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Abstract 20 

Plasmodium parasites caused over 600,000 deaths in 2022. In Mali, P. falciparum is 21 

responsible for the majority of malaria cases and deaths and is transmitted seasonally. Anti-22 

malarial immunity develops slowly over repeated exposures to P. falciparum but some aspects 23 
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of this immunity (e.g., antibody titers) wane during the non-transmission, dry season. Here, we 24 

sequenced RNA from 33 pediatric blood samples collected during P. falciparum infections at the 25 

beginning or end of a transmission season and characterized the host and parasite gene 26 

expression profiles of paired, consecutive infections. Our analyses showed that human gene 27 

expression changes more over the course of one transmission season than it does between 28 

seasons, with signatures consistent with the partial development of adaptive immunity during 29 

one transmission season, contrasting with the stability in gene expression during the dry 30 

season. By contrast, P. falciparum gene expression did not seem to vary significantly and 31 

remained stable both across and between seasons. Overall, our results provide novel insights 32 

into the dynamics of anti-malarial immunity development over short timeframes.  33 

 34 

 35 

Introduction 36 

In 2022, malaria caused over 600,000 deaths worldwide1. This mortality is primarily caused by 37 

Plasmodium falciparum infections in children under five years old2, who lack protective 38 

immunity. Repeated exposure to malaria leads, first to development of immunity to severe 39 

malaria (typically occurring in early childhood) and, in later childhood, to immunity against 40 

clinical symptoms altogether3, 4. Prior studies have demonstrated development of both a 41 

cellular5 and humoral6 response to malaria upon repeated exposures. Memory CD4+ T cells 42 

specific for Plasmodium blood-stage antigens and skewed towards several T cell phenotypes 43 

(e.g., Th1, Tfh, Treg) have been observed7, 8, but their role in protective antimalarial immunity 44 

remains controversial. In mouse models, Th1 cytokine-biased memory cells appear to protect 45 

against malaria9, but further work is needed to characterize human T cell memory-mediated 46 

protection. Memory B cell populations specific for blood-stage antigens have also been shown 47 
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to develop with age and exposure10 in a transmission-dependent pattern11, leading to secretion 48 

of Plasmodium-specific antibodies12-15 that contribute to controlling the parasitemia.  49 

However, the development of the adaptive immune memory response may be complicated by 50 

inefficient priming of T cells by antigen presenting cells4, dampening of the immune response by 51 

regulatory T cells16, dysregulation of B and T cells4, 17 or development of atypical memory B cell 52 

phenotypes18-20. In addition, anti-malarial immunity wanes during periods of low exposure21-24, 53 

but the time scale of this waning and its underlying mechanisms remain unclear25.  54 

While individual acquisition and loss of anti-malarial immunity has been studied longitudinally 55 

over years, the kinetics of development and loss of anti-malarial immunity over both long- and 56 

short-time frames are still incompletely understood. Additionally, the parasite response to 57 

changing immune pressure in an infected human during these short periods remains elusive. 58 

Previous work has characterized the immune gene expression changes26 associated with high 59 

and low numbers of repeated clinical malaria episodes across an eight year period27, while 60 

changes in the expression of P. falciparum variant surface antigen, PfEMP1, have been linked 61 

to changes in immune status28, 29. Since the P. falciparum blood-stages are responsible for all 62 

clinical symptoms of malaria and since we have access to peripheral blood to examine the 63 

human immune response at this stage, studying host and parasite gene expression from 64 

infected blood can provide information on how peripheral malaria immunity develops over one 65 

transmission season, whether this immunity wanes during the dry season, and how the parasite 66 

responds to these changes. 67 

In Bandiagara, Mali, malaria transmission is intensely seasonal, with a high transmission wet 68 

season from June to December and a low transmission dry season from January to May. Each 69 

child 0-14 years of age experiences on average 2.2 clinical malaria episodes during the high 70 

transmission season, compared to 0.275 during the low transmission season30. This high 71 

seasonality makes Bandiagara an ideal location to study the dynamics of antimalarial immunity 72 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.20.585963doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.585963
http://creativecommons.org/licenses/by-nc-nd/4.0/


development and loss over short time frames.  Here, we use dual RNA-sequencing analyses of 73 

whole blood samples collected during symptomatic P. falciparum infections that occurred i) at 74 

the beginning and end of one transmission season and ii) at the end and beginning of two 75 

consecutive transmission seasons, to study the dynamics of the anti-malarial immune response 76 

over a short time scale.   77 

 78 

Results 79 

Dual RNA-sequencing to characterize human and P. falciparum gene expression 80 

We extracted and sequenced RNA from whole blood samples collected during 33 symptomatic 81 

