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Abstract 

The potential for disease treatment through gut microbiome modification has contributed to an increase 

in longitudinal microbiome studies (LMS). Gut microbiome modification can occur through factors such 

as diet, probiotics, or fecal transplants. Scientific data often motivates researchers to perform exploratory 

analyses to identify features that relate to a response. However, LMS are challenging to analyze, often 

leading to lost information and research barriers. LMS analytic challenges include data integration, 

compositionality, dimensionality reduction, and the need for mixed-effects models for non-independent 

data. Additionally, LMS can be observational or interventional, and relevant comparisons of interest might 

differ for these two study types. For example, in an observational study, measurements are made over 

time and show natural fluctuations in symptoms/measurements, so the baseline measurement might not 

be a reference point of primary interest; whereas, in an interventional study, the baseline value often 

coincides with the start of treatment and is a key reference point. Thus, the optimal way to calculate 

feature changes for each subject over time is dependent on different reference values. To address these 

challenges, we developed EXPLANA, a data-driven feature-selection workflow that supports numerical 

and categorical data. We implemented machine-learning models for repeated measures, feature-

selection methods, and visualizers explaining how selected features relate to the response. With one 

script, analysts can build models to select and evaluate important features and obtain an analytic report 

that textually and graphically summarizes results. EXPLANA had good performance using twenty 

simulated data models yielding an average area under the curve (AUC) of 0.91 (range: 0.79-1.0; SD = 

0.05) and better performance compared to an existing tool (AUC: 0.95 and 0.56; precision: 0.82, and 

0.14, respectively). EXPLANA is a flexible, data-driven tool that simplifies LMS analyses and can identify 

unique features that are predictive of outcomes of interest through a straightforward workflow. 

Background/Introduction 

In our current era, scientific studies often include the collection of complex multiomic data1, such 

as microbiome2, transcriptome3, or metabolome4, where it is of interest to determine whether 

any novel features, or collections of features, may be related to a response in an exploratory 

manner. Adding to the complexity, studies often collect other data from individuals that may 

impact an outcome, such as demographic and health data, or surveys on diet or medications. 

The growing quantity of available data complicates statistical decisions regarding variable 

inclusion, which is often based on hypotheses that motivated the initial study design. 

Additionally, studies can include both categorical and numerical variables and can often contain 

longitudinal, non-independent data, posing greater statistical challenges. As research 

advancements are made, collaborative efforts with different research laboratories produce more 

data per study, and human biases are often introduced during study design and analytics. 
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These challenges have ultimately stimulated a growing interest in data-driven methods. 

Therefore, we developed a data-driven feature selection workflow that streamlines exploratory 

analyses for hypothesis generation, accommodating longitudinal data and both numerical and 

categorical variables. 

One field particularly impacted by an abundance of data is microbiome research, which focuses 
on characterizing the community of viruses, fungi and bacteria and their genes found in different 
environments. Characterization of the microbiome is often performed by 16S ribosomal RNA 
(rRNA) gene sequencing, which identifies the microorganisms in an environment. One well-
studied microbial environment is the gut microbiome because of the metabolic potential of the 
bacterial community and its association with numerous human diseases, including obesity5, 
depression6 , autism7, cancer8,9, HIV10 and cardiovascular disease11. The relationship between 
the gut microbiome and human disease suggests that gut microbiome modification through 
interventions like dietary changes, probiotics, or fecal microbial transplants may provide 
treatment options for many diseases. 

To understand changes in health response and address the impact of individual variation, 
longitudinal studies that collect data from multiple individuals, at different timepoints, are 
essential. These studies involve repeated measurements on individuals, requiring special 
statistical considerations to identify relationships between features within non-independent 
data12. These studies often include diverse subject data, such as demographics, nutrition, or 
health symptom questionnaire data, often with both numerical and categorical features. Random 
Forest (RF)13 based machine learning (ML) approaches are powerful for combining different 
data types to predict outcomes and identify important features. RFs work well with high-
dimensional data (more features than samples/instances)14, find non-linear relationships, work 
with non-normal data distributions, and are more interpretable than many other ML models 
because they are based on simple decision trees. Additionally, mixed-effects RF (MERF)15 
models can be used for longitudinal study designs. However, numerous challenges can hinder 
effective application of these methods. 

MERFs can be run on original (raw) data from longitudinal studies or by using changes (s) 

between different reference timepoints, which can reveal unique insights in some studies16–20. 

