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Abstract

Resolving the transcriptomes of higher eukaryotes is more tangible with the advent of long read

sequencing, which greatly facilitates the identification of new transcripts and their splicing isoforms.

However, the computational analysis of long read RNA sequencing data remains challenging as it is

difficult to disentangle technical artifacts from bona fide biological information. To address this, we

evaluated the performance of multiple leading transcriptome assembly algorithms on their ability to

accurately reconstruct RNA transcript isoforms. We specifically focused on deep nanopore

sequencing of synthetic RNA spike-in controls (Sequins™ and SIRVs) across different chemistries,

including cDNA and direct RNA protocols. Our systematic comparative benchmarking exposes the

strengths and limitations of the different surveyed strategies. We also highlight conceptual and

technical challenges with the annotation of transcriptomes and the formalization of assembly quality

metrics. Our results complement similar recent endeavors, helping forge a path towards a gold

standard analytical pipeline for long read transcriptome assembly.

Introduction

Long read sequencing greatly improves transcriptome profiling via its ability to qualify full-length

RNAs, helping resolve complete exon chains and unannotated biological features, such as long

non-coding RNAs, which often contain repetitive sequences (Byrne et al. 2019; Lagarde et al. 2017).

These technologies present a distinct advantage over short-read RNA sequencing (RNA-seq) that

require a well-annotated reference and struggle to resolve long-range splicing dependencies. The

utilization of long reads holds promise for expanding the repertoire of known RNA transcripts,

improving the quantification genes and splicing at the isoform level while contributing to a more

detailed portrait of the transcriptome.

Recent studies have compared software for estimating transcript abundances in long read

sequencing data (Dong et al. 2023; Pardo-Palacios et al. 2023b) but few reports have detailed the

effectiveness of tools for RNA isoform discovery and qualification using long reads. Transcriptome
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assembly is an economical method for characterizing gene expression of model (Yang et al. 2021;

Kuo et al. 2020) or non-model organisms (Kang et al. 2021; Zagorščak and Petek 2021; Matra et al.

2023) and for identifying novel RNAs in diseases such as cancer (Fang et al. 2021; Verma et al.

2015).

While the definition of de novo assembly encompasses many meanings, we categorize the

existing assemblers into 3 distinct overall strategies: (i) guided strategies, which combine sequencing

data aligned to a reference genome and an existing reference gene annotation; (ii) de novo strategies

thah rely solely on reads aligned to a reference genome to reconstruct a transcriptome; and (iii) ab

initio strategies, which require only sequencing reads (often used for non-model species without a

genome assembly). We compared 12 tools that assemble transcripts from long reads according to one

(or more) of the above mentioned categories. Some tools (i.e. Bambu, Flair, isoQuant, and Stringtie2)

fit into two strategies–namely ‘guided’ and ‘de novo’–as they allow the optimal input of a reference

transcriptome annotation, such as RefSeq (O’Leary et al. 2016) or Gencode (Frankish et al. 2019),

typically in gene transfer file (.gtf) file format.

Bambu (Chen et al. 2023) is a “context aware quantification tool” for long reads. It is an R

package that works by using genome-aligned reads (in .bam format) to quantify known and putative

novel genes. Bambu is intended to be used as a transcript quantification tool and not a transcriptome

assembler. However, it has been included herein as it has been reported in recent studies considering

novel transcript identification (Dong et al. 2023; Pardo-Palacios et al. 2023b). The Bambu pipeline

has a feature that allows for de novo transcript discovery by estimating a novel discovery rate (NDR)

which optimizes the false discovery rate in a reproducible manner across samples and analyses. The

algorithm annotates reads using assigned read-classes to label splice junctions as full or partial

overlaps, thereby producing an intermediate annotation output for the transcriptome. When provided

with a transcriptomic annotation (the above-mentioned ‘guided mode’), Bambu outputs all isoforms

of that given annotation while adding discovered transcripts below the NDR limit.
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Full-Length Alternative Isoform analysis of RNA (or FLAIR) (Tang et al. 2020) is a python

workflow created for differential isoform expression analysis that also includes a transcriptome

assembly module. It can integrate matched short-reads alongside long-reads to correct errors in the

latter and improve accuracy. FLAIR organizes transcripts into groups based on splicing patterns, then

further groups these reads by analyzing transcription start sites (TSSs) and end sites (TESs)

separately. This is followed by collapsing the grouped reads into the most common isoform within

each window for TSS and TES, respectively. FLAIR then aligns these reads to the initial isoform

groups. Each putative RNA isoform is then considered to be a valid and observed transcript depending

on its observed coverage. FLAIR is composed of several modules that can be run consecutively or

independently; thus enabling both de novo and guided assembly strategies.

