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Abstract: AlphaFold2 (AF2) made its debut in the CASP14 competition, generating
structures which could rival experimentally determined ones and causing a paradigm shift in
the structural biology community. From then onwards, further developments enabled the
prediction of multimeric protein structures while improving calculation efficiency, leading to
the widespread usage of AF2. However, previous work noted that AF2 does not consider
ligands and thus suggesting that ligand-mediated protein-protein interfaces (PPIs) are
challenging to predict. In this letter, we explore this hypothesis by evaluating AF-Multimers’
accuracy on four datasets, composed of: (i) 31 large PPIs, (ii) 31 small PPIs, (iii) 31 PPIs
mediated by ligands and (iv) 28 PROTAC-mediated PPIs. Our results show that AF-Multimer
is able to accurately predict the structure of the majority of the protein-protein complexes
within the first three datasets (DockQ: 0.7-0.8) but fails to do so for the PROTAC-mediated
set (DockQ < 0.2). One explanation is that AF-Multimers’ underlying energy function was
trained on naturally occurring complexes and PROTACs mediate interactions between
proteins which do not naturally interact with each other. As these “artificial” interfaces fall
outside AFs’ applicability domain, their prediction is challenging for AF-Multimer.

Introduction:

AlphaFolds’ (AF) debut in the CASP13 competition in 20181 revolutionized the structural
biology field. The ability to accurately predict, solely from the amino acid sequence, the
folded state of proteins meant that it is now possible, in principle, to explore the entire
proteome of different organisms. As such, a natural next step was the high-throughput
generation of predicted protein structures for the human proteome and other organisms2,
readily deposited on the PDB under the computed structure models option3. However, in
2018 AlphaFold had its own limitations, such as not being able to deal with multimeric
structures, struggling with the accurate placement of amino acid side chains, and not being
able to model post-translational modifications like phosphorylation4. Furthermore, AF
structures typically do not include ligands, as they are not part of the input sequence
provided. Research in the field evolved towards new algorithms that were built upon
AlphaFold5–10 and in the CASP14 AlphaFold2 was able to produce structures on par with
experimentally determined ones 11. With the development of AlphaFold-Multimer12,13, the
prediction of the structure for multimeric proteins was made accessible, and a new leap
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forward in elucidating the structure of large macromolecular complexes occurred.
Nonetheless, since AFs’ algorithm relies on a greedy multi-sequence alignment strategy, the
database lookup step becomes a computational bottleneck14,15. Other groups have thus
steered towards a strategy anchored on using protein language models14,16, which promises
to speed-up calculation times and increase model generalizability while maintaining high
accuracy.
Typically, the accuracy of these algorithms is assessed on a general benchmark test dataset,
which is dominated by structures which are very similar to those present within the training
set. However, some of the less represented structures may be of significant interest, such as
protein-protein interactions which are mediated by PROteolysis TArgeting Chimeras
(PROTACs)14,16–20. PROTACs are heterobifunctional ligands composed of two small
molecules connected by a linker region. One of the small-molecules binds to a protein target
and the other binds to a protein called E3 ligase, which is attached to the ubiquitination
machinery21,22. This machinery is responsible for ubiquitination of proteins, which tags them
for proteasomal degradation. PROTACs-based approaches have been explored for a variety
of therapeutic targets, including proteins intimately connected to cancer17,23,24.

We have reported in another work25 that PROTAC-mediated interfaces are typically shallow
and small and thus, represent a significant challenge to machine learning-based approaches
such as AF2. In this letter, we evaluate the accuracy of AlphaFold-Multimer in predicting the
structure of heterodimeric protein-protein complexes. Four cases were considered:
complexes with ligands at the interface, complexes with small interfaces, complexes with
large interfaces, and PROTAC-mediated complexes. By evaluating each case separately, it
is possible to identify if AlphaFold-Multimer is performant across the different protein-protein
interface types.

