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Abstract

Increasing antibiotic resistance poses a severe threat to human health. Detecting and categorizing antibiotic resistance
genes (ARGs), genes conferring resistance to antibiotics in sequence data is vital for mitigating the spread of antibiotic
resistance. Recently, large protein language models have been used to identify ARGs. Comparatively, these deep learning
methods show superior performance in identifying distant related ARGs over traditional alignment-base methods, but
poorer performance for ARG classes with limited training data. Here we introduce ProtAlign-ARG, a novel hybrid
model combining a pre-trained protein language model and an alignment scoring-based model to identify/classify ARGs.
ProtAlign-ARG learns from vast unannotated protein sequences, utilizing raw protein language model embeddings to
classify ARGs. In instances where the model lacks confidence, ProtAlign-ARG employs an alignment-based scoring
method, incorporating bit scores and e-values to classify ARG drug classes. ProtAlign-ARG demonstrates remarkable
accuracy in identifying and classifying ARGs, particularly excelling in recall compared to existing ARG identification and
classification tools. We also extend ProtAlign-ARG to predict the functionality and mobility of these genes, highlighting
the model’s robustness in various predictive tasks. A comprehensive comparison of ProtAlign-ARG with both the
alignment-based scoring model and the pre-trained protein language model clearly shows the superior performance of
ProtAlign-ARG.
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Introduction

Antibiotic resistance poses a grave threat to public health,

with annual deaths projected to rise from 700,000 to 10

million by 2050 due to antibiotic resistance genes (ARGs)

[1, 2]. These genes, which confer resistance to antibiotics, are

widely transmitted among animals, humans, and environments

[3, 4, 5, 6, 7].

Traditional DNA sequence alignment methods face challenges

in detecting new ARGs, struggling with remote homology

and large databases, thus failing to adequately capture the

complexity of antibiotic resistance [8, 9]. Deep learning,

particularly with protein language model embeddings, offers

a more nuanced representation of biological data, excelling

in contextualizing protein sequences and uncovering complex

patterns missed by conventional methods [10]. This approach,

leveraging transformer architecture, processes sequences in

parallel, enabling better generalization from fewer sequences

[11]. This approach can be utilized to enhance both the

efficiency and accuracy of ARG characterization.

Deep learning-based tools have performed well in ARG

identification and classification. For example, Deep-ARG

[12] uses deep learning and considers a dissimilarity matrix,

HMD-ARG [13] offers a hierarchical multi-task classification

model using CNN, and ARG-SHINE [14] utilizes a machine

learning approach to ensemble three component methods for

predicting ARG classes. Recently, protein language models,

trained on millions of protein sequences, have been utilized

for developing ARG prediction models. Specifically, both our

preliminary work, presented as a non-peer-reviewed poster

[15], and a subsequent study [16], showed the efficacy of pre-

trained protein language models in facilitating downstream

ARG identification and classification tasks.

However, one limitation of deep learning models is the

reduced performance in classifying ARGs with limited training

data [12, 13, 14]. Comparatively, the alignment-based method

shows more robust performance. To leverage the strengths of

both approaches, we introduce ProtAlign-ARG, a novel model

that integrates pre-trained protein language model (PPLM)

based prediction and alignment-based scoring. This hybrid

model enhances predictive accuracy, particularly in scenarios

with limited training data. Additionally, it can classify

antibiotic resistance mechanisms and analyze ARG mobility,
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distinguishing between intrinsic ARGs and those acquired

through horizontal gene transfer [17, 18]. The complete code,

data, and results of our model are available on the GitHub

repository https://github.com/Shafayat115/ProtAlign-ARG.

Model Development

Data Curation
We utilized HMD-ARG-DB[13] as it is one of the largest

repositories of ARGs and boasts the most comprehensive

annotations across various dimensions. HMD-ARG-DB was

curated from seven well-recognized databases, namely

AMRFinder[19], CARD[20], ResFinder[21], Resfams[22],

DeepARG[12], MEGARes[23], and Antibiotic Resistance Gene-

ANNOTation [24], and contain over 17,000 ARG sequences

distributed among 33 antibiotic-resistant classes.

For the ARG identification task, our deep learning model

requires a robust dataset not only comprising ARGs but also

encompassing non-ARGs for effective differentiation. To curate

the non-ARG dataset, we undertook the meticulous process

of downloading the entire Uniprot dataset while excluding

sequences labeled as ARGs.