However, the research question of interest can affect decisions regarding optimal calculation of 

s. In some designs, such as interventions, or other observational studies with an expected 

trend over time (e.g., gut microbiome changes over the first years of a baby’s life16), changes 

are expected compared to a baseline reference value, so s can be calculated using baseline 

as a reference17,18. However, some observational studies have no meaningful baseline, and it 

might instead be of interest to relate an outcome variable to changes in predictors between 

adjacent timepoints or all pairs of timepoints21,22. For instance, in an observational longitudinal 

study of children with autism spectrum disorder (ASD) that we conducted22, we evaluated 

children with ASD over time to identify relationships between diet, gastrointestinal distress, or 

the microbiome and ASD-associated behaviors. Because of high interpersonal variation in gut 

microbiome, this longitudinal study design revealed relationship between the gut microbiome 

and ASD behaviors as a correlation between the degree of microbiome change and ASD 

behavior change between timepoints. However, because we studied more than two timepoints, 

and because the first timepoint was not a meaningful baseline, we performed pairwise 

analyses. Pairwise analysis is useful for identification of effects that are time-delayed (i.e., a 

change from time 2 to time 4), order-dependent, or reference dependent. Different longitudinal 
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study designs highlight the importance of understanding changes (s) in features, for each 

subject over time, and that feature changes differ depending on their reference values. 

Statistical methods do differ regarding how and when to apply change analysis and can even 

lead to different conclusions23. Thus, our method compares results from original and  datasets 

for a more complete picture of a longitudinal study. 

 
Another analytic challenge encountered in the application of RFs to complex microbiome studies 
is the integration of microbiome data as a predictor value together with other data types. Data 
collected in surveys/questionnaires or from clinical reports can be numerical and categorical. To 
the best of our knowledge, there are no software tools that create and select order-dependent 
categorical feature changes that impact a response. For example, the drugs amiodarone and 
quinidine for heart arrhythmia treatment have an interaction that could lead to a dangerously 
rapid heartbeat24, but an interaction risk is higher if amiodarone precedes quinidine since 
amiodarone has a much longer elimination half-life (days25 vs hours26). This example highlights 

how calculating categorical s in an order-dependent way might uncover relationships that have 
differential impact if introduced in opposite order, such as in crossover study designs (AB/BA 
designs). This led us to the hypothesis that we could identify unique features dependent on 
different contexts of change, including novel order-dependent categorical features by tracking 
text changes as an engineered feature value (e.g., “amiodarone__quinidine”). 
 
Finally, another key challenge is the analytic complexity of performing longitudinal microbiome 

analysis in a reproducible way that facilitates communication about results. These workflows 

can involve inputs of diverse data types, calculation of s with different reference points, feature 

selection using mixed-effects ML methods, and methods for explaining why each feature was 

selected, in addition to their importance ranks. Although there are tools for feature selection in 

microbiome data16,27–31, none provide the combination of methods we describe. For example, 

timeOmics31 is useful for multi-omic integration with an emphasis on time as the response, while 

we wanted to find features related to different response variables over time. QIIME 2 

longitudinal feature-volatility16 allowed for looking at different responses, but did not incorporate 

importance metrics that explain the selected feature’s impact on the response. Both tools, 

although useful for feature selection in longitudinal data, did not incorporate categorical deltas 

like we needed. It is cumbersome for scientists to research and implement this complex array of 

tools. 

 
For these reasons, we developed a software workflow, called EXPLANA (EXPLoratory 
ANAlysis) to streamline identification of important features in both cross-sectional and 
longitudinal microbiome studies and reduce analytic barriers to data-driven hypothesis 
generation. Our tool identifies unique features important in different contexts of change, 
including important changes in categorical features related to a response. EXPLANA combines 
novel methods and popular tools to address various analytic challenges and provide broad 
applicability for scientific research. 
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Results 

Overview  

 

Figure 1. Feature selection workflow diagram. Individual datasets can be preprocessed individually to reduce 
dimensionality using a variety of methods, including principal components analysis (PCA), center-log-ratio (CLR) 
transformation or through data filtering. Datasets are merged to form the Original dataset prior to creation of 

 datasets for longitudinal studies. First, Previous, Pairwise  datasets, as shown in blue, are created as explained 

in Fig 2. Feature selection is performed for up to four models built from each dataset (Original, First, Previous, and 
Pairwise). An .html report is created which summarizes features selected per model. 

 
 
EXPLANA was developed to create a comprehensive feature selection report. The workflow is 
guided by directions from a configuration file where the user provides paths to the different input 
datasets, defines whether to perform optional preprocessing steps per dataset, and defines 
input variables and the response variable of interest (Fig 1). The input datasets are merged to 
form the comprehensive Original dataset. If more than one timepoint is sampled per subject, 
feature changes are calculated using different reference points to uncover important features in 

different contexts of change. Thus, the Original dataset is used to compute three  datasets, 
First, Previous, and Pairwise (Fig 2). For First, differences are calculated compared to 
baseline/first measures. For Previous, differences are calculated compared to the immediately 
previous timepoint only. For Pairwise, all pairwise comparisons between timepoints are 
computed. Notation throughout is as follows: Timepoints 1, 2, 3, etc. are referred to as T1, T2, 

T3, etc., respectively. Accordingly, differences/changes (s) such as the difference between T1 
and T2 is T1_T2, which is labeled in chronological order for clarity. For T1_T2, T1 is the 
reference point and is subtracted from T2 (Fig 2). 
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Figure 2. Example calculations of First, Previous and Pairwise  datasets for numerical and categorical 

features in a four timepoint study. The Original dataset includes original feature values (without change analysis) 

and  datasets contain differences/changes in features, per subject, between timepoints. Different reference points 

are used for each  dataset. For categorical features (e.g. pill color), text is used to track the order of categorical 

changes and for numerical features (e.g. microbe count), the reference is subtracted from the later timepoint. The 

comparison between two timepoints is indicated before each colon (e.g., a  between timepoint 1 and 2 is indicated 

as T1_2). For a four timepoint study: First s: 1_2, 1_3, 1_4; Previous s: 1_2, 2_3, and 3_4; and Pairwise s: 1_2, 

2_3, 3_4, 1_3, 1_4, and 2_4. 