P. falciparum infections from 11 Malian children, aged 1-10 years (Table 1). All samples were 82 

collected during a patient-initiated visit due to self-identified malaria symptoms (e.g., fever, 83 

headache) and for which Plasmodium parasitemia was confirmed by light microscopy30 (Table 84 

1). The mean parasitemia was 64,338 parasites per µL of blood (range 225 – 198,325). 85 

We included in this analysis blood samples from children that had 1) two P. falciparum 86 

symptomatic infections in the same transmission season, one at the beginning of the wet 87 

season and one at the end (n=8 pairs) (Early vs. Late comparison, in blue on Figure 1), and/or 88 

2) two P. falciparum symptomatic infections in consecutive years, one at the end of the 89 

transmission season of year 1 and one at the beginning of the transmission season of year 2 90 

(n=11 pairs) (Late vs. Early comparison, in red on Figure 1) (Table 1). 91 

 92 

 93 

To confirm that P. falciparum caused all infections, we first mapped all reads to the genomes of 94 

P. falciparum, P. vivax, P. ovale and P. malariae, simultaneously, and found that more than 98% 95 

of Plasmodium reads mapped to the P. falciparum genome in each sample (Supplemental 96 
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Table 1). We then mapped all reads to the human and P. falciparum genomes, simultaneously. 97 

We obtained 32-139 million reads mapping to human (49% to 99%) and 0.3 to 50 million reads 98 

mapping to P. falciparum (0.3% to 50%), allowing robust characterization of host and parasite 99 

transcriptomes (Supplemental Table 1). 100 

 101 

Table 1: Sample characteristics of the selected participants.  

Early vs. Late analysis group 

Participa
nt ID 

Se
x 

Ethnici
ty 

Age* 
(year
s) 

Collection 
Date (dd-
mm-yyyy) 

Collectio
n 
Season 

Parasitemia 
(parasites per 
µL) 

Temp. 

(C) 

Hgb 
conc
. 
(g/dL
) 

Complexi
ty of 
infection 

A F Dogon 7 20-Aug-2010 Early 
wet 

36,375 39.5 10.6 Monoclon
al 

02-Nov-2010 Late wet 225 39.6 10.7 Monoclon
al 

B M Dogon 7 18-Sept-
2009 

Early 
wet 

56,600 37.5 11.3 Polyclona
l 

17-Sept-
2010 

Early 
wet 

83,075 36.1 10.6 Polyclona
l 

17-Nov-2009 Late wet 97,125 37.5 10.3 Monoclon
al 

21-Nov-2010 Late wet 12,450 37.9 9,0 Polyclona
l 

C F Dogon 2 29-Sept-
2010 

Early 
wet 

179,550 39.8 7.7 Monoclon
al 

27-Nov-2010 Late wet 65,100 38.9 11.6 Monoclon
al 

D M Dogon 5 13-Aug-2012 Early 
wet 

181,800 38.2 11.2 Polyclona
l 

09-Nov-2012 Late wet 39,975 38.4 11.6 Polyclona
l 

E M Dogon 5 29-Sept-
2010 

Early 
wet 

118,500 37.7 11.1 Monoclon
al 

25-Dec-2010 Late wet 120,400 38.4 10.5 Polyclona
l 

F M Dogon 3 03-Sept-
2010 

Early 
wet 

37,206 38.4 9.7 Monoclon
al 

20-Nov-2010 Late wet 2,100 38.6 6.6 Monoclon
al 

G M Peuhl 5 17-Sept-
2010 

Early 
wet 

91,350 38.8 12.1 Polyclona
l 

12-Dec-2010 Late wet 48,325 39.3 11.2 Polyclona
l 
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Late vs. Early analysis group 

Participa
nt ID 

Se
x 

Ethnici
ty 

Age* 
(year
s) 

Collection 
Date (dd-
mm-yyyy) 

Collectio
n 
Season 

Parasitemia 
(parasites per 
µL) 

Temp. 