Full-Length Analysis of Mutations and Splicing (FLAMES) is a long-read transcriptome

analysis tool developed for single-cell analyses that also includes a pipeline for bulk RNA-seq

analysis (Tian et al. 2021). FLAMES initially groups reads in a similar manner to FLAIR. However,

it introduces a unique approach to modeling the probability of read truncation by incorporating a

linear model of isoform length, which leverages the concept that longer isoforms are more likely to

have truncated reads with incomplete 5′/3′ ends (especially in the case of single cell RNA-seq

droplet-capture protocols where low input material and multiple rounds of PCR are employed).

Following this, the sequence of each polished transcript serves as an updated reference for direct

realignment of input reads using Minimap2 (Li 2021). During this realignment, transcripts with

insufficient coverage are discarded. Reads are then assigned to transcripts based on alignment scores,

fractions of reads aligned, and transcript coverage, resulting in an output of isoform-level counts.

IsoQuant (Prjibelski et al. 2023) is a long read transcript annotation tool, written in python,

that uses intron graphs to reconstruct transcripts with and without a reference annotation. In the graph,

two vertices of splice junctions are connected by a directed edge––if two splice sites are found one

after the other in a read, they will be connected in the graph. In the case where a reference annotation

is provided, reads are assigned to known isoforms by approximate intron-chain matching to account

for error-prone reads. Like Bambu, when provided with a reference annotation, IsoQuant outputs all
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transcripts from the reference in addition to new transcripts, as well as another assembly exclusively

containing isoforms expressed in the input data.

Mandalorian (Volden et al. 2023) is a long-read transcript identification tool also tested in the

LRGASP benchmarking project (Pardo-Palacios et al. 2023b). It takes as input accurate full-length

transcriptome sequencing data (adaptor and poly-A tail trimmed as well as reoriented reads) and is

composed of 5 modules, by default, sequentially executed: (i) alignment to genome; (ii) alignment

clean-up; (iii) locus by locus grouping and consensus assembly; (iv) alignment to generate isoform

models and group by gene; (v) quantification. Mandalorion is reported to be among the strongest

methods for transcript discovery but was only tested on PacBio HiFi and Oxford Nanopore R2C2

reads (both of which employ consensus base calling) for increased sequence accuracy (Pardo-Palacios

et al. 2023b). Consequently, the authors of Mandalorion have only tested their tool on such data and

recommend using Flair for regular nanopore reads.

StringTie (Pertea et al. 2015) is a de novo transcriptome assembly and quantification tool

written in C/C++ that operates on genome-aligned files from short- or long-read RNA-seq data. The

tool implements a network flow algorithm on the assembled contiguous stretches of transcripts called

‘super-reads’. This algorithm determines the path with the maximum coverage, which allows for

adjustments to abundance estimations and produces a more fitting transcript abundance result. The

most recent update to the tool, StringTie2, has reduced memory requirements and removed a great

percentage of false-positive spliced alignments (Kovaka et al. 2019).

Technology Agnostic LOng-read aNalysis (or TALON) (Wyman et al. 2020) is an annotation

dependent tool that analyzes long-read transcriptomes across datasets. The recommended first step in

the pipeline is to correct the non-canonical junctions using the python tool “TranscriptClean” (Wyman

and Mortazavi 2019). This is followed by the python and R based TALON framework, which involves

labeling potential internal priming events, annotating transcript models, recording the transcript

abundance, filtering transcript models using biological replicates and ultimately generating a custom

transcriptome, used to produce the final transcript and gene count tables. An isoform is considered
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only when near-alike reads are found above a certain threshold count, in multiple replicates. TALON

does not use read clustering or a consensus sequence in an attempt to prevent introduction of incorrect

input for its transcript model. While capable of processing a single sample, TALON is meant to

process technical/biological replicates (Amarasinghe et al. 2020)–a common occurrence in RNA-seq

analyses. TALON has been known to produce a few fallacious transcript predictions in simulated

long-read data (Kuo et al. 2020).