Methods:

Dataset selection: A dataset of hetero-dimers X-ray structures with a resolution better than
3 Å and a maximum sequence redundancy of 30% was retrieved from the Dockground
resource (https://dockground.compbio.ku.edu/bound/index.php)26. Separate lists were built
for proteins acquired before or after the AlphaFold training date (May 2018). The structures
anterior to AlphaFold training were termed the ‘training data set’, and the structures posterior
to AlphaFold training were termed the ‘test data set’. The interface size of each complex was
computed as the difference between the sum of surface areas of the monomers minus the
surface area of the complex. This was done with and without hetero-atoms to assess the
involvement of ligands at the interface. We thus separated three cases:

- ligand-mediated complexes. We first extracted complexes where the hetero-atoms
accounts for more than 10% of the interface size. These complexes were manually
verified to exclude complexes with cross-links, modified residues at the interface, or
non-specific ligands at the interface (such as sulfate ions, glycerol or PEG groups).
This resulted in a data set of 21 complexes in the training set and 10 complexes in
the test set. We observe that these complexes have small interfaces.

- small interface complexes. For each case in the ligand-mediated list, we randomly
picked a complex with (i) less than 10% of the interface size contributed by
hetero-atoms, (ii) similar interface size (tolerance 150 Å2) and (iii) similar length of the
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shortest monomer (tolerance 10 amino-acids). This resulted in a data set of 21/10
complexes (training/testing), with matching complex and interface size compared to
the ligand-mediated complexes, but without ligands at the interface.

- large interface complexes. For each case in the ligand-mediated list, we randomly
picked a complex with (i) less than 10% of the interface size contributed by
hetero-atoms, (ii) an interface size at least 1500 Å2 greater than the interface size of
the ligand-mediated complex, and (iii) similar length of the shortest monomer
(tolerance 10 amino-acids). This resulted in a data set of 21/10 complexes
(training/test), with matching complex size and larger interface size compared to the
ligand-mediated complexes.

A fourth data set of 28 PROTAC-mediated complexes was extracted from the PDB. The
sequence of each complex was obtained using Pymol. A list of the complexes used
throughout this letter for the training and test sets is given in Tables S1 and S2, respectively.

AF-Multimer: AlphaFold-Multimer calculations were carried out using ColabFold version
1.5.110,12,15 using the alphafold2_multimer_v3 model. For each complex, three iterations were
carried out with three different random seeds and with model recycling. The best model was
selected using the composite score (0.8 ipTM+0.2pTM) The best model was energy
minimized using AMBER27.

DockQ: To evaluate the similarity between the experimental structures and the predicted
structures from AF-Multimer, the DockQ criteria were employed28. In short, DockQ provides a
continuous score from 0 to 1 (with 1 being perfect similarity) which takes into account the
fraction of conserved native contacts, RMSD of the target protein and the interface RMSD
between a reference structure and a predicted structure25. This metric can be employed
either quantitatively or qualitatively, with possible classifications being inaccurate (0-0.229),
acceptable (0.23-0.49), medium (0.50-0.799) or high quality(0.80-1) predictions. For our
analysis, we compared the distribution of the DockQ scores and all associated parameters
obtained per dataset.

Results: We aimed at investigating whether AF-Multimer could correctly predict the
Protein-Protein interface across datasets composed of different complex types. Thus, we
carried out AF calculations on (i) a dataset composed of 31 large PPIs, (ii) a dataset
composed of 31 small PPIs, (iii) a dataset composed of 31 PPIs mediated by
ligands/small-molecules and (iv) a dataset composed of 28 PROTAC-mediated PPIs. For the
datasets i-iii, 21 complexes were within the models training set and 10 were published after
AF-Multimer was released. In total, the training set complexes correspond to 63 complexes
(21x3). The test set calculations were carried out on the remaining 30 (10x3) complexes
from datasets i-iii and on the PROTAC-mediated dataset. The results are shown in Figure 1.

As expected, we found that, for the training set, large PPIs were well predicted by
AF-Multimer, with a median DockQ score of 0.75 and a median interface RMS below 2
angstrom (median value 1.27). Large PPIs are common across the PDB and thus we
expected that AF-Multimer, having been trained on the whole PDB dataset, would be able to
capture the features underlying such interactions. When the interface area decreases, we
observe a significant worsening of the predictive ability of the algorithm, as noted by Yin and
co-workers29. While the median DockQ score is quite high (DockQ = 0.79), we see that there
is a spread across predictions and that, compared to the large PPI dataset, the small PPI
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complexes are either well predicted or completely missed. This also leads to a broader
distribution in terms of the interface RMS. In the ligand-mediated dataset, a high DockQ
score, similar to the two previous datasets (median equal to 0.82), is observed. However,
looking at the interface RMS it appears that the predictions for this dataset are also split
between being highly accurate or wrong.