(C) 

Hgb 
conc
. 
(g/dL
) 

Complexi
ty of 
infection 

A F Dogon 6 20-Aug-2010 Early 
wet 

36,375 39.5 10.6 Monoclon
al 

12-Dec-2009 Late wet 900 39.8 9.9 Polyclona
l 

B M Dogon 6 17-Nov-2009 Late wet 97,125 37.5 10.3 Monoclon
al 

17-Sept-
2010 

Early 
wet 

83,075 36.1 10.6 Polyclona
l 

C F Dogon 1 19-Dec-2009 Late wet 10,800 35.9 9.0 Monoclon
al 

29-Sept-
2010 

Early 
wet 

179,550 39.8 7.7 Polyclona
l 

27-Nov-2010 Late wet 65,100 38.9 11.6 Monoclon
al 

12-Aug-2011 Early 
wet 

71,900 38.1 11.7 Polyclona
l 

E M Dogon 5 25-Dec-2010 Late wet 120,400 38.4 10.5 Polyclona
l 

26-Jul-2011 Early 
wet 

198,325 39.1 12.2 Polyclona
l 

G M Peuhl 4 18-Dec-2009 Late wet 1,125 38.3 9.7 Monoclon
al 

17-Sept-
2010 

Early 
wet 

91,350 38.8 12.1 Polyclona
l 

H M Dogon 10 26-Nov-2010 Late wet 47,475 36.2 10.9 Monoclon
al 

11-Sept-
2011 

Early 
wet 

30,475 37.5 10.8 Polyclona
l 

I M Dogon 2 21-Dec-2010 Late wet 186,350 38.3 10.8 Polyclona
l 

26-Sept-
2011 

Early 
wet 

43,800 38.9 10.3 Monoclon
al 

J M Dogon 2 1-Nov-2009 Late wet 43,800 39.4 8.5 Polyclona
l 

20-Aug-2010 Early 
wet 

37,550 37.6 6.4 Monoclon
al 

K M Dogon 2 23-Dec-2010 Late wet 15,100 40 9.8 Polyclona
l 

30-Sept-
2011 

Early 
wet 

62,100 39.7 11.9 Monoclon
al 

*age at first sampled infection. 

 102 
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Late season symptomatic infections are characterized by a stronger adaptive immune response.  103 

We first compared the human gene expression profiles generated from symptomatic infections, 104 

from the same child, at the beginning and at the end of one transmission season to investigate 105 

potential differences in immune response (n=8 pairs, Table 1). Of 9,181 expressed human 106 

genes, 130 genes were significantly differentially expressed (FDR<0.1) between symptomatic 107 

infections occurring early versus late in the season, after adjusting for parasitemia 108 

(Supplemental Figure 1A, Supplemental Table 2). Interestingly, genes with functions 109 

indicative of an adaptive immune response, such as T cell activation (e.g., CCL531, ADA32) and 110 

T and NK cell granules (e.g., GNLY33, FGFBP234), were significantly increased in expression 111 

during late season infections. By contrast, genes with functions indicative of an innate immune 112 

response, such as pro-inflammatory cytokines (e.g., IL-1835), interferon-stimulated genes (e.g., 113 

GBP136, GBP436, GBP536, PARP1437) and regulators of the innate immune system (e.g., 114 

CLIC438, LRRK239), were significantly decreased in expression during late season infections. 115 

