different cell phenotypes in tumor samples with 57 
aberrant cellular composition and tissue reorganization.  In particular, we revealed spatial proximity of 58 
different phenotypes, highlighting an opposite-directed gradient of neural progenitor-like phenotype and 59 
hypoxia phenotype in the intratumoral region of a glioblastoma sample. We further applied LSGI to 60 
perform a meta-analysis on 87 publicly available tumor ST datasets from 9 studies. We identified a total 61 
of 356 NMF programs associated with STGs and grouped nearly 3/4 of them to 19 meta-programs (MPs). 62 
Some of the MPs were shared by multiple tumor types, while others were tumor-type-specific. About 63 
1/4 of the NMF programs were characterized as sample-specific programs, highlighting inter-patient 64 
heterogeneity. We further categorized the programs based on their spatial association with tumor region, 65 
normal region or boundary regions and highlighted NFKB-TNFA signaling pathways as recurrent 66 
gradated programs associated with spatial ITH in different glioblastoma samples, which has been 67 
reported as a mechanism employed by GBM cells to enhance their resistance21.  All the processed data 68 
of this meta-analysis have been made publicly accessible (https://zenodo.org/records/10626940), and we 69 

provide R code to assist visualization and interpretation of the phenotypic gradients. Finally, we report 70 

LSGI as an open source R package https://github.com/qingnanl/LSGI.  71 

 72 

Results 73 
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Overview of the LSGI framework 74 

The main purpose of LSGI is to characterize spatial transcriptional gradient (STGs) of cells by answering 75 
three major questions: first, where does such gradient exist on the spatial map; second, what is the 76 
direction of the gradient; and third, what is the functional interpretation of the gradient (Figure 1A). To 77 
achieve this goal, LSGI by default employs NMF to factorize the collective gene expression profiles of 78 

all the cells or spots in a ST data into multiple programs (Figure 1B), including those delineating cellular 79 
compositions and those regulating cellular phenotypes. Through this step, cell loadings and gene loadings 80 
are calculated indicating the cell/spot-level activity of the programs and gene-level attribution to the 81 
programs, respectively. Since there is no prior information of the locality, linearity, and spatial mode 82 
(e.g., simple monotonical gradient or radial-like gradient) of the cells with STGs, we examine the spatial 83 

map with a slide-window strategy (Figure 1C), under which cells are grouped by spatial localizations in 84 
overlapping windows (Methods).  We then fit linear models using spatial coordinates as predictors and 85 
cell NMF loadings as target, for every NMF program and every group of cells (Figure 1D). R-squared is 86 
used to evaluate goodness of fit with larger values indicating existence of STGs. The direction of a 87 
gradient is determined by the corresponding regression coefficients. These steps create a map containing 88 

the localization and direction of STGs as well as their assignment to one or more NMF programs. We 89 

then functionally annotate the programs by statistical methods (e.g., hypergeometric test) utilizing 90 
curated functional gene sets (Figure 1E, left). And investigate the spatial relationships of gradients 91 
assigned to different programs, or the spatial relationship of gradients to tumor-TME boundary in tumor 92 
ST datasets (Figure 1E, middle and right).  93 

 94 

LSGI reveals intratumoral, opposite-directed gradients of cell phenotypes in a GBM dataset. 95 

To investigate the power of LSGI in dissecting tissue heterogeneity, we first applied LSGI to a 96 
glioblastoma (GBM) ST dataset22 (UKF243_T_ST). In this experiment, we empirically identified STGs 97 
as those with R-squared higher than 0.6, and visualized them as arrows on the spatial map, colored by 98 

their assignment to different NMF programs (Figure 2A). We also highlighted tumor-harboring spots 99 
(through aneuploidy analysis) with grey circles to elucidate the spatial relationship between the STGs 100 
and tumor-TME boundaries (Methods, “cross-sample analysis in 87 tumor ST datasets: preprocessing 101 
and tumor region annotation”). We found that different NMF programs have distinct loading and STG 102 
distributions over the map and the patterns often coincide with the tumor-TME boundaries (arrows) 103 