Figure 1 - Performance of AlphaFold-Multimer in predicting different protein-protein interfaces. Top
left: DockQ score distributions for the four subsets within the training set. Top right: Interface RMS
distribution. Bottom left: DockQ score distribution for the four subsets within the test set. Bottom right:
Interface RMS distribution for the test set. Large corresponds to large protein-protein interfaces (PPI),
small to small PPIs, Ligand corresponds to PPIs mediated by ligands/small-molecules and PROTAC
corresponds to PPIs mediated by PROTACs. The median is represented using a black dot.

The same trend is observed for the test set, with large PPIs being consistently well
predicted and prediction accuracy deteriorating as the interface gets smaller and
ligand-mediated interfaces being either well predicted or wrong. Examples of well predicted
and wrongly predicted complexes are shown, for each data set, in Figure 2. However, it is
interesting to observe that for the PROTAC-mediated PPIs, AF-Multimer is, for the larger
majority of complexes, unable to correctly predict the interaction interface between proteins.
Except for three cases (7khh, 7lps, 8beb), the overall DockQ score is below 0.1. One
possible explanation for this is that while ligand-mediated interfaces are well-represented
within the PDB, PROTACs became the focus of attention only in the last few years. Thus,
very few structures of PROTAC-mediated PPIs existed at the time of AF-Multimer
development. Another explanation resides in the nature of PROTAC-mediated complexes,
which are induced and stabilized by the ligand, and would naturally not probably interact.
This explanation is in line with the recent work of Roney and Ovchinnikov30 which provides
evidence that AlphaFold2 indeed learned an energy function that encapsulates the physics
governing the folded state. This suggests that PROTAC-mediated complexes are missed
because they are not adequately represented by the energy function, because the ligand is
ignored. Finally, it may also be the case that due to the dynamical nature of
PROTAC-induced complexes, experimentally determined crystal structures represent only
one structure within a larger conformational ensemble, as noted by Dixon and co-workers31.
This third possibility is justified by the fact that PROTACS with different linker portion
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compositions do, in fact, induce different protein-protein binding modes along a low-energy
conformational landscape31.

Nonetheless, with the growing popularity of PROTACs within the medicinal and
computational chemistry fields, there has been a growth in the number of high quality ternary
(ligase-PROTAC-target) structures. This new wealth of information could motivate the
retraining of AF-Multimer, which should aim to include ligand contributions, or the
development of a PROTAC-focused machine-learning model aiming at the accurate
prediction of ternary complex structures. While some groups have developed tools for this
purpose32–36, they are typically not general because they require that the PROTAC molecule
be known a priori. Within our group we developed PROTACability25, which by-passes this
constraint and achieves satisfactory accuracy but fails to produce high quality solutions.
Thus, there is significant room for improvement and a general tool that uses minimal
information and achieves high prediction quality would significantly impact the field of
PROTAC-based drug discovery. The release of RoseTTAFold-All-Atom37 in 2024 represents
a leap forward in this regard, as it is apparently able to consider the effects of ligands within
protein-protein interfaces. It remains to be seen whether this modeling suite achieves better
performance than AlphaFold-Multimer in predicting highly plastic, “artificial” and shallow
protein-protein interfaces such as those in PROTAC-mediated systems.

Figure 2 - Showcases from the datasets explored. A) 3N7R (DockQ = 0.94); B) 5NVK (DockQ =
0.94); C) 6C97 (DockQ = 0.81); D) 8BEB (DockQ = 0.51); E) 3EJD (DockQ = 0.14); F) 1R8O (DockQ
= 0.38); G) 5D6J (DockQ = 0.01); H) 5HXB (DockQ = 0.02). The reference structure is displayed in
light gray whereas the predicted structures are in color, with the receptor protein in orange and the
ligand in cyan.

Support Information
Tables describing the training and test datasets used in the Letter; Figures showcasing
correctly and wrongly predicted protein-protein complexes for each data set; Figures
illustrating the interface size distribution for each dataset.
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