Overall, this result is consistent with partial development of adaptive immunity to parasites over 116 

repeated exposures throughout the season. 117 

To determine whether these differences in gene expression resulted from changes in white 118 

blood cell proportion or true differences in gene regulation, we estimated the relative proportion 119 

of each immune cell type using gene expression deconvolution40 and adjusted our differential 120 

expression analyses for the proportion each cell type (Supplemental Table 2). After adjusting 121 

for cell composition, only one gene, myosin light chain 9 (MYL9), remained differentially 122 

expressed between early and late season infections, with a higher expression in late season 123 

infections (Supplemental Figure 1B, Supplemental Table 2). As a myosin molecule, MYL9 124 

has diverse roles in different cell types, and can interact with the T cell activation marker CD69 125 

to induce inflammation during infections41. MYL9 has been reported by one study to be 126 
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expressed during treatment and recovery from malaria42, and could potentially be involved in 127 

promoting an adaptive immune response to infection.  128 

We then examined which immune cell types differed in relative proportion between early and 129 

late season symptomatic infections in the same individual. On average, we found that late 130 

season infections were characterized by a higher proportion of adaptive immune cells, whereas 131 

early season infections were characterized by a higher proportion of innate immune cells. 132 

Specifically, late season infections had proportionally more naïve B cells, CD8 T cells, and 133 

resting NK cells than early season infections (p < 0.03, Figure 2A). In contrast, early season 134 

infections had proportionally more activated NK cells, neutrophils, resting mast cells, plasma 135 

cells, and activated dendritic cells (p < 0.05, Figure 2B). These observations are consistent with 136 

a greater role of an innate response in early season infections, while the adaptive immune 137 

response dominates late in the transmission season, suggesting that there is a significant 138 

acquisition of anti-malarial immunity, even on this short time scale.  139 

 140 

 141 

Changes in human gene expression are minimal across the dry season.  142 

To begin to understand whether the gene expression associated with developing immunity 143 

changes during the dry season (i.e., between transmission seasons), we compared gene 144 

expression profiles of 11 pairs of samples from the same children collected during one 145 

symptomatic infection at the end of one transmission season and during one symptomatic 146 

infection at the beginning of the next transmission season (Figure 1, Table 1, Supplemental 147 

Table 2). In contrast to gene expression changes observed between infections occurring in the 148 

beginning and end of the same season, and despite the larger sample size (11 vs. 8), we only 149 

identified one gene (MARCO, a macrophage receptor) whose expression was significantly 150 
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different in this comparison (Supplemental Figure 2). This suggests that immunity remains 151 

relatively stable during the dry season and that the immune gene expression in response to 152 

parasites in the next season is very similar to that of the end of the previous season, in the 153 

absence of interval exposure to infected mosquitoes.  154 

Despite the lack of detectable gene expression differences, we analyzed how proportions of 155 

immune cells may have changed between transmission seasons (Supplemental Table 2). We 156 

found that infections occurring late in one transmission season had significantly more naïve B 157 

cells than infections occurring early in the subsequent transmission season (Figure 3). This 158 

supports our above findings that late season symptomatic infections are characterized by a 159 

more adaptive immune cell signature, but the overall immune response is stable across the dry 160 

season.  These data suggest that there is no detectable waning of immunity over the dry 161 

season, at least as measured by gene expression among immune cells detectable in the 162 

peripheral blood.  163 

 164 

 165 

 166 

P. falciparum gene expression varies minimally over the course of a transmission season or 167 

between transmission seasons. 168 

Since circulating P. falciparum parasites are exposed to the immune system in the blood, we 169 

might expect that, as the immune response changes over a transmission season, parasites 170 

would vary their gene expression to adapt to changing immune pressures. We first compared 171 

the expression of 2,574 P. falciparum genes from the 8 pairs of samples selected from the 172 

beginning and end of one transmission season (Table 1). Interestingly, compared to more than 173 

100 differentially expressed human genes between these samples, we identified only nine 174 

parasite genes whose expression differed after adjustment for parasitemia (Supplemental 175 
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Table 3, Supplemental Figure 3). This suggests that, despite changes in host immunity, 176 

parasite transcriptional programs in peripheral circulation remain very similar, but may not 177 

reflect that of liver-resident parasites in situ. Of these nine differentially expressed genes, only 178 

three had annotated functions and two of the genes, PfPTP3 and PfPTP7, are involved in 179 

trafficking the variant surface antigen PfEMP1 to the RBC surface43, 44 (the third one, PfFRM2, is 180 

involved in daughter merozoite formation 45). This observation is interesting since P. falciparum 181 

has been shown, in vitro, to vary PfEMP1 expression in response to environmental changes29, 182 

which likely includes host immune status. Additionally, one study of Kenyan children identified 183 

particular PfEMP1 subtypes associated with immune status to severe malaria28. An important 184 

limitation of the current study is that we did not analyze expression of the different PfEMP1 185 

genes (due to the high sequence homology between PfEMP1 genes and high variability among 186 

parasites, it is difficult to map and analyze rigorously PfEMP1s from short read RNA-seq data). 187 