 
 
Support for numerical and categorical predictors and response variables is implemented, 
including novel functionality to track categorical feature changes over time. Microbiome-specific 
challenges addressed include the option to use a center-log-ratio (CLR) transformation 

for compositional data32 as well as accommodating distance matrix incorporation during  
calculations, which allows users to evaluate differences between microbiome samples, such as 
those calculated with UniFrac or other beta diversity measures33. MERFs are used as the ML 
method for feature selection in non-independent, repeated measures data, while RFs are used 
when repeated measures are excluded. The Boruta34 method combined with SHAP35 
(BorutaSHAP36) is used to identify which important features identified with MERFs or RFs 
contribute to a more accurate prediction of the outcome better than expected by random 
chance. SHAP not only provides importance scores that rank features by their importance for 
model performance, but also produces plots that allow one to assess whether features have a 
positive or negative impact on a response, thereby improving results interpretation. Upon 
workflow completion, a report is generated that contains a description of the analysis, as well as 
tables and figures that explain why features were selected (Fig 3).  
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Figure 3. Example screenshots of a feature selection report. The report is in an interactive .html format to 
facilitate interpretation of complex machine-learning method results through figures and written explanations. The 
report includes a written summary of methods containing arguments and information from the configuration file. The 
dynamic methods can be copy/pasted into manuscripts for efficiency; tables and figures summarize feature 

selection results for models built from Original and, if longitudinal, First, Previous and Pairwise  datasets. Figures 

include SHAP summary plots and SHAP dependence plots. Links are provided to directories containing files used 
for report generation to facilitate exploration of data and results.  

 

 

Simulated Data Design 

The workflow was evaluated using both simulated and published datasets (both detailed in 

Methods). A simulated longitudinal happiness study, SimFeatures, was created for performance 

evaluation and modeled as an intervention where 100 individuals were treated with one of two 

therapies to improve happiness over five timepoints. Happiness is based on a numerical score 

where higher values indicate better mental health. For interpretability, features are recognizable 

as factors that could affect real-life happiness such as relaxation, sunshine, salary, medication, 

etc. Categorical and numerical features were included with and without relationships to the 

response, thus representing predictive and not predictive engineered features (Table S1). Some 

features were designed to be important only in some of the four models (Fig 2; Original, First, 

Previous or Pairwise) to validate whether the tool could select unique features dependent on 

different contexts of change. To show how order-dependent categorical changes are found, a pill 

color/medicine variable was created to mimic a drug interaction between blue and green pills 

resulting in lower happiness. Specifically, green before blue (green_blue) negatively impacted 

happiness due to green having a longer half-life than blue. 
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A simulated compositional, microbiome feature table was also created using 
MicrobiomeDASim37 with 25 differentially abundant microbes linearly correlated to happiness 
changes over time and 175 that are not related. The dataset with the response and simulated 
microbes was called SimMicrobiome. The dataset with SimFeatures and SimMicrobiome 
combined was called SimFeaturesMicrobiome0. To evaluate the effects of including many 
features with no relation to the response in an analysis, we added an increasing number of 
random variables (number indicated in name) from a variety of not predictive data distributions 
to the SimFeaturesMicrobiome dataset. Thus, the five simulated datasets are SimFeatures, 
SimMicrobiome, SimFeaturesMicrobiome0, SimFeaturesMicrobiome500, and 
SimFeaturesMicrobiome1000. (Table S1). 
 
For features in the five simulated datasets, workflow evaluation was performed by appropriate 
selection or rejection of engineered features. Accordingly, true positives (selected predictive 
features; TPs) and true negatives (rejected not-predictive features; TNs) were considered 
correctly classified, while false positives (selected not-predictive features; FPs) and false 
negatives (rejected predictive features; FNs) were considered incorrectly classified (Fig S1). 
These datasets allowed us to: 1) evaluate workflow performance from classification accuracy of 
engineered features and 2) to test our hypothesis that we could identify unique features 
dependent on different contexts of change, including novel order-dependent categorical 
changes related to a response. 
 