Ab initio tools are not as commonly used as de novo or guided ones and, therefore, have not

been subject to thorough independent benchmarking. RATTLE is a ‘reference-free reconstructor and

quantifier of transcriptomes’ as described by the developers of the C++ and python based tool (de la

Rubia et al. 2022). It works by clustering raw reads using a two-step greedy approach, which produces

read clusters that should belong to the same gene. These ‘gene clusters’ are further classified into

‘transcript clusters’ by identifying internal gaps in the read sequences. Error correction and polishing

of these clusters produces consensus sequences and matched abundance estimations. Using simulated

and spike-in synthetic controls, RATTLE’s reference-free assembly algorithm seems to perform better

with dRNA data than cDNA(de la Rubia et al. 2022). Although RATTLE seems to perform on par

with reference-based assemblers, it is unable to distinguish different isoforms when exon sizes are

below a certain limit (de la Rubia et al. 2022). The authors have favorably compared RATTLE to

similar clustering algorithms, namely CARNAC-LR and isONclust.

IsONclust (Sahlin and Medvedev 2020) is a greedy search algorithm, implemented in python,

that uses minimizers in order to determine similarity and cluster reads together. This approach follows

three simple steps for each read: (i) assigning certain reads as ‘representative reads’ of potential

clusters and maintaining a hash table of these reads, queried using minimizers; (ii) assigning reads to

the cluster with maximal shared minimizers; (iii) conditionally assigning other reads to existing

clusters if the similarity is above a certain threshold, otherwise creating a new cluster with the

unclassified read as a new representative. Oxford Nanopore has optimized this program and produced

the C++ implementation, isONclust2 (https://github.com/nanoporetech/isONclust2) . IsONclust2 was

made in collaboration with the authors of isONclust (Kristoffer Sahlin and Paul Medvedev), which
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resulted in a tool with improved efficiency that takes strandedness into consideration, as well as

additional features.

RNA-Bloom (Nip et al. 2020) is a Java based assembly algorithm originally designed for

single-cell short-read transcriptome assembly combining bloom filters with De Bruijn graph assembly.

This approach to ab initio transcriptome assembly was improved upon and applied to long-read bulk

sequencing data with RNA-Bloom2 (Nip et al. 2023). The latter uses digital normalization with

strobemers–a strategy reported to be less sensitive to mutations than k-mers–before assembling and

polishing unitigs (Sahlin 2021). The authors have compared RNA-Bloom2 to RATTLE and found

their tool to be faster, less memory intensive while reaching a higher recall and a lower false

discovery rate (Nip et al. 2023).

The diversity of recently developed transcriptome assembly tools and the increasing adoption

of long read sequencing technologies reinforce the need to distinguish between analytical artifacts

(e.g., erroneous isoform detection) and experimental ones (e.g., fragmented RNA, reverse

transcription drop off, internal priming, etc). Here, we describe a comprehensive and independent

comparative performance benchmark of the aforementioned transcriptome assembly tools. We

assessed algorithmic performance with two tools for comparative isoform qualification, SQANTI3

(Tardaguila et al. 2018) and GFFcompare (Pertea and Pertea 2020). SQANTI3 has recently been

employed to evaluate long-read transcriptome tools in the Long-read RNA-Seq Genome Annotation

Assessment Project (LR-GASP) study (Pardo-Palacios et al. 2023b). GFFcompare derives from

Cuffcompare, a utility program from the well-known RNA-seq analysis suite Cufflinks (Pertea and

Pertea 2020). We present a comprehensive overview of the strengths and weaknesses of de novo

transcriptome assemblers for long reads, with the ultimate objective of helping the scientific

community make informed decisions when selecting the most appropriate strategy for their

isoform-level transcriptome analyses.
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Results

Transcriptome assembly is a crucial step in deciphering the functional landscape of a cell or organism.

We evaluated most available long read transcriptome assembly algorithms encompassing 3 assembly

paradigms (guided, de novo & ab initio) using two distinct in vitro transcribed RNA spike-in controls,

namely Sequins™ (Hardwick et al. 2016) and Spike-in RNA variants (or SIRVs) (Lexogen SIRV Set

4), and four distinct nanopore sequencing chemistries, including the latest direct RNA sequencing

protocol (Table 1, Figure 1).

Table 1. Sequencing data

Dataset Input

Library
preparation
protocol

Flowcell &
ID

Library
molarity Sequencer Runtime Basecalling*

Reads
(Pass/Fail)