It will be important to follow up on this observation and characterize in future studies whether 188 

particular PfEMP1 subtypes are expressed at different times during the transmission season or 189 

at different levels of host immunity. 190 

Because of potential changes in host immune pressure over the course of the dry season, we 191 

also compared parasite gene expression from 11 pairs of samples selected from the end of one 192 

transmission season and the beginning of the next transmission season. Of the 2,483 parasite 193 

genes expressed, we did not detect any differentially expressed genes in this analysis 194 

(Supplemental Table 3, Supplemental Figure 4). This could support our above results that the 195 

host immune response is stable, in the absence of ongoing P. falciparum exposure, between 196 

transmission seasons and P. falciparum parasites are exposed to similar environments during 197 

clinical infections. (We also did not observe any differences in the developmental stage 198 

composition between early and late samples from the same season, nor between late samples 199 

from one season and early samples from the next (Supplemental Table 3).  200 
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 201 

Discussion 202 

Overall, our data suggest that adaptive immunity to P. falciparum partially develops over the 203 

course of one transmission season, with evidence from gene expression of activated T and NK 204 

cells in late season infections, while we did not detect any waning during the non-transmission 205 

(dry) season. Interestingly, despite this change in host immune pressure across the 206 

transmission season, we did not detect any substantial changes in the P. falciparum gene 207 

expression.  208 

Prior work has described the development of adaptive immunity to P. falciparum over long time 209 

frames4, 6, 46-48 and subsequent waning during periods without consistent parasite exposure21, 22, 210 

49. We observed an increase in naïve B cells, NK cells and CD8 T cells in late season infections, 211 

and an adaptive immune gene expression signature, suggesting that some adaptive immunity 212 

incrementally develops even within one transmission season. While the memory B cell 213 

population has been shown to slowly develop over multiple infections10, our observations 214 

suggest that the B cell response to P. falciparum may begin to develop even over a few 215 

exposures (but see some limitations below). NK cells can also produce a memory-like 216 

response50 and mediate efficient killing of infected RBCs in an adaptive-like response51, 52 in 217 

cooperation with P. falciparum-specific antibodies developed as part of the humoral response13, 218 

15, 53, 54. CD8 T cells are implicated in immunity to the liver stages of P. falciparum55 and their 219 

enrichment in late season infections is consistent with developing immunity to this stage 220 

throughout the transmission season.  221 

Surprisingly, we did not detect enrichment for memory B and T cells, specifically, which would 222 

have suggested anti-malarial immune memory development during one transmission season. 223 

This could partially be due to the limited resolution of our gene expression deconvolution 224 

technique in distinguishing precisely between memory and naïve lymphocyte populations, the 225 
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atypical, exhausted phenotype of memory lymphocytes that develop after malaria infection and 226 

have unique gene expression profiles17, 18, 20, 56, 57, or a true defect in memory cell generation 227 

over few infections. Future work with more high-resolution techniques such as flow cytometry 228 

will be necessary to confirm our results and disentangle these possibilities. Taken together, our 229 

findings could suggest that despite development of an appropriate adaptive response after 230 

malaria exposures (i.e., accumulation of B and T cells late in a season), impairment of the 231 

memory response to P. falciparum potentially occurs even over a few symptomatic infections 232 

during one season. Prior work has also suggested that the precise number of infections 233 