Simulated Data Results 

We used EXPLANA to select features related to happiness for the five simulated datasets using 
the four models (Original, First, Previous or Pairwise). Features were ranked and performance 
was determined for each of the four models for all five datasets (Fig 4, Table 1, Fig S2). AUC 
and F1-score (a metric that accounts for both precision and recall) respective ranges for 
Original, First, Previous and Pairwise were: 0.79-1.00 and 0.83-1.00 SimFeatures; 0.80-0.96, 
and 0.73-0.87 for SimMicrobiome; 0.88-0.94 and 0.78-0.91 for SimFeaturesMicrobiome0; 0.87-
0.95 and 0.69-0.91 for SimFeaturesMicrobiome500; and 0.90-0.95 and 0.66-0.92 for 
SimFeaturesMicrobiome1000. Thus. Original yielded the highest F1-score and AUCs. The 
average workflow ability to recall predictive features was good/excellent (average 0.87, SD = 

0.09) and good for precision (avg 0.82, SD = 0.14), with some  datasets having lower precision 
or recall. Of the four models analyzed with EXPLANA for SimMicrobiome, Previous had the 
lowest percent variation explained (65.4%), a low recall (0.60), and failed to correctly classify 
some predictive features. The lowest F1-score was for SimFeaturesMicrobiome1000 using 
Pairwise (0.66), which had 30 FPs that affected precision (0.55). Still for 
SimFeaturesMicrobiome1000, the proportion of selected predictive features (recall) was 0.81, 
AUC was 0.91, and out of 1000 random variables, only 30 were FPs (see confusion matrix in 
Table 1). For simulated datasets with not-predictive microbes or random variables, Pairwise had 
the poorest precision. 
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Figure 4. Feature selection results for one analysis using SimFeatures dataset. The SimFeatures dataset is a 
simulated longitudinal intervention with 100 individuals sampled over five timepoints (see Methods for detailed 
description). A) Feature occurrence figure with selected features organized by model (Original, First, Previous and 
Pairwise) and ranked with one being the highest importance. For presence (yes/1) of a categorical variable, SHAP 
values are indicated following the colon. SHAP summary beeswarm plots for ranked selected features are shown 
for B) Original model and C) Previous model. Each point represents one sample, and the horizontal position 
indicates impact on the response as indicated on the x-axis. Points to the left indicate a negative impact, and points 
to the right indicate a positive impact. The colors represent the selected feature values, where red is larger, and 
blue is smaller. For binary encoded features (‘ENC’) red is yes/1 and blue is no/0. Note that scales differ between 
the top and bottom SHAP plots, as they are grouped by a maximum of ten features per SHAP plot. Some features 
were designed to be identified in only certain models. Interesting results include: ENC_medicine_is_green_blue (pill 
color), a categorical feature important in Previous and Pairwise models; “relaxation”, a numerical feature important 
in Previous and Pairwise and undetectable in First as described in the discussion; and “sunshine” which was 
unable to be detected in Previous but a high rank in other models. Multiple analyses create a more comprehensive 
picture for longitudinal studies. 300 trees were used, with a feature fraction of 0.3, max depth of 7, with 10 iterations 
of mixed-effects Random Forests (MERFs), and 100 BorutaSHAP trials (100% importance threshold; p = 0.05).  

 
 
Table 1. Performance Results from Classification Accuracy of Engineered Predictive and Not 
Predictive Features in Five Variations of Simulated Data 
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The features selected from the smallest dataset containing a variety of input feature types, 
SimFeatures, are shown in Fig 4a. Details about their motivation for workflow demonstration are 

explained in Table S1. One feature that emphasizes the advantage of calculating s using the 
previous values or pairwise values rather than only first/baseline values is pill color, a 
categorical feature engineered to have a negative impact on happiness when blue pills were 
taken after green (“green_blue”), and not conversely. The feature green_blue had relatively high 
ranks and a negative impact on the response using Pairwise and Previous (respective 
rank:impact: Pairwise = 6/19:-5.3, and Previous 4/13: -10.7; Fig 4a and Fig 4c). Green was not 
consumed by individuals at baseline/T1, therefore green_blue could not be identified with First. 
Green alone was selected with Original at a lower importance rank and a small positive impact 
(11/13: +1.6) and blue was selected with a small negative impact (10/13: -1.5). Green 
consumption occurred more at later timepoints, while happiness was also increasing, so 
selection of green with a small positive impact on happiness was appropriate in the Original 
despite being designed without independent effects. However, without the additional information 

provided by s, an assumption about positive impact on happiness when consuming green pills 
could have been made. 
 

A numerical example that emphasizes the benefit of using different methods for calculating s in 
longitudinal analysis is “relaxation,” which was selected in Original, Previous and Pairwise 
models but not First. Relaxation had one value for baseline/T1 and a different equivalent value 
at all later timepoints, resulting in T1 comparisons to T2, T3, T4 and T5 having identical values 
(e.g., T1=1, T2-T5 = 5 differences compared to baseline would be 4 for comparisons in the First 
dataset). The lack of change in First makes it ineffective for discrimination and pattern 
recognition for “relaxation” despite its relationship to happiness. Another numerical feature only 
important in some contexts of change is “sunshine,” which was selected using Original, First, 
and Pairwise, but not Previous. Sunshine has a linear relationship to happiness over time which 

can sometimes be less impactful upon calculating s using differences between adjacent 
timepoints only. 
 