(Supplementary Figure 1A-D).  104 

We then quantified the mean physical distance between each type of the gradients, through which we 105 
noticed that some programs tend to colocalize, such as NMF_2 and NMF_4, or NMF_3 and NMF_5, etc. 106 
(Figure 2B, Methods). Interestingly, we observed that at multiple locations, the NMF_2 and the NMF_4 107 
gradients colocalize yet pointing towards opposite directions, as if they repel against each other. Similar 108 

patterns were seen among the NMF_3 and NMF_5 gradients (Figure 2D).  109 

To interpret these programs, we performed gene set enrichment analysis for each NMF program (based 110 
on top 50 genes by loading levels) through hypergeometric tests (Figure 2E). Interestingly, we found an 111 
enrichment of astrocyte and cell proliferation related terms in NMF_2 and NMF_3 (Supplementary 112 
Figure 2A and 2C) and the top genes include SLC1A3 and GFAP, markers of the previously defined ‘AC-113 

like’ tumor cell state 23.  On the other hand, we found an enrichment of hypoxia related terms for NMF_4 114 
and NMF_5 (Supplementary Figure 2B and 2D) with the top genes VEGFA, NDRG1 and ENO1, markers 115 
of previously reported ‘MES-hypoxia’ tumor cell state24. Our findings are consistent with a previous 116 
study that cells with hypoxia and migration phenotypes display opposite orientations22. While the 117 
previous findings relied on knowing the genes a priori, our findings were ab initio from the ST data. 118 
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Besides the shared pathways, we also discovered differentially enriched pathways between each pair. 119 
For example, although NMF_2 and NMF_3 both had astrocyte-related terms, NMF_2 had several 120 
intercellular interaction terms such as extracellular matrix organization, signaling receptor binding, etc., 121 
while NMF_3 programs related to neuron functions such as neurogenesis and neurotransmitter uptake. 122 
Similarly, although NMF_4 and NMF_5 both had hypoxia and glycolysis terms, NMF_4 specifically 123 

had blood vessel development related terms, while NMF_5 autophagy related terms, highlighting 124 
different reactions upon hypoxia signals. Our findings also imply that different phenotypes marked by 125 
the paired NMF_2/3 and the NMF_4/5 programs are functionally coupled to each other.  126 

 127 

Systematic analysis of 87 tumor ST datasets with LSGI 128 

To perform systematic tumor STG discovery, we further collected 87 ST datasets from 9 different studies 129 
(Table 1, Supplementary Table 1) including samples from a variety of tumor types. We performed LSGI 130 
independently on each sample (Figure 3A) and obtained at least one gradated NMF program greater than 131 
the empirical R-squared cutoff (>0.6) in 75 of the 87 datasets. From these NMF programs, we curated 132 

19 meta-programs (Figure 3B) after merging similar programs using an approach published previously25 133 

(Methods, “clustering NMF programs to meta-programs”). Some meta-programs consist of programs 134 
deriving from one tumor type or one study, while others were recurrent (Figure 3B, Supplementary 135 
Figure 3A-B). For each meta-program, we used the delta- Shannon entropy to quantify whether a large 136 
fraction of the meta-program was originated from a single tumor type or study (Figure 3C, Methods 137 
“calculation of compositional entropy”). Among the 19 meta-programs, 6 were identified as pan-cancer 138 

ones while the others were cancer type specific. We further annotated the meta-programs using 139 
functionally curated gene sets (Methods, Figure 3D) and visualized the loadings of the genes from 140 
assigned pathways in each program, grouped by the meta-program (Supplementary Figure 3C). Of 141 
particularly interest are the pan-cancer meta-programs related to EMT (epithelial mesenchymal 142 
transition), OXPHOS (oxidative phosphorylation), smooth muscle, extracellular matrix, and immune 143 

(MHC complex and B cell activation). The functional annotation of cancer-type specific meta-programs 144 
also showed consistency with prior knowledge, for example, MP-1 and MP-10 were related to 145 
keratinization, and they were solely originated from squamous cell carcinoma datasets. Moreover, MP-146 
4 was related to hypoxia and was mostly originated from GBM datasets. Many of the terms have been 147 
previously reported in cancer single-cell studies, such as EMT, MHC, hypoxia, neurogenesis, etc. About 148 

1/4 (90 out of 356) the programs were not clustered in meta-programs, highlighting the degree of intra-149 
tumoral heterogeneity. Full information of the factors, their meta-program assignment, and the functional 150 
annotation of the meta-programs are reported in Supplementary Table 2-3.  151 