In the following step, we performed diamond alignment with

the HMD-ARG-DB. Sequences that had an e-value less than

1e-3 and a percentage identity below 40% were classified as non-

ARG datasets for ARG identification. This enabled us to focus

on non-ARG sequences demonstrating substantial similarity to

ARG sequences. The goal was to enhance the model’s capability

to identify ARGs, even in scenarios where such similarities

exist[13]. Furthermore, it facilitated comparisons with other

state-of-the-art tools like HMD-ARG[13] and DeepARG[12],

thus validating our model’s effectiveness.

Graphpart Analysis

In biological sequence data segmentation, we partitioned the

dataset into training and testing sets to avoid biases and

accurately assess model performance. This partitioning was

essential to ensure that the training and testing data were not

overly similar, which could lead to artificially inflated accuracy

metrics.

Our partitioning approach was designed to maintain a strict

level of dissimilarity between the sets, defined by a critical

threshold. We set this threshold at a specific percentage,

representing the maximum allowed similarity between training

and testing sequences, to balance dissimilarity with data

representativeness, ultimately enhancing the model’s predictive

robustness on unseen data.

While widely used tools like CDHIT[25] and MMseq[26]

offer various clustering modes for partitioning, these tools

tend to prioritize maximizing similarity within clusters, often

at the expense of minimizing similarity between partitions.

In contrast, a novel partitioning tool named GraphPart[27]

has proven to be highly effective. GraphPart ensures precise

separation, regardless of sequence length, and retains most

sequences until reaching the desired threshold.

For instance, in our utilization of CDHIT[25] clustering with

a 40% threshold similarity on the HMD-ARG-DB dataset, we

obtained 721 clusters. However, the analysis revealed that many

sequences exhibited similarity exceeding 40% and, in some

cases, even exceeding 90% when subjected to BLAST analysis

(Supplementary Figure 2). In contrast, GraphPart provided

exceptional partitioning precision.

Fig. 1. The proposed pipeline for the ARG Identification & Classification.

Each number (1-4) corresponds to the four different models.

For the preparation of our training and testing datasets, we

employed GraphPart on the HMD-ARG-DB[13], allocating 80%

of the sequences for training and 20% for the test set using a

40% similarity threshold. Subsequent BLAST analyses within

the training and test sets consistently revealed an identity

percentage below 40%, ensuring a clear distinction between

the two sets and providing well-partitioned data for ARG class

classification.

In the ARG identification task, the HMD-ARG-DB served

as ARGs, while a customized non-ARG dataset was used.

GraphPart was applied with both a stringent 90% similarity

threshold and a 40% similarity threshold to obtain the train and

test datasets for the ARG identification task. This approach

allowed us to evaluate our model’s performance across varying

degrees of difficulty, ranging from datasets with high similarity

to those with substantial dissimilarity.

To classify ARG classes, we applied a 40% similarity

threshold to stratify the dataset, focusing on the 14 most

prevalent ARG classes out of a total of 33. As depicted in

(Supplementary Fig 1), the HMD-ARG-DB encompasses 17,282

ARG sequences distributed across these classes. However, 19

of these classes are represented by very few samples. The

attempt to evenly split the dataset into training and testing

sets while ensuring the representation of all classes at a 40%

similarity threshold using GraphPart proved challenging due

to substantial disparities in sample counts.

Additionally, we utilized the COALA (COllection of ALl

Antibiotic resistance gene databases) dataset, categorizing

it into three groups: ”No alignment,” ”Less than 50%

similarity between train and test sets,” and ”Greater than

50% threshold.” This dataset served as a basis for comparing

our model’s accuracy with existing state-of-the-art models like

DeepARG[12], ARG-SHINE[14], and HMD-ARG[13].

Furthermore, we performed a comparative analysis of

the individual components of our models - the PPLM, the

alignment-based scoring model, and the ProtAlign-ARG. This

comparison was conducted on both the COALA dataset with

a 90% similarity threshold and using GraphPart on the HMD-

ARG-DB dataset with a 40% threshold.

For the prediction of resistant mechanisms and ARG

mobility, we exclusively employed the HMD-ARG-DB[13]. For

these, our model was trained and tested using a rigorous 5-fold

cross-validation approach.