Although all analyses shown thus far have demonstrated the application of EXPLANA to 
longitudinal study designs, we note that EXPLANA can also be used to analyze cross-sectional 

data, which excludes s. To illustrate this, we applied EXPLANA to SimFeatures using only 
timepoint 1 data. Perfect precision and recall were obtained, with six features selected: high and 
low salary, fish and dog as pets, healthy and unhealthy individuals (Fig S4). 
 
EXPLANA performance was then compared to an existing feature selection tool for longitudinal 
microbiome studies, specifically the QIIME 238 longitudinal16 feature-volatility tool. Because the 

feature-volatility tool itself does not create  datasets (other tools in q2-longitudinal can create  
datasets) and does not include categorical variables like EXPLANA, SimMicrobiome (the 
simulated microbiome, with no other study input variables) was used with Original only (Fig S3). 
All performance measures were substantially better for EXPLANA compared to feature-volatility, 
except for recall, which was 0.92 and 1.00, respectively (Table 1). Of the 25 predictive microbes, 
EXPLANA selected 23 feature-volatility identified all 25. Of the 175 not-predictive microbes, 
EXPLANA selected five FPs and feature-volatility selected 155 FPs. 
 

EXPLANA was next applied to identify bacteria related to month-of-life in babies from the early 

childhood and microbiome (ECAM) study39 which was also used to compare results with the 

QIIME238 longitudinal feature-volatility feature selection16. The ECAM study produced 16S rRNA 

targeted sequencing data from fecal samples collected monthly from 43 babies, over the first 2 
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years of life, and was used with EXPLANA and feature-volatility to identify bacterial genera 

related to month-of-life among 455 input genera (Fig 5). Of 455 input genera, the selected 

genera for all individuals in the Original dataset was 61 (13% of the input features) for QIIME 2 

longitudinal feature-volatility and 39 (8.6% of the input features) for EXPLANA. First s using 

EXPLANA selected 51 features and uncovered 11 unique features related to month-of-life when 

making comparisons to values at baseline/birth. 

 

Figure 5. Heatmap of bacterial genera predictive of month-of-life in newborns selected by EXPLANA and 

QIIME 2 longitudinal feature-volatility using the early childhood and microbiome (ECAM) dataset39. Results 

from EXPLANA were compared to QIIME2 longitudinal feature-volatility results. Using both tools 500 trees were 
used. For EXPLANA, arguments included a feature fraction of 0.2, max depth of 7, with 10 iterations of mixed-
effects Random Forests (MERFs), and 100 BorutaSHAP trials (100% threshold; p = 0.05). For feature-volatility, a 
feature fraction of 1.0 was used with Random Forest (RF). Feature-volatility results are shown in the first column 
(Original; all individuals), followed by EXPLANA analysis by stratifying newborns by vaginal or cesarean delivery 
mode and using Original and First models. Figure is sorted by QIIME2 longitudinal feature-volatility ranks, where a 
darker green and lower number indicates a more important rank.  
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The ease of running different datasets through the EXPLANA workflow enables easier 

exploratory analyses of datasets, such as conducting stratified analyses. For instance, to do 

stratified analyses in EXPLANA the user simply needs to use small R scripts inside the 

configuration file which will be documented in the report. EXPLANA was additionally used to 

select genera after stratifying by vaginal or cesarean delivery mode, due to their impact on the 

gut microbiome40, and using Original and First s. Some genera were only selected as 

important in vaginal delivery (Roseburia, Stenotrophomonas, Turicibacter and Holdemania), 

while others only in cesarean delivery (Dorea, Bilophila, and Haemophilus). There were 14 

genera unique to EXPLANA overall compared to QIIME 2 feaure-volatility,13 of which came 

from using the First model, including Paracoccus, Allobaculum, Helicobacter and Lactococcus. 

 
To demonstrate the versatility for EXPLANA to work with categorical variables using the ECAM 
dataset we identified categorical features that were related to month-of-life while excluding the 
microbiome data. Variables included were delivery type (cesarean/vaginal), predominant diet 
during first three months (breast/formula milk), sex (male/female), and antibiotic exposure 
(yes/no). Change in antibiotic use from no to yes (n_y) at later timepoints was positively related 
to month-of-life, indicating that babies are more likely to have an antibiotic treatment event as 
they age. Similarly, antibiotic use “no to no” showing a negative impact on month-of-life (Fig S5). 

Discussion 

To address challenges with longitudinal microbiome analytics, we developed a feature selection 
tool for longitudinal data to expedite discovery. We implemented supervised ML methods to 
identify features that relate to response values. For meaningful results, it was essential to 
implement methods that provide rationale and explanations about why features were selected 
and how their occurrence impacts values of dependent variables. 
 