We then sought to investigate whether the spatial locations of the STGs can inform tumor-TME tissue 152 

architecture. We performed the analysis in the following steps:  First, we annotated tumor spots with 153 

aneuploid copy number profiles using CopyKat (Methods, Supplementary Figure 4A); Second, with the 154 
tumor/normal spot annotation, we calculated a tumor ratio in each sliding window (Methods, 155 
“Calculation of tumor ratios for each local gradient”, Supplementary Figure 4B); Third, for a given STG 156 
(associated with one NMF program), we collect the tumor ratio in its constituent sliding windows and 157 
calculate the average. Intuitively, a low average tumor ratio indicates that the STG tends to appear within 158 

normal tissue regions, while a high ratio indicates that the STG tends to appear within tumoral regions. 159 
We demonstrate three examples representing low, medium, and high average tumor ratios, respectively 160 

(Figure 4A-C). In each panel, the overlaying dark grey circles represent data spots characterized as tumor 161 
region by CopyKat (Methods). Indeed, we found lower average tumor ratios indicated association to 162 
normal regions while higher values indicated association to tumor regions, and medium values to the 163 
tumor-TME boundary. We clustered the average tumor ratios for all the (356) programs and categorized 164 
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them into three tumor ratio clusters (TRCs, Supplementary Figure 5A-B), and we noticed differential 165 
proportion of TRCs among meta-programs (Supplementary Figure 5C). Here, we demonstrate a few 166 
examples of MP_14, annotated as TNFA signaling via NFKB. All four programs in this meta-program 167 
were from GBM datasets and three of them (UKF243_T_ST, NMF_6; UKF260_T_ST, NMF6; 168 
UKF255_T_ST, NMF_3) were enriched in intratumoral region (all belonged to TRC Cluster 3). We 169 

confirmed their localizations in intratumoral regions through visualization of the gradients and 170 
representative genes such as FOS, CD44, DUSP1, ZFP36, etc. (Figure 4D-E, Supplementary Figure 6A-171 
D). The activation of TNF-NFKB axis has already been revealed in several tumor types including the 172 
GBM21,26, while here, through a systematic analysis, we unraveled its association to spatial intratumoral 173 
heterogeneity, with consistency in several patient samples. Finally, all the LSGI outputs for these tumor 174 

datasets were made accessible (https://zenodo.org/records/10626940) and sample codes and detailed 175 
tutorials were available to the community to freely explore and visualize the data. 176 

Discussion 177 

In this study, we introduced a simple, flexible yet highly interpretable strategy, LSGI, for discovering 178 
spatial transcriptomic gradients in a ST data. Given the uncertainty of the existence and spatial variation 179 

of STGs, we employed a divide-and-conquer strategy by calculating local linear gradients in sliding 180 
windows, which collectively produce a STG map across the tissue. We demonstrated the utility of LSGI 181 
for both in-depth, single dataset analysis and cross-sample meta-analysis using 87 tumor ST datasets. 182 
Without any prior knowledge, from merely 87 samples, LSGI was able to identify gene expression 183 
programs consistent with prior cancer studies and discover patterns indicative of spatial transcriptional 184 

heterogeneity on each tissue slide, providing novel functional annotations and insights that would 185 
otherwise be missed by the current ST data analysis practices27 (cell clustering and annotation, spatial 186 
niche assignment, spatially variable gene analysis, etc.), or manual, image-based annotations. Compared 187 
to the approaches that summarize spatial data into static spatial domains, we showed that spatial gradient 188 
approaches were capable of deconvoluting the tumor state dynamics in the spatial context. As we showed, 189 

some tumor regions could be associated with different types of phenotypical gradient at various levels, 190 
while assignment of such regions to a single niche/domain would likely lose such dynamical view. 191 
Moreover, the development of LSGI also enables association analysis between STGs and 192 
pathological/morphological annotations to deepen our knowledge of molecular pathology. 193 

We demonstrated the utility of LSGI on sample datasets generated by 10X Visium and an early version 194 

of spatial transcriptomics28, as they have whole-transcriptomic coverage thus enabling unbiased 195 
functional interpretation of NMF programs. The spatial resolution of those technologies, however, can 196 
limit the power of discovery and confound the result due to cell admixing in spots. This is a limitation of 197 
the data, not of LSGI. The LSGI framework can be applied agnostically to technologies, as the only 198 
required inputs are spatial coordinates and gene expression levels. As single-cell resolution whole 199 

transcriptomic ST technologies29 becomes increasingly available, we expect a relatively straightforward 200 
adaption of LSGI into new technologies. Lastly, although not demonstrated in this study, LSGI can easily 201 
fit three-dimensional ST data analysis through adding an additional ‘Z’ coordinate to the linear regression 202 
step.  203 