Model Components
Our system architecture comprises four distinct models, each

dedicated to a specific task:
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Fig. 2. Using pre-trained protein language model for ARG Identification

& Classification

1. ARG Identification

2. ARG Class Classification

3. ARG Mobility Identification

4. ARG Resistance Mechanism

In Figure 1, we present an overview of the architecture

of how these four models are developed, highlighting their

respective designs and interrelationships. Detailed descriptions

of the components are provided in the following sections.

Workflow for the Language Model

Generating Sequence Embeddings

To train protein language models (pLMs), annotations

for protein sequences are not necessary. Instead, we predict

the concealed amino acids within these sequences. These

models are trained using millions of protein sequences, and we

subsequently derive embeddings from them. These embeddings

serve as inputs for predicting antibacterial resistance.

The performance of a language model is substantially

influenced by the quality and diversity of its pre-training

data. ProtAlbert, our chosen model, undergoes pre-training

on an extensive and diverse collection of protein sequences.

This approach equips ProtAlbert with the ability to generalize

effectively across diverse biological contexts. Despite various

options available at the time of this work, such as ProtXL,

ProtElectra, and ProtT5, we deliberately selected the

ProtAlbert model due to its superior performance. Notably,

ProtAlbert outperformed its counterparts while maintaining

a relatively modest size, comprising 224 million parameters.

This choice was strategic, considering the balance between

optimal performance and computational efficiency, especially

when compared to larger models that are more time-consuming.

ProtAlbert, with its 12-layer architecture, undergoes

training on UniRef100. For our downstream prediction task,

we harnessed the pre-trained ProtAlbert model following the

official GitHub repository provided by ProtTrans[28]. The

training unfolds in two stages: an initial phase on sequences

of up to 512 characters for 150,000 steps, succeeded by

another 150,000 steps on longer sequences, spanning up to 2000

characters.

Transfer Learning with Supervised Models

The ProtAlbert model, pre-trained on UniRef100, enhances

ARG classification through its embeddings, supporting transfer

learning. This model adopts two approaches: per-residue,

analyzing each amino acid individually, and per-protein,

treating sequences as single entities. We selected the per-

protein method for its holistic view of proteins, aligning

with their structural and functional integrity. This choice

offers computational simplicity and robustness against sequence

variability, unlike the per-residue method, which, though

detailed, demands more computation and is more sensitive to

sequence alterations.

For our analysis, we utilized the model’s last layer

embeddings, summarized into a consistent-size vector via

mean pooling. This vector feeds into a feed-forward neural

network layer with 32 neurons for ARG tasks, effectively

leveraging ProtAlbert’s deep learning capabilities for precise

ARG identification and classification.

Workflow for the Alignment-Based Scoring

Deep learning models, like neural networks, are effective at

learning from large data sets, but they may not perform

well with small amounts of data. They require data to learn

effectively and can struggle with new, unseen data if trained

on limited data. On the other hand, alignment-based models,

which include some traditional machine learning algorithms,

can be better when there’s less data. These models, such as

k-nearest neighbors (KNN) [29] and support vector machines

(SVM) [30], focus on data similarities or specific rules, not

on large-scale learning. So, while deep learning performs well

on large amounts of data, alignment-based models are often

better for smaller data sets. This is important to consider when

choosing the right model for a task, especially when large data

collection is not feasible.

For our alignment-based scoring, we utilized DIAMOND

[31] for matching, following a modified version of the ARG-

KNN model proposed by the paper ARG-SHINE[14]. Initially,

we align the query sequence with the training data using

DIAMOND, setting an e-value threshold of < 1e−3 to identify

similar sequences (homologs). If a query sequence fails to align

with any sequence in the training dataset, we cannot employ

the alignment-based scoring to label it. We applied this scoring

method to both ARG identification and classification.

For each query sequence, we computed alignment scores for

each label. The label with the highest score is assigned to the

query sequence. For a given query sequence, denoted as pq,

where q is the number of sequences from the same label. The

score for the label Ci, S(Ci, pq) is defined by the following

equation:

S(Ci, pq) =
Σp∈Tq

I(Ci, p)B(pq, p)

q
(1)

Where, Tq represents the set of proteins associated with label

Ci and their bit scores for pq,

p signifies any protein in Tq,

I(Ci, p) is a binary indicator indicating whether p belongs

to the label Ci, and

B(pq, p) signifies the bit score of the alignment between

protein pq and p.

The label with the highest score is considered the result of

the similarity model.