When using simulated longitudinal datasets, EXPLANA had good performance for most 

analyses, as determined by selection or rejection of engineered features. The  datasets 

highlighted that performing change analyses can produce unique insights compared to using 

Original longitudinal data without  calculations. Several studies have applied MERFs for 

feature selection41,42, however, they did not use s, which could lead to a possible loss of 

valuable insights. 

 

The four models can have strengths and limitations with feature selection capabilities for a 

variety of reasons or in different situations. For example, the Previous model’s failure to select 

sunshine with SimFeatures, which had an engineered linear relationship to happiness over time, 

is conceptually similar to why Previous had a low percent variation explained and recall for 

SimMicrobiome. This is because the simulated predictive microbes and sunshine had a similar 

linear trend over time. Other temporal trends can include quadratic, hockey stick, etc37. Previous 

can miss predictive features in cases where changes are minimized such as when the reference 

time is closer and predictor variables linearly relate to the response. This contrasts with First, 

where changes would be emphasized compared to baseline for this study. A limitation of 

Pairwise, is that more comparisons are made, which increases the compute time, and the 

number of comparisons from overlapping time spans, so it is important to consider a higher 

chance of FPs due to more feature comparisons, leading to more values. A more stringent p-
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value cutoff should be considered for Pairwise. As expected, Pairwise had the most FPs for our 

simulations. For all simulations, First and Original had the best overall percent variation 

explained as expected for this study design consisting of engineered features with known 

changes from a baseline value. Despite model limitations in particular instances, different 

engineered features emphasized the importance in building models using Original and  

datasets. Pill color “green_blue” was only able to be found in Previous and Pairwise, and 

demonstrated the ability for EXPLANA to find an order-dependent categorical variable that 

impacted a response. “Relaxation” is impossible to select in First, and was not selected, 

because it lacked variation compared to baseline values, and it was selected by all other 

models. “Sunshine” which is positively linearly related to the response, was not selected with 

Previous, due to smaller differences between closer points in time, but was selected with a high 

importance rank with the three other models. These features provide examples that 

demonstrate how different models, for different contexts of change, are needed for a more 

comprehensive exploratory analysis in longitudinal datasets. The s allow for identification of 

order-dependent categorical features (also seen with “no_yes” for antibiotics with the ECAM 

data), which are impossible to detect using Original. 

 

Dissimilarities between data included in each of the four models can create complications with 

interpreting feature selection results, such as dropping samples from  datasets due to missing 

timepoints. Another challenge with interpreting results from multiple models arises from 

including distance matrices, which can only be included in  datasets because they represent 

changes between samples. Thus, care should be taken with interpreting results obtained by 

different models within one report. 

 
When using the ECAM dataset, the higher percentage of important genera identified using 
feature-volatility is likely attributed to false positives due to a lack of automated statistical testing 
as performed with BorutaSHAP in EXPLANA. Many false positives were indeed identified using 
feature-volatility with a simulated microbiome dataset (SimMicrobiome) which had a known 
amount of predictive and not predictive microbes. Importance ranks differ for many genera 
between EXPLANA and feature-volatility leading to different conclusions about the degree of 
importance regarding developmental microbiome changes. When genera were selected using 
EXPLANA by delivery mode, which influences the gut microbiome39,40, four were important only 
in vaginal delivery while three were important only in cesarean delivery (Fig 5). Of these seven 
genera, a review on gut microbiota by birth type43, noted two studies corroborating Haemophilus 
as important in cesarean delivery mode despite a small sample size of 19 babies.44,45 The small 
number of individuals per delivery mode (24 for vaginal delivery and 19 for cesarean) might limit 
the power needed to detect effects. However, other studies have demonstrated RFs to be useful 
with small sample sizes, including 2646, 3047 and 3548 samples. Because RFs can perform 
internal validation using subsets of data and out-of-bag (OOB) scores, there is less concern 
associated with small datasets.  
 
The tools first-differences and first-distances (for distance matrices) from q2-longitudinal1 can 

create s from continuous data, which can be used with feature-volatility. However, creation of 

s is not part of the feature-volatility feature-selection process, and comparing results from 

different models is cumbersome without comparative figures, such as the feature occurrences 

figure provided with EXPLANA (e.g., Fig 4a). We have also not observed the incorporation of 

categorical s in any feature selection tool. The ML model used in feature-volatility is RF, which 
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is not designed for repeated measures analyses like MERF, which is used in EXPLANA. The 

importance score used in feature-volatility is Gini, which is biased when categorical and 

numerical variables are combined49, while EXPLANA uses SHAP, which works well for this 

combination of feature types. Additionally, SHAP provides feature impact on response, in 

addition to rank, as well as statistical testing from BorutaSHAP. 

 

There is no one-size-fits all model and it is not possible to know which parameter adjustments 

will lead to optimal results. However, tuning of the algorithm can address some issues, 

especially the number of features available per decision tree split, which is affected by the 

proportion of meaningful input variables. This workflow provides a means for finding a better 

model because it provides a relatively simple approach for testing. Interpretation of exploratory 

analysis should be done with care, and post-hoc testing and further investigation should be 

considered. 