(symptomatic or asymptomatic) experienced during a transmission season also strongly 234 

influences the development of immunity during that season58, 59. Future basic immunology work 235 

is warranted to validate these findings and further disentangle the relationship between 236 

development of immunity and number of infections per season.  237 

Interestingly, despite previous evidence of waning antibody titers over the dry season21, we did 238 

not detect any appreciable differences in adaptive immune-related gene expression over the 239 

course of one non-transmission season. The lack of differences in gene expression and immune 240 

cell composition between late season and subsequent early season infections suggests that the 241 

response to infecting parasites remains relatively stable between the end of one season and the 242 

beginning of the next, in Mali. While the lack of detectable gene expression differences is not 243 

proof of the lack of immunologic differences, it is worth noting here that i) the sample size for 244 

this analysis was slightly larger than for the analysis of the changes during one season and ii) 245 

that the samples spanning one dry season were collected 7-10 months apart (compared to 2-3 246 

months apart for the samples in the same transmission season, where ongoing exposure to P. 247 

falciparum is occurring). Interestingly, a previous study has reported that parasites can persist 248 

as sub-clinical infections through the dry season in Mali, with reportedly little effect on the host 249 
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immune response60 and it is possible that these asymptomatic infections could help to maintain 250 

immunity through the dry season. 251 

One important limitation of our current study is its small sample size, which limits overall study 252 

power. Individual differences in baseline gene expression, prior malaria exposure and immunity 253 

and number of infections experienced during the malaria season, likely impact gene expression 254 

and may confound our analyses but are difficult to control for due to the sample size. Indeed, 255 

prior work has identified age and number of exposures as important determinants in the 256 

development of immunity49, 58, 61. The Peuhl ethnicity has also been associated with genetic 257 

protection from malaria62 and differences in immune gene expression between Dogon and 258 

Peuhl individuals could influence our findings. Here, we used paired analyses, comparing 259 

samples from the same individual collected during different time points throughout the season, 260 

to limit the influence of these individual variations but future work with larger cohorts, which can 261 

better control for these potential confounders, will be essential to confirm and strengthen 262 

findings presented here.   263 

Additionally, because our samples were collected when a child presented to clinic with 264 

symptoms, all infections included in our analyses were identified and treated at different lengths 265 

of time after initial symptom presentation. Specifically, since the adaptive immune response 266 

takes several weeks to develop, the interval between infection and diagnosis may influence the 267 

gene expression profile. Additionally, treatment of infections could influence the development of 268 

a productive adaptive immune response, especially if parasite exposure is very short-lived. We 269 

also only included individuals in this study who presented with symptomatic disease, which 270 

could introduce an important sampling bias by studying only those individuals who did not yet 271 

develop anti-disease immunity to malaria.  272 

 273 

Conclusions 274 
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In this work, we described the transcriptional profiles of the host and parasite during 275 

uncomplicated P. falciparum infections occurring at the beginning and end of consecutive 276 

transmission seasons. We found that the human immune response changes more over the 277 

course of one transmission season than between transmission seasons, despite a lower power 278 

(n=8 vs n=11) and a shorter time frame (2-3 months vs 7-10 months). This observation 279 

suggests that the immune response to P. falciparum changes over a transmission season to 280 

adopt an adaptive immune signature later during the transmission season, while it remains 281 

relatively stable between transmission seasons. In contrast, we found that P. falciparum gene 282 

expression varies minimally over this short time scales. Overall, this study contributes new 283 

insights into anti-malarial immunity development over repeated exposures during the short time 284 

scale of one transmission season. These findings have important implications for understanding 285 

the development of protective immunity to malaria that could be exploited by future vaccine and 286 

prevention efforts.  287 

  288 

Materials and Methods 289 

Ethics approval and consent 290 

Individual informed consent/assent was obtained from all children and their parents. The study 291 

protocol and consent/assent processes were approved by the institutional review boards of the 292 

Faculty of Medicine, Pharmacy and Dentistry of the University of Maryland, Baltimore and of the 293 

University of Sciences, Techniques and Technologies of Bamako, Mali (IRB numbers HCR-HP-294 

00041382 and HP-00085882).  295 

 296 

Samples 297 
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We selected 55 whole blood samples, collected directly in PAXgene blood RNA tubes, from 298 

children experiencing a symptomatic uncomplicated malaria episode caused by Plasmodium 299 

falciparum parasites at the beginning or end of the transmission season in Mali (i.e., June to 300 