Noticeably, several other methods30–32 also aimed to detect gradated signals in ST data. While these 204 

methods focus largely on inference of global spatiotemporal trends from continuous gene expression 205 
data, LSGI focuses on detecting interpretable, phenotypically salient gradients factorizable by NMF. We 206 

propose that caution needs to be taken when attempting to use all cells/spots to infer a ‘global’ gradient, 207 
because when no biologically meaningful gradients are present (for instance, distinct cell types mixed 208 
together in some regions of complex tissues), trajectory inference method may overfit the data. To this 209 
end, LSGI benefits from its design that the existence of each local gradient is assessed by how well the 210 
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local linear model fits the data. In practice, we found that many regions on ST data do not have salient 211 
gradients of any programs. In the meta-analysis approach of this study, 12 of the 87 tumor samples had 212 
no salient gradient identified. Finally, LSGI is benefited from its utilization of NMF to extract 213 
transcriptional phenotypes from the expression matrix because NMF has been shown capable of 214 
capturing biological signals33 and have been widely applied in single-cell or ST studies25,34–38. The 215 

employment of NMF not only enhances the interpretability of LSGI, but also allows effective cross-216 
sample comparison of the programs, as was previously reported, which laid the basis of our meta-analysis 217 
approach to find recurrent STGs in different tumors. Thus, we believe that LSGI serves as a powerful 218 
and complementary approach to the other methods targeting alternative scopes and resolution. 219 

Although by default, LSGI uses basic NMF to factorize gene expression programs, the LSGI framework 220 

is flexible and can accommodate variants of NMF methods, such as cNMF39, iNMF40, and jNMF41, or 221 
other types of cell phenotypic quantification, such as pathway activity measurements42,43 to calculate 222 
their spatial gradients. We do recommend using NMF if no assumptions were made, and if the users 223 
required a systematic, unbiased analysis. For datasets generated with targeted ST technologies44,45, we 224 
suggest that users be cautious in annotating the NMF programs as the gene set (panel) may be biased 225 

towards some pathways due to biased selection of genes.  226 

 227 

Methods 228 

The LSGI framework 229 

The main LSGI framework starts from clustering spots (or cells for datasets with single-cell resolution; 230 
we would refer to this unit as cell in the following description for simplicity) into small groups solely 231 

based on their localization. The number of groups 𝑃 is controlled by a parameter 𝑆, that 𝑃 =  
𝑁

𝑆
 , where 232 

𝑁 is the total number of cells. By default, 𝑆 is set to 5, while the group size 𝑄 is set to 25. Thus, each cell 233 

is included in 
𝑄

𝑆
= 5  groups on average. The selection of 𝑄  controls the resolution of the gradient 234 

detection. Setting a smaller 𝑄  would let the LSGI program examine linear gradients within smaller 235 

window sizes (higher resolution) while also has the risk of reduced robustness to noise due to smaller 236 
sample sizes in multivariate regression. We also require such groups of cells to be tiling for reducing 237 
unwanted effects of arbitrarily determining the groups by suggesting a smaller 𝑆 than 𝑄. To achieve such 238 

tiling, we used the ‘balanced_clustering function in the ‘anticlust’ R package46 to cluster cells into 𝑃 239 

groups based on the spatial coordinates and determine a grid point at the center of each cluster. We then 240 
search for the 𝑄 nearest neighbors among cells to each grid point, based on Euclidian distance, thus 241 

forming the groups.  242 

By default, LSGI take NMF embeddings of cells as the input. The NMF step is not incorporated in the 243 
LSGI framework as many NMF implementation have been reported and we want to offer this flexibility 244 
to users. All the NMF step involved in this work used the NMF implementation of the singlet R 245 
package47.  246 

With the group and NMF information, a linear regression is performed for each NMF program in each 247 
group: 𝐹𝑖𝑗 ~ 𝑋𝑖 + 𝑌𝑖 . 𝐹𝑖𝑗 is the loading of the cells from the 𝑖th group of the 𝑗th NMF program. 𝑋𝑖 and 248 