 
The barrier to performing data-driven feature selection for cross-sectional and longitudinal 
microbiome studies has been lessened by EXPLANA. Different applications are more attainable 
including analyzing less timepoints or segments of time, such as during plateau or active time 
periods. Additionally, stratifying by factors such as sex, geography, disease symptom, or a 
combination of factors could be worthwhile. EXPLANA also provides the opportunity to 
investigate different variables (including responses) from prior hypotheses or from results of 
another exploratory analysis.  
 
Overall, we addressed many challenges and removed various barriers to performing feature 
selection by combining existing tools and novel methods to generate research-motivating 
results. 

Methods 

Workflow Overview 

EXPLANA was developed using Snakemake50 to facilitate piping inputs and outputs from 
different scripts written in different software languages, primarily R and Python (Fig 1). The 
workflow is executed from user-input arguments from a configuration file which pipes files to 
different scripts concluding with an .html report. The configuration file includes a list of datasets 
(microbiome, surveys, etc.) in long format (rows are samples; columns are features). First, 
individual datasets can be preprocessed through filters, dimensionality reduction, or 
transformation. If multiple files exist, they are merged to create the Original dataset. For 

longitudinal data,  datasets are computed (Fig 2). Finally, a feature selection algorithm is 
implemented by building a model from each of the four datasets (Original, First Previous and 
Pairwise): First, RFs13 or MERFs15 (if multiple samples exist per subject), are trained; Next, 
BorutaSHAP36 is used to rank features by importance if they perform better than expected by 
random chance, and determine feature impact on response. The final report includes figures, 
tables, and a written analytic summary. 
 
Analyses were completed locally to ensure reasonable compute time for typical academic 
microbiome studies or those without server access. For 1000 features, 5 timepoints and 100 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.20.585968doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.585968


 15 

individuals, run time is less than 30 minutes using a MacBook Pro (Memory: 32 GB 2400 MHz 
DDR4; Processor: 2.9 GHz; 6-Core Intel Core i9). 
 

Software and Data Availability 

Description of workflow implementation and user documentation can be found at 
www.explana.io and software, dataset and licensing at https://github.com/JTFouquier/explana. 
 

Configuration file 

Each configuration file is associated with one analysis. Users must modify a configuration file 
that specifies dataset files, a response/outcome variable, sample identifier column, timepoint 
column, distance matrices (if applicable), optional dimensionality reduction steps prior to feature 
selection, and ML method decisions/arguments. Feature values as well as feature columns can 
be kept or dropped for individual datasets or for the merged Original dataset using small scripts 
within the configuration file. 
 

Preprocessing datasets 

For each feature selection analysis, one or more dataset files can be used depending on project 
and data organization. Each dataset can be preprocessed, as needed, which may include 
dropping entire features or specific feature values, or other filters on a per dataset basis. 
Dimensionality reduction can be performed prior to feature selection using principal components 
analysis (PCA), transformation or filters. PCA is used on a set of related variables to capture the 
maximum variance using fewer variables. Short R scripts can be added to the configuration file 
to modify each dataset or the complete dataset after merging individual datasets. 
 

Dataset Integration 

After preprocessing, individual datasets are merged using the sample identifier column to create 
the combined "Original” dataset. The Original dataset is named accordingly because it contains 
original values of features that may have been sampled over time. The Original dataset does not 

include any intra-individual changes/differences between timepoints like the  datasets. Data 
integration is performed through a left merge, where samples in the top/first dataset listed are 
prioritized. This means that additional samples in other datasets will not be included. For some 
analyses, merging data prior to implementation may be simpler. 
 

Delta () dataset creation 

For longitudinal analyses, the Original dataset is used to compute three  datasets, First, 
Previous, and Pairwise by calculating feature changes over time, per subject, using different 
reference points (Fig 2). For First, differences are calculated compared to baseline/first 
measures. For Previous, differences are calculated compared to the previous timepoint. For 
Pairwise, all pairwise comparisons between timepoints are computed. For longitudinal studies 
with only two timepoints, only Original and First are built. 
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For categorical variables, the order of categorical values for each subject at both timepoints per 

comparison is tracked (e.g., for the pill color feature, if T2 is green and T3 is blue, the T2_T3  is 
green_blue). For numerical variables, reference values are subtracted from the later timepoint 

(e.g., for subject 1, if T2 has 3 microbes and T3 has 7 microbes, the  is 4). 

 

Timepoint is numerical for Original to provide information about order of events, and as a 

categorical feature for  datasets due to overlap in timepoints (i.e., T1_2 and T1_3 overlap each 
other at T1_2). This overlap can be thought of as though time were a generic categorical feature 
rather than an abstract concept. In other words, if T1, T2 and T3 were recoded as A, B, and C, 
respectively, the comparisons A_B, A_C and B_C are potentially interesting. 
 