ProtAlign-ARG:

ProtAlign-ARG synergizes PPLM-based scoring with alignment-

based scoring to enhance the accuracy of antimicrobial

resistance gene (ARG) classification.

In our methodology, we introduce confidence thresholds

as a metric for evaluating the reliability of PPLM-based

predictions. These thresholds—95%, 90%, 80%, 70%, 60%,

50%, 40%, 30%, and 20%—represent the model’s certainty

in its classification. We assessed the accuracy of predictions

falling below each threshold and observed a marked decline in

reliability (Supplementary Figure 3). Specifically, predictions

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.20.585944doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.585944
http://creativecommons.org/licenses/by/4.0/


4 ProtAlign-ARG

Table 1. Dataset Split for HMD-ARG-DB using Graphpart with

40% and 90% threshold

Similarity

Threshold

Data ARG (Sequence

Count)

Non-ARG

(Sequence

Count)

40%
Train 14882 9754

Test 2400 3480

90%
Train 13826 10587

Test 3456 2647

Overall 17282 13234

with less than 90% confidence yielded a 45% accuracy rate,

indicating that over half of these predictions were incorrect.

Consequently, we established 90% as the minimum confidence

threshold for utilizing PPLM-based classification for both ARG

identification and class classification.

For predictions falling below this 90% confidence threshold,

we defaulted to alignment-based scoring. This scoring system is

more robust in scenarios with limited data, as it does not rely

on the voluminous training datasets that PPLM requires. It

improves prediction reliability by comparing the query sequence

against a database of known sequences.

However, when the query sequence does not find a match

within our training data—a situation that may arise with

novel or rare ARGs—we head toward the PPLM for the

final classification. The PPLM, leveraging its comprehensive

understanding of protein sequence language, is a decision-

making tool in such cases.

For ARG identification task we generated training

and testing datasets using GraphPart, dividing the data

approximately into an 80-20 split. We applied a strict similarity

threshold of 40% and 90%. Table 1, represents the data

distribution for ARG identification.

In the case of ARG class classification, we conducted

experiments under multiple settings. We used GraphPart to

partition the HMD-ARG data samples into training and test

classes, ensuring that the between-cluster similarity was below

40%. We employed all three approaches and reported the

accuracy.

As part of our evaluation, we also conducted independent

test set validation. Following the validation approach

employed by the DeepARG[12] framework, we introduced

a set of 76 metallo beta-lactamase genes sourced from a

separate study conducted by Berglund et al. [32]. These

newly discovered genes had undergone rigorous experimental

validation through functional metagenomics techniques, which

confirmed their ability to bestow resistance to carbapenem in

E. coli. The study encompassed a comprehensive analysis of

thousands of metagenomes and bacterial genomes, focusing

on a meticulously curated selection of beta-lactamases.

Consequently, it is reasonable to assume that these 76 beta-

lactamase genes primarily represent authentic ARGs. This

presented a unique opportunity to subject our model to further

testing and validation.

Experiments & Results

ARG Identification
We conducted training and testing using two different setups,

employing both a 40% threshold and a 90% threshold to assess

our model’s performance. Table 2, provides an overview of

the accuracy achieved in both setups, distinguishing between

individual and ProtAlign-ARG models.

Table 2. Accuracy for component models on ARG Identification on

HMD-ARG-DB using 40 and 90 percent similarity threshold using

GraphPart.

Train-

Test

Similarity

Model Prec. Rec. F1-

Score

40%

PPLM 0.85 0.83 0.84

Alignment 0.55 0.55 0.55

ProtAlignARG 0.86 0.84 0.84

90%

PPLM 0.94 0.98 0.97

Alignment 0.71 0.71 0.71

ProtAlignARG 0.95 0.96 0.96

The model consistently outperforms alignment-based

models, even when the train and test samples have a

similarity of under 40%. It achieves an impressive overall

accuracy of 84%. However, it is worth noting that for ARG

identification, ProtAlign-ARG does not substantially improve

overall accuracy. This result is expected since both the labels,

ARG and non-ARG, have an ample amount of data in both the

training and test sets.

ARG Class Classification

Table 3. Accuracy for the different component models for ARG

class classification on HMD-ARG-DB on 40% threshold

Model Metric Precision Recall F1-

Score

PPLM
Macro 0.58 0.62 0.56

Weighted 0.88 0.83 0.83

Alignment-Scoring
Macro 0.69 0.52 0.58

Weighted 0.95 0.76 0.84

ProtAlignARG
Macro 0.63 0.67 0.64

Weighted 0.90 0.89 0.89

From Table 3, it is evident that the PPLM excels in

achieving better recall compared to the alignment-based scoring

model. However, the PPLM lags in terms of precision when

compared to the alignment-based model. The ProtAlign-ARG,

on the other hand, strikes a balance by achieving significant

precision and recall, leading to an overall improvement in

accuracy over both of these models.