𝑌𝑖  are the spatial coordinates of the 𝑖th group of the cells. The regression coefficients 𝛽𝑋𝑖𝑗  and 𝛽𝑌𝑖𝑗 249 

determine the most likely gradient direction of this program 𝑗  in the group 𝑖 , while the 𝑅2  of this 250 

regression represents the largest explanatory capability of spatial effects on the cell loadings of program 251 
𝑗. Such processes are performed iteratively for all NMF programs and all cell groups. Although 𝑅2 has 252 
a clear statistical meaning, the selection of its threshold could be empirical given different contexts. In 253 

this study, we only treated the cases where 𝑅2 ≥ 0.6 as valid gradients and these were retained for further 254 
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analysis. As 𝑅2 equals to 0.5 often treated as a moderate goodness of fit and our rationale was to call the 255 

gradient where a slightly higher proportion of the molecular signal (NMF loadings) explained by the 256 
spatial localization. Additionally, we only retain programs with gradients in at least 5% of total grid 257 
points. For the ‘arrow’ visualization (such as Figure 2A), the arrow directions are pointing to increased 258 
program signals (such as Figure 4D). Please note that it is possible that one group of cells can have 259 

different gradients assigned to different NMF programs (usually gradated to different directions).  260 

Furthermore, the LSGI package offers a strategy to estimate the overall distance between two types of 261 
gradients (as is shown in Figure 2B): 262 
Overall distance from a gradient 𝐴 to gradient 𝐵, 𝐷(𝐹𝐴, 𝐹𝐵), is calculated:  263 

𝐷(𝐹𝐴, 𝐹𝐵) = 𝑚𝑒𝑎𝑛(𝑑𝐴1
𝐵 , … , 𝑑𝐴𝑖

𝐵 ), 𝑖 = 1, 2, 3, … , 𝐾;  264 

𝑑𝐴𝑖
𝐵 = min(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐺𝐴𝑖 , 𝐺𝐵1), . . . , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐺𝐴𝑖 , 𝐺𝐵𝑗)) , 𝑗 = 1, 2, 3, … , 𝐿 265 

K is the number of grid points (𝐺) with gradated program 𝐴, L is the number of grid points with gradated 266 

program 𝐵, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 here is Euclidean distance. In short, for each grid point 𝑖 with program 𝐴 (𝐺𝐴𝑖), we 267 

find the closest grid point with program 𝐵 and record that distance (𝑑𝐴𝑖
𝐵 ). We then use the mean of this 268 

distance of all grids with program 𝐴 as an overall evaluation of closeness from gradient 𝐴 to gradient 𝐵. 269 

Please note here 𝐷(𝐹𝐴, 𝐹𝐵)  ≠  𝐷(𝐹𝐵, 𝐹𝐴).  270 

LSGI is an efficient program that the main gradient inference step takes less than 1minute for each dataset 271 
in our practice (roughly 3000-8000 spots per dataset, 16 GB RAM MacOS laptop). The LSGI R package 272 
has been tested on MacOS (Ventura 13.6), Windows (Windows 11), and Linux (Redhat Enterprise) 273 
systems.  274 

Cross-sample analysis in 87 tumor ST datasets: Preprocessing and tumor region annotation 275 

All the ST datasets were curated and converted to Seurat objects and were preprocessed following the 276 
SeuratV448 workflow, including normalization, scaling, dimensionality reduction (with PCA) and 277 
clustering, with default parameters. NMF was performed with the singlet R package47, scanning the 278 
number of factors 𝑘  with a range from 6 to 10. The final 𝑘  value was decided by cross-validation 279 

implemented in the same package. Tumor regions of ST datasets were inferred using CopyKat49 with 280 
automatically determined normal cell references. Given the prevalence of immune cells in tumor 281 
samples, we sought to use immune cells as the normal cell references (Supplementary Figure 4A). We 282 
quantified the expression of a set of immune related genes (CD3E, CD8A, GZMK, CD4, CCR7, GZMB, 283 
FCER1G, LHDB, DUSP2, IL7R, S100A4) at the single-cell level, and then treat the cluster (from Seurat) 284 
with the most top immune-related cells (top 100 cells with highest immune gene expression) as the 285 
normal cell reference. The other parameters were default for CopyKat.  286 