Feature Selection Algorithm 

Feature selection is performed using all four models, as needed. For categorical features, all 
unique values/classes per feature are converted to new binary features, where feature presence 
in a sample is 1 and absence is 0. This enables selection of uncommon feature values that 
influence a response. 
 
Next, regression is performed to select features related to the response. When more than one 
measurement per subject exists, MERF is used instead of RFs. Both use Scikit-Learn51 
RandomForestRegressor as the fixed effects forest. Boruta34 is a method that uses shuffled 
versions of input features to assess importance score comparison to shuffled versions of the 
same features. This process is repeated to identify features that more important than expected 
by random chance. Features are categorized as accepted, tentative or rejected. BorutaSHAP36 
is implemented because it works with the unique properties of SHAP (SHapley Additive 
exPlanations)35, which provides feature ranks and explains feature impact on the response. 
 
Rejected features are dropped, RF or MERF are rerun, and visualizations are generated without 
irrelevant features that might hide true signal from important features. Percent variation 
explained, using OOB scores, is provided using the complete-feature and reduced-feature 
forest. 
 

Report Details 

The result of each analysis is an interactive .html report that includes figures, tables, links to 

directories for data exploration, links to PubMed for researching interesting findings, and written 

descriptions of processes leading to the selected feature set (Fig 3). An analytic methods 

section is dynamically created based on user inputs, other variables, and defaults that can be 

directly included in a manuscript. A feature occurrence figure summarizes selected feature ranks 

by all four models, followed by model-specific details. Impact on response is provided for 

categorical features because positive instances per sample are clear, while numerical feature 

relationships are more complex (i.e., a hockey curve pattern). Figures include SHAP summary 

and dependence plots with detailed feature impact on the response. 
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Simulated dataset design 

A simulated happiness dataset was designed to facilitate testing performance using variables 
that are predictive and not predictive. A summary of the motivation for including variables, and 
their effects on the response is detailed in Table 1. 
 
All individuals started with the same happiness score and effects from all features were used to 
update each subject’s happiness score at each timepoint. Predictive features had effect values 
stored in a different column labeled with the suffix “_effect”. For example, the “salary” column 
contained values “high” or “low” and had a corresponding “salary_effect” column with numerical 
values reflecting positive or negative effects on happiness, corresponding to high salary and low 
salary, respectively. All effect column values were added to the original happiness scores and 
columns labeled “effect” were removed prior to feature selection. This way, the engineered 
effects were contained in the happiness value, and predictive features can be identified if they 
corresponded to the effect.  
 
We used R package faux52 to add subject random effects, five timepoints, and a control and test 
group. The test group was simulated to linearly increase with a positive slope of 30 (correlation 
coefficient of 0.7 and standard deviation of 5) to simulate a treatment effect that improved 
happiness. 
 
For longitudinal microbiome simulations containing differentially abundant and not differentially 
abundant microbes we used microbiomeDASim37. A first-order autoregressive correlation 
structure was used that linearly increased with a slope of 30 to correlate with happiness 
(Correlation coefficient = 0.7; standard deviation = 5). 
 
Eight data distributions were used with random, not predictive variables. Normal, Bernoulli, 
Binomial, Poisson, Exponential, Gamma, Weibull53 and Dirichlet. The number of random 
variables is indicated in the dataset name. Accordingly, for SimFeaturesMicrobiome0, 
SimFeaturesMicrobiome500 and SimFeaturesMicrobiome1000, the number of random variables 
is 0, 500, and 1000, respectively and all include SimFeatures and SimMicrobiome. 
 
When using EXPLANA arguments were set based on recommendations of the underlying tools 
or from previous studies on hyperparameter tuning54,55, which included for MERF, 300 trees, 0.3 
feature fraction for decision tree splits with a max depth of 7 and 10 MERF iterations and 100 
BorutaSHAP trials were run (100% importance threshold; p = 0.05). 
 

Performance Testing 

Performance was assessed from simulated microbiome datasets using F1-scores and AUC 
metrics. Recall, also called the true positive rate, measures the proportion of the predictive 
features correctly selected Recall = TP/(TP+FN). Precision describes the proportion of all 
positive predictions that are predictive features (Precision = TP/(TP+FP) (Fig S1). An F1-score 
is calculated using precision and recall 2*(Precision * Recall) / (Precision + Recall), as well as 
the AUC is the area under the receiver operating characteristic (ROC) curve, which plots the 
true positive rate against the false positive rate.  
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Early childhood and microbiome dataset analysis 

To explore feature selection results using EXPLANA with previously published data, the ECAM 
dataset was used because it is also used to demonstrate feature selection with QIIME2 
longitudinal feature-volatility (feature-volatility). Metadata was filtered to remove duplicate 

months to facilitate  calculations performed by EXPLANA. 500 trees were used for both tools. 
For EXPLANA, arguments included a feature fraction of 0.2, max depth of 7, with 10 iterations of 
MERF and 100 BorutaSHAP trials (100% threshold; p = 0.05). Defaults for Q2 feature-volatility 
included 1.0 for feature fraction and 5 k-fold cross-validations. 
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