From Figure 3, we see that the PPLM performs well

for aminoglycoside, beta-lactam, fosfomycin, glycopeptide,

tetracycline, and trimethoprim, with high scores across all

metrics. The Alignment model exhibits high precision and recall

for certain classes such as aminoglycoside and trimethoprim,

but performs poorly for polymyxin and rifampin. The Hybrid

model performed well for classes like aminoglycoside and

beta lactam. It also improved the performance of the PPLM

model for quinolone, sulfonamide, and MLS class for the

F1-score.

Additionally, we conducted tests using a 90% similarity

threshold. This was particularly important because 19 of the

ARG class samples had a limited sample size (Supplementary

Fig 1). Table 4 presents the performance of the three models in

this scenario.
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Fig. 3. ARG Classification Accuracy for different models based on

precision, recall, and F1 score.

Table 4. Accuracy for the different component models for ARG

class classification on HMD-ARG-DB on 90% threshold

Model Metric Precision Recall F1-

Score

PPLM
Macro 0.41 0.45 0.42

Weighted 0.96 0.97 0.97

Alignment-Scoring
Macro 0.80 0.80 0.78

Weighted 0.98 0.98 0.98

ProtAlign-ARG
Macro 0.80 0.79 0.78

Weighted 0.98 0.98 0.98

In this case, the alignment-scoring model outperformed both

the PPLM and the ProtAlign-ARG in precision. This is because

the PPLM tends to perform poorly when the sample size is

limited for some of the ARG classes. When we experimented

with all 33 ARG classes, including the 19 ARG classes with just

only 219 sequences in total, the accuracy dropped significantly

for the PPLM model. Whereas the alignment-scoring model

performed much better. However, when we considered the 90%

similarity threshold just for the rest of the 14 frequent ARG

classes, the PPLM outperformed the alignment-scoring-based

model. Our hybrid ProtAlign-ARG strikes a 78% F1-score

matching with the alignment-scoring-based model.

Moreover, we conducted experiments with our models on

the COALA dataset (Table 5). We used the COALA90 dataset.

As mentioned, the COALA90 dataset was prepared using the

CD-HIT tool, which could not maintain a strict threshold

between cluster similarity. In this dataset, the performance

of the PPLM deteriorated, especially for the ARG classes

STREPTOGRAMIN, RIFAMYCIN, and BACITRACIN, which

had very low amounts of data and resulted in poor performance.

While ProtAlign-ARG outperformed both of them.

Table 5. Accuracy for the different component models for ARG

class classification on COALA90 dataset

Models Accuracy Precision Recall F1-

score

PPLM
Macro 0.68 0.65 0.67

Weighted 0.82 0.81 0.81

Alignment-Scoring
Macro 0.79 0.7 0.71

Weighted 0.89 0.74 0.80

ProtAlign-ARG
Macro 0.86 0.81 0.83

Wighted 0.85 0.84 0.84

Furthermore, we divided the test dataset into three

subsections based on the alignment with the training sequences:

those with no alignment, those with less than 50% alignment,

and those with greater than 50% alignment using the CDHIT

tool. In Table 6 are the accuracies achieved by the PPLM and

the ProtAlign-ARG for these test sets.

We observed that for cases with no alignment and very low

alignment, the PPLM performed better than the alignment-

scoring model. However, as expected, for those with greater

than 50% alignment, the ProtAlign-ARG outperformed the

PPLM.

Comparison with Other Methods

ARG Identification

In our comparison with other state-of-the-art ARG identification

tools, ProtAlign-ARG outperforms them. We conducted a 5-

fold cross-validation on the HMD-ARG-DB and repeated this

process 10 times to report our accuracy. Our model achieved

an accuracy of 97% reported in Table 7.

ARG Classification

When we compared our ARG class classification model on

the COALA dataset, it outperformed most alignment-based

classification tools and delivered performance comparable to

deep learning-based tools. Our model was evaluated on

the COALA90 dataset, which was generated using CDHIT

clustering. It is worth noting that while our model was trained

on the same set of training data, we tested it on a dataset

three times larger than that used by other models. Table 8,

summarizes the performance of our model relative to other

models.