December). The presence of parasites and the parasite species were initially determined by 301 

light microscopy using thick blood smears. All infections were successfully treated with 302 

antimalarial drugs according to the Mali National Malaria Control Programme standards. 303 

 304 

Case Definition 305 

Children were classified, by the field clinicians, as experiencing symptomatic uncomplicated 306 

malaria if they i) sought treatment from the study clinic, ii) experienced symptoms consistent 307 

with malaria (i.e., fever, headache, joint pain, abdominal pain, vomiting or diarrhea), and iii) 308 

Plasmodium parasites were detected, at any density, by thick blood smear, and if they lacked 309 

any signs of severe malaria (e.g., coma, seizures, severe anemia) 30.  310 

 311 

Generation of RNA-seq data  312 

We extracted RNA from whole blood using MagMax blood RNA kits (Themo Fisher). Total RNA 313 

was subjected to rRNA depletion and polyA selection (NEB) before preparation of stranded 314 

libraries using the NEBNext Ultra II Directional RNA Library Prep Kit (NEB). cDNA libraries were 315 

sequenced on an Illumina NovaSeq 6000 to generate ~60-156 million paired-end reads of 75 bp 316 

per sample. To confirm that P. falciparum was responsible for each malaria episode, we first 317 

aligned all reads from each sample using hisat2 v2.1.063 to a fasta file containing the genomes 318 

of all Plasmodium species endemic in Mali downloaded from PlasmoDB 64 v55: P. falciparum 319 

3D7, P. vivax PvP01, P. malariae UG01, and P. ovale curtisi GH01. After ruling out coinfections 320 

and misidentification of parasites, we aligned all reads using hisat2 to a fasta file containing the 321 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.20.585963doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.585963
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. falciparum 3D7 and human hg38 genomes i) using default parameters and ii) using (--max-322 

intronlen 5000). Reads mapping uniquely to the hg38 genome were selected from the BAM files 323 

generated with the default parameters. Reads mapping uniquely to the P. falciparum genome 324 

were selected from the BAM files generated with a maximum intron length of 5,000 bp. PCR 325 

duplicates were removed from all files using custom scripts. We then calculated read counts per 326 

gene using gene annotations downloaded from PlasmoDB (P. falciparum genes) and NCBI 327 

(human genes) and the subread featureCounts v1.6.465.  328 

 329 

Gene expression analysis 330 

Read counts per gene were normalized into counts per million (CPM), separately for human and 331 

P. falciparum genes. Only human or P. falciparum genes that were expressed at least at 10 332 

CPM in > 50% of the samples were retained for further analyses. Read counts were normalized 333 

via TMM for differential expression analyses. Statistical assessment of differential expression by 334 

the time during the season in which a sampled infection occurred  was conducted, separately 335 

for the human and P. falciparum genes, in edgeR (v 3.32.1)66 using a quasi-likelihood negative 336 

binomial generalized model. We used a paired design to make intra-individual comparisons of 337 

gene expression between early and late season infections to minimize interindividual effects 338 

such as differing levels of developed immunity due to age and exposure history. All models 339 

were corrected for the parasitemia of each infection. Adjusted models were corrected for the cell 340 

composition of each sample (see below). All gene expression analyses were corrected for 341 

multiple testing using FDR 67 (FDR = 0.1). 342 

 343 

Gene expression deconvolution 344 
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CIBERSORTx 40 was used to estimate, in each sample, the proportion of i) human immune cell 345 

types and ii) Plasmodium developmental stages. To deconvolute human gene expression 346 

profiles, we used as a reference LM22 68, a validated leukocyte gene signature matrix using 547 347 

genes to differentiate 22 immune subtypes. A custom signature matrix derived from P. berghei 348 

scRNA-seq data was used for P. falciparum stage deconvolution, using orthologous genes 349 

between the two species 69. Relative proportions of each human immune cell type and P. 350 

falciparum blood stage from each sample are available in Supplemental Table 4. 351 