Calculation of tumor ratios for each local gradient 287 

With the annotation of tumor spots, we could obtain the tumor ratio for each grid point (Supplementary 288 

Figure 4B). For a gradated NMF program of a dataset, we collected the tumor ratio for all grid points 289 
where it showed gradient (𝑅2 ≥ 0.6) and used the average tumor ratio to concisely summarize the spatial 290 
relationship between that program and tumor core, normal tissue, or tumor-TME boundary. To cluster 291 
programs into different tumor ratio clusters (TRCs), equal-weighted one-dimensional K-nearest 292 
neighbors clustering were applied (Supplementary Figure 5A-B). 293 

Clustering NMF programs to meta-programs 294 

We then applied LSGI separately on each dataset and combined the output for an integrative analysis. 295 
We retained only the gradated NMF programs in at least 5% of the total grid points for each dataset. We 296 
then clustered the remaining NMF programs following a previously reported approach25. Briefly, each 297 
cluster of the programs started from a founder program that having the most high-overlapping cases (over 298 
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20 overlapping genes among top 50 with highest loadings) with other programs (at least two other 299 
programs). The founder program would then be clustered with the program with highest overlapping 300 
genes (and at least 20 overlapping genes), and this meta-program will be assigned a 50-gene signature 301 
based on their appearance in the top 50 of each program and their loadings of the original NMF program. 302 
The cluster would further grow iteratively following such rules until no programs can be merged into it. 303 

Such processes would then start again in the rest of the programs until no founder programs could be 304 
identified, and the program left would be assigned to the ‘Unclustered’ group. Thus, each meta-program 305 
(except the ‘Unclustered’) was be summarized as a 50-gene signature which facilitated the functional 306 
annotation of the meta-program.  307 

Calculation of compositional entropy 308 

To quantify whether a meta-program was formed by programs from specific study or tumor types, we 309 
calculated the delta-Shannon entropy for each meta-program. The Shannon entropy for each program is: 310 

− ∑ 𝑝(𝑥𝑖)log [𝑝(𝑥𝑖)]𝐶
𝑖=1 . 𝐶 is the number of categories (tumor type or study), while 𝑝(𝑥𝑖) here is the 311 

fraction of meta-program originated from the 𝑖 th category. We then shuffled the category labels 312 

randomly and calculated the simulated random entropy and subtracted the average random entropy (10 313 

times simulation) from the real entropy to obtain delta-Shannon entropy. Such measurement reflect how 314 
likely a meta-program is composed of programs from different categories with the same probability.  315 

Functional annotation of NMF programs and MPs 316 

For functional annotation of NMF programs, we tested the enrichment of functional gene sets in the top 317 

50 genes in each program with highest loadings, while for meta-programs, the 50-gene signatures were 318 
directly used. The hypergeometric tests were performed with the R package hypeR50. Several functional 319 
gene sets were combined as the input: Gene Ontology51 (Biological Process, Molecular Function, and 320 
Cellular Component), MSigDB Hallmarks52, and Canonical Pathways from MSigDB C2 collection53. To 321 
decide the annotation of meta-programs, we first reduce the hypergeometric test results to top 40 gene 322 

set for each meta-program based on adjusted p-value (false discover rate adjusted), and further reduce 323 
the result to top 5 based on cross-program specificity. The specificity score for gene set 𝑖 of meta-324 

program 𝑝 is calculated by 𝐸𝑖𝑝 − (∑ 𝐸𝑖)𝑛
𝑖≠𝑝 (𝑛 − 1)⁄ . Here 𝐸𝑖𝑝 is the negative log-transformed adjusted 325 

p-value for gene set 𝑖 enrichment of meta-program 𝑝 (hypergeometric test). Full functional annotation 326 

results are available in Supplementary Table 3. 327 

 328 

Data Availability 329 
A summary of ST datasets is included in Supplementary Table 1. Most of the datasets were downloaded 330 
from the SODB curation (Barkley202234, Bergenstrahle202154, Berglund201855, Gouin202156, 331 
Gracia202157, Ji202058). 10x datasets were downloaded from the 10x Genomics website. WuPLC18 332 

datasets were downloaded from https://ngdc.cncb.ac.cn/gsa-human/browse/HRA000437. RaviGBM22 333 
datasets were downloaded from https://datadryad.org/stash/dataset/doi:10.5061/dryad.h70rxwdmj.  334 