We furthermore compared ProtAlign-ARG using the three

splits of the COALA90 dataset. In this case, we reported the

overall accuracy of our model, emphasizing that our models

were tested on a test set three times larger than other tools in

Table 9.

We also show the accuracy of our model using a 5-fold cross-

validation approach on the HMD-ARG-DB in (Supplementary

Table 1). ProtAlign-ARG consistently outperformed the other

models in this evaluation.

Additionally, we expanded the scope of our prediction

tasks to include ARG resistance mechanism prediction and

mobility identification. In both cases, PPLM achieved better

performance than other SOTA tools when using 5-fold cross-

validation (Supplementary Table 2 & 3).

Independent Test Set Validation
ProtAlign-ARG, trained on GraphPart-based clustering with

a 40% similarity threshold on the HMD-ARG-DB dataset,

successfully identified all 76 beta-lactamase samples from

Berglund et al. [32] as ARGs. Furthermore, the ARG

class classification model categorized these genes as beta-

lactamases. To ensure that the training set did not contain these

beta-lactamase genes, we conducted DIAMOND alignments,

excluding any sequences with similarity above 40% during

the model’s training. This performance underscores the

effectiveness of our model in identifying and annotating novel

ARGs compared to existing tools.
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Table 6. Accuracy for the different component models for ARG class classification on COALA dataset for varying percentage similarity

Models Similarity Accuracy Precision(%) Recall(%) F1-score(%)

PPLM

Greater 50
Macro 74 71 72

Weighted 90 91 90

Less 50
Macro 58 53 55

Weighted 72 73 72

No Alignment
Macro 42 47 42

Weighted 41 45 41

Alignment-Scoring

Greater 50
Macro 85 81 82

Weighted 93 92 92

Less 50
Macro 46 41 42

Weighted 72 65 68

No Alignment
Macro 0 0 0

Weighted 0 0 0

ProtAlign-ARG

Greater 50
Macro 94 89 91

Weighted 95 95 95

Less 50
Macro 56 56 56

Weighted 73 73 73

No Alignment
Macro 42 47 42

Weighted 41 45 41

Table 7. Accuracy for the different component models for ARG

Identification on HMD-ARG-DB

Models Precision Recall F1-

Score

HMD-ARG 0.939 0.971 0.948

CARD 0.999 0.421 0.592

DeepARG 0.998 0.93 0.963

AMRPlusPlusb 0.867 0.449 0.592

Meta-MARC 0.847 0.85 0.848

ProtAlign-ARG 0.97 0.98 0.97

Table 8. Accuracy for the different models for ARG Classification

on COALA90 dataset

Models Macro Avg.

Score

Weighted

Avg. Score

BLAST best hit 0.8258 0.8423

DIAMOND best hit 0.8103 0.8423

DeepARG 0.7303 0.8419

HMMER 0.4499 0.4916

TRAC 0.7399 0.8097

ARG-SHINE 0.8555 0.8591

PPLM Model 0.67 0.81

Alignment-Score 0.71 0.80

ProtAlign-ARG 0.83 0.84

Conclusion

Our study presents a robust pipeline and benchmarking

standard for the identification and class classification of

ARGs. ProtAlign-ARG outperformed existing methods in both

ARG identification and class classification. Additionally, its

impressive performance in resistance mechanism prediction

and mobility classification further establishes its superiority

in prediction tasks. One limitation of the current pipeline

is that the clustering methods for ensuring the quality of

the training and testing data split can be time-consuming.

Moreover, the performance of the model is low for sequences

with low identities to the training data. As protein structure

is more conserved than sequences, we plan to incorporate the

protein 3D structure information into the models to further

improve the performance.

Table 9. Accuracy for the different component models for ARG

Classification on three splits of COALA90 dataset

Models No-

Alignment

Alignment

<50

Alignment

>50

BLAST 0 0.6243 0.9542

DIAMOND 0 0.5740 0.9534

DeepARG 0 0.5266 0.9419

HMMER 0.0563 0.2751 0.6051

TRAC 0.3521 0.6124 0.9199

ARG-SHINE 0.4648 0.6864 0.9558

PPLM Model 0.45 0.73 0.91

Alignment 0 0.65 0.92

ProtAlignARG 0.45 0.73 0.95
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