 352 

Statistical Analysis 353 

All statistical analyses not mentioned above were conducted in R (version 4.0.3). Paired t-tests 354 

were used to compare cell proportions between groups. 355 

 356 

Complexity of infection  357 

We used samtools70 mpileup to call the genotype at each sequenced position in all samples 358 

directly from the RNA-seq reads. We removed positions within Plasmodium multi-gene families 359 

due to inaccurate mapping of reads within these regions because of high sequence variability. 360 

We then calculated the reference allele frequency (RAF) at each position directly from the 361 

resulting files. To determine the complexity of each infection (i.e., monoclonal vs. polyclonal), 362 

we visualized graphically the distribution of RAF in each sample. Samples with a U-shaped 363 

curve, with the RAF for most positions being either 0 or 1, were considered monoclonal. 364 

Samples with RAF between 0 and 1, representing a substantial deviation from the U-shaped 365 

curve, were considered polyclonal71. 366 

 367 

Data and Code Availability 368 
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All sequence data generated in this study are deposited in the Sequence Read Archive under 369 

the BioProject XXX. Custom scripts are available at https://github.com/tebbenk/seasonality. 370 

 371 

Figure Legends 372 

Figure 1: Schematic of the sampling strategy. The black bars show the number of 373 

symptomatic malaria cases reported in the entire longitudinal cohort30 across four years. The 374 

blue and red arrows illustrate the sampling strategy of paired infections (i.e., from the same 375 

child) that would be selected for, respectively, Early vs. Late comparisons (to examine the 376 

development of immunity over one transmission season) and Late vs. Early comparisons (to 377 

examine the loss of immunity over one dry season). 378 

 379 

Figure 1: Change in the relative proportion of immune cell types between symptomatic 380 

infections occurring early and late in the transmission season. Each panel shows the 381 

proportion of one WBC subset estimated by gene expression deconvolution, with the thin black 382 

lines joining estimates from the same individual. A) Cell types that are enriched in late 383 

season infections. The panels correspond, from left to right, to naïve B cells, CD8 T cells, 384 

resting NK cells. B) Cell types that are enriched in early season infections. The panels 385 

correspond, from left to right and top to bottom, to activated NK cells, neutrophils, resting mast 386 

cells, plasma cells and activated dendritic cells. All comparisons utilize student paired T-test with 387 

significance defined as p > 0.05. Note the difference in y-axis scale due to differences in the 388 

proportion of each immune cell subtype.  389 

 390 

Figure 2: Change in the relative proportion of naïve B cells between symptomatic 391 

infections occurring late and early in subsequent transmission seasons. The panel shows 392 
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the proportion of naïve B cells estimated by gene expression deconvolution, with the thin black 393 

lines joining estimates from the same individual, compared with a paired T-test.  394 

 395 
 396 

Supplemental Figure 1: Differences in host gene expression between infections 397 

occurring early and late during one transmission season. Each point represents one gene 398 

plotted according to the fold-change and the p-value. Red points represent genes that are more 399 

highly expressed in late season infections. Blue points represent genes that are more highly 400 

expressed in early season infections. A) Before adjustment for cell composition B) After 401 

adjustment for cell composition.   402 

 403 

Supplemental Figure 2: Differences in host gene expression between infections 404 

occurring late in one transmission season and early in the next, unadjusted for cell 405 

composition. Each point represents one gene plotted according to the fold-change and the p-406 

value. Red points represent genes that are more highly expressed in late season infections. 407 

Blue points represent genes that are more highly expressed in early season infections.   408 

 409 

Supplemental Figure 3: Differences in P. falciparum gene expression between infections 410 

occurring early and late during one transmission season, unadjusted for cell 411 

composition. Each point represents one gene plotted according to the fold-change and the p-412 

value. Red points represent genes that are more highly expressed in late season infections. 413 

Blue points represent genes that are more highly expressed in early season infections.   414 

 415 

Supplemental Figure 4: Differences in P. falciparum gene expression between infections 416 

occurring late during one transmission season and early in the next, unadjusted for cell 417 
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composition. Each point represents one gene plotted according to the fold-change and the p-418 

value. Red points represent genes that are more highly expressed in late season infections. 419 

Blue points represent genes that are more highly expressed in early season infections.   420 

 421 
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