The LSGI processed data (87 tumor datasets) are available in https://zenodo.org/records/10626940. 335 
Sample analysis code (https://zenodo.org/records/10626940/files/LSGI-annotation-and-visualization-336 
demo.html?download=1) are available for users to visualize and explore the data. 337 

 338 
Code Availability 339 
LSGI is an open source R package hosted in GitHub: https://github.com/qingnanl/LSGI. The code used 340 
for analyzing the tumor ST data (preprocessing, running LSGI, and downstream analysis) is available 341 
at https://github.com/qingnanl/LSGI_manuscript_code/ .   342 

 343 
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Tables 359 

Study Name Number of datasets Cancer type(s) 

Barkley2022 10 BRCA (breast cancer), 

GIST (gastrointestinal 

stromal tumor), LIHC (liver 

hepatocellular carcinoma), 

OVCA (Ovarian cancer), 
PDAC (pancreatic ductal 

adenocarcinoma), UCEC 

(uterine corpus endometrial 

carcinoma) 

Bergenstrahle2021 8 IC (intestine cancer), 
SquaCC (squamous cell 

carcinoma) 

Berglund2018 14 ProsC (prostate cancer) 

WuPLC 7 PLC (primary liver 

carcinoma) 

Gouin2021 4 BladC (bladder cancer) 

Gracia2021 4 OVCA 

Ji2020 16 SquaCC 

tenx 6 BRCA, CERVC (cervical 
cancer), IC, OVCA, PACC 

(prostate cancer, 

adenocarcinoma with 

invasive carcinoma), ProsC 

RaviGBM 18 GBM (glioblastoma) 

 360 

Table 1. A brief summary of the 87 datasets used for cross-sample analysis with LSGI. 361 
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Figures and legends 363 

 364 

Figure 1. The LSGI framework and downstream analysis. 365 

A. Demonstrative plot showing existence of cell phenotypic gradient, summarized by some molecular 366 
programs, on a spatial map of tissue. Dark blue color demonstrates higher activity levels of the molecular 367 
program. Arrows indicate the direction of gradients. 368 

B. LSGI employs NMF to summarize the gene expression of cells into programs. 369 

C. LSGI partitions cells into small groups based on their spatial localizations. One cell can be assigned 370 

to multiple groups.  371 

D. Linear regression is performed in each spatial group of cells by fitting the loading of each NMF 372 
program with X and Y coordinate. R-squared is used to evaluate the performance of the regression, while 373 
the regression coefficient determines the direction of the local gradient. 374 
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E. Downstream analysis on LSGI outputs: functional interpretation of gene programs (left), spatial 375 
proximity of different gradients (middle), and spatial proximity of gradients with other biological factors, 376 
such as the boundary of tumor core. 377 

 378 
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Figure 2. Application of LSGI on single ST dataset. 380 

A. Visualization of LSGI output on the spatial map (dataset: UKF243_T_ST from the RaviGBM study). 381 
Each rhombus represent a data spot (10x Visium technology) while the overlaying dark grey circles 382 
represent data spots characterized as tumor region. Each arrow indicate the presence of a gradient and 383 
the colors represent different NMF program of this gradient. Arrows directions indicate the direction of 384 

gradients. 385 

B. Spatial proximity of different gradients. The colors represent the log-transformed distance from the 386 
NMF program in a row to the program in a column. Here the distance is the real physical distance. Notice 387 
that this matrix is not symmetric (Methods).  388 

C-D. Visualization of the proximal NMF program pairs (C: NMF_2/4; D: NMF_3/5). Each arrow 389 
indicate the presence of a gradient and the colors represent different NMF program of this gradient. 390 
Arrows directions indicate the direction of gradients. The overlaying dark grey circles represent data 391 
spots characterized as tumor region. 392 

E. Comparison of pathway enrichment in top loading genes of NMF_2 and NMF_3. Each data point is a 393 

pathway and the two axes are the -log(adjusted p-value) for the hypergeometric test for enrichment. 394 

F. Comparison of pathway enrichment in top loading genes of NMF_4 and NMF_5. Each data point is a 395 
pathway and the two axes are the -log(adjusted p-value) for the hypergeometric test for enrichment. 396 
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 398 

Figure 3. Cross-sample analysis of tumor datasets with LSGI 399 

A. Schematic of the study design. LSGI was applied to each dataset separately and the NMFs were then 400 
integrated through clustering. 401 

B. Information of the 19 meta-programs. The heatmap showed the Jaccard distance between programs 402 
(using top 50 genes). Each program was labeled with the meta-program, technology, study and cancer 403 

type information.  404 

C. Study and tumor type specificity of each meta-program. The theoretical maximum Shannon entropy 405 
was calculated for each meta-program based on the tumor type and study label through averaging of 406 
random shuffling labels. These entropy quantifications were further subtracted by the real compositional 407 
Shannon entropy of the meta-program.   408 
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D. Functional annotation of each meta-program. The pan-cancer meta-programs were highlighted with 409 
red labels of the annotation term. 410 

 411 

 412 

Figure 4. Spatial relationship between gradients and tumor boundary. 413 

A-C. Examples of NMF programs with different mean tumor cell ratios. The information of the program, 414 

its tumor type, and its meta-program assignment was labeled under each panel. Red arrows marked the 415 
presence and direction of the gradient. For each panel, each rhombus represent a data spot while the 416 
overlaying dark grey circles represent data spots characterized as tumor region. Color of the rhombus 417 
represent the loading of the NMF program. 418 

D. The gradient direction and original cell loadings of NMF_6 (UKF243_T_ST) on the spatial map. The 419 

overlaying dark grey circles represent data spots characterized as tumor region. 420 

E. The spatial expression of representative genes in NMF_6 (UKF243_T_ST). Warmer colors (red) 421 
indicate higher expression levels. 422 
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 424 
 425 
Supplementary Figure 1 426 
A-D. Demonstration of the gradient direction and original cell loadings of NMF_2 (A), NMF_4 (B), 427 
NMF_3 (C), and NMF_5 (D) on the spatial map. The overlaying dark grey circles represent data spots 428 

characterized as tumor region 429 
 430 
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 431 
Supplementary Figure 2 432 
A-D. Functional enrichment of top genes in NMF_2 (A), NMF_4 (B), NMF_3 (C), and NMF_5 (D). 433 
Bar-plots showed the ratio of pathway genes found in input gene sets (top 50 genes in each NMF 434 

program) and were colored by the adjusted p-value (false discovery rate, FDR) of hypergeometric test. 435 
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 436 

Supplementary Figure 3. Information of meta-program composition and functional annotations. 437 

A-B.  Proportion of originated tumor types and study of NMF programs in each meta-program. 438 

C. Loadings of the assigned functional gene set members in each NMF program grouped by meta-439 
program. 440 
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 441 

Supplementary Figure 4. Strategy of automatically detection normal cell references and calculate tumor 442 
cell ratio in each local group. 443 

A. Strategy to infer immune cell clusters for annotating tumor regions with CopyKat. 444 

B. Calculation of groupwise tumor cell ratio. Red circles represent cells in a local group while grey circles 445 
are other cells. Dark blue labels tumor cells. For each group, the tumor ratio equals to the number of 446 

tumor cells in this group divided by the number of all cells in the group. 447 

  448 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.19.585725doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.19.585725
http://creativecommons.org/licenses/by/4.0/


 449 
 450 

Supplementary Figure 5. Cluster programs based on tumor spot ratios. 451 

A. Using one-dimensional equal-weighted KNN clustering of tumor cell ratios to form three TRCs. 452 

B. The distribution of tumor cell ratios among programs (right). Colors indicate the identity of three 453 
TRCs. 454 

C. Proportion of programs clustered to the three TRCs in each meta-program and the ‘unclustered’ 455 
programs.  456 

 457 
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 458 

Supplementary Figure 6.  459 

A. The gradient direction and original cell loadings of NMF_3 (UKF55_T_ST) on the spatial map. The 460 

overlaying dark grey circles represent data spots characterized as tumor region. 461 

B. The spatial expression of representative genes in NMF_3 (UKF255_T_ST). Warmer colors (red) 462 
indicate higher expression levels. 463 

C. The gradient direction and original cell loadings of NMF_6 (UKF260_T_ST) on the spatial map. The 464 
overlaying dark grey circles represent data spots characterized as tumor region. 465 

D. The spatial expression of representative genes in NMF_6 (UKF260_T_ST). Warmer colors (red) 466 

indicate higher expression levels. 467 

468 
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