Input
number of
reads

LSK109_
sequins

15ng RNA
Sequins™
mixA

PCS109 RT
protocol +
LSK109

R9.4.1
FAN54376

50 fmol GridION 72h Guppy6.0.1_sup 6,455,950
P+F

5,2912,936

LSK114_
sequins

15ng RNA
Sequins™
mixA

PCS109 RT
protocol +
LSK114

R10.4.1
FAV99142

20 fmol PromethION 12h Guppy6.4.1_sup 5,112,902
P+F

4,262,005

LSK114_
SIRVs

0.0375ng
SIRV set-04 +
125ng human
RNA

PCS109 RT
protocol +
LSK114

R10.4.1
PAK95982

18 fmol PromethION 72 hours,
wash +
reload (18
fmol) after
29h

Guppy6.5.7_sup 42,764**
P+F

42,764

RNA002
_sequins

300ng RNA
Sequins™
mixA

RNA002 R9.4.1
PAM58324

20 fmol PromethION 89h30m Guppy6.0.7_hac 877,710
P+F

877,710

RNA004
_sequins

4 samples:
15ng RNA
Sequins™
mixA
1.5μg human
RNA

RNA004_bet
a-v2

RP4_beta-t
esting
PAO83093
PAO83456
PAO84072
PAO96683

20 fmol PromethION 68h,
wash +
reload (20
fmol) after
44h15m

Guppy6.4.6_sup 162,644
P

162,644

*sup = super high accuracy ; hac = high accuracy

**Sequins™ reads retrieved (full-length + rescued), after Pychopper was executed on human

+ Sequins™/SIRV reads
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Figure 1. Overview of the study design for cDNA and dRNA assembly generation and quality

assessment. LSK: Ligation sequencing kit; cDNA: complementary DNA; dRNA: direct RNA.

As qualitative assessment of assemblies is somewhat subjective, we opted to utilize and

compare two different tools with distinct yet similar classification categories and scoring metrics,

namely GFFcompare and SQANTI3. These were used to compare the assembled isoforms against

‘truth set’ annotations provided by the respective manufacturers of the spike-in controls. N.B.

biological samples were purposefully omitted herein given their lack of an absolute truth and the

difficulty in distinguishing biological variation from analytical artifacts. Because long-read
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sequencing sometimes results in low confidence sequences at the 3’ and 5’ ends, we defined a True

Positive as a perfect exon-chain match or contained in reference (“c” classcode for GFFcompare and

“ISM” for SQANTI3). Precision and sensitivity were calculated for each tool and chemistry

combination based on individual classifications of each assembled transcript (see Methods for

details). In this context, precision reflects the integrity of the transcriptome, while sensitivity reflects

its completeness.

As expected, guided strategies perform better than others in sensitivity and/or precision

(Figure 2 & Supplemental File 1). It is important to note that the most highly performing tool,

Bambu, systematically outputs all transcripts from the reference provided to it, in addition to the

potential de novo transcripts that it assembles, hence surpassing every other tool in both precision and

sensitivity in all datasets. Isoquant and Stringtie2 tend to perform comparably, with IsoQuant a step

ahead in precision with the Sequins™ controls. Interestingly, the performance of reference-guided

IsoQuant appears much inferior on the SIRV controls, which generally contrast less gene diversity but

more alternative splicing isoforms than Sequins™. However, IsoQuant consistently performs well

across both cDNA and dRNA. Unlike Bambu, which systematically outputs all transcripts irrespective

of their expression status, IsoQuant provides the option to only produce transcripts demonstrably

expressed within the input dataset (similar to Stringtie2), which was considered herein. Stringtie2 also

performs decently in its guided mode, although its accuracy decreases notably in dRNA datasets

(RNA002 and RNA004 in Figure 2B). For TALON, incorporating the authors’ recommendations for

parameters (providing biological/technical replicates; labeled as TALON_reco in Figure 2)

significantly improved precision, which nonetheless falls short of most other tools despite decent

sensitivity. Among other reference-guided tools, FLAMES displays poor sensitivity but the

assemblies, albeit incomplete, remain accurate, presumably due to a stringent filtering step in the

pipeline (see Methods for further details). FLAIR displays reasonable precision but ranks relatively

poorly overall in guided mode.
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Figure 2. Precision, sensitivity and F1 for all sampled datasets and algorithms. (A) Precision and

sensitivity values calculated as per GFFcompare and SQANTI3 classifications for assembly outputs

from both 40,000 reads from SIRV (left panels) and Sequins™ (right panels) with cDNA+PCR

ligation protocol LSK114. (B) Precision and sensitivity values calculated as per GFFcompare and

SQANTI3 classifications for all Sequins™ dataset assembly outputs available generated from 150,000

input reads. (C) Mean precision, sensitivity and F1 values calculated from GFFcompare and

SQANTI3 classifications for the same datasets as (A). (D) Mean precision, sensitivity and F1 values
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calculated from GFFcompare and SQANTI3 classifications for the same datasets as (B). For

individual values, in (C) & (D) see Supplemental Figure 1.

De novo methods generally have lower precision and sensitivity compared to guided

methodologies, even when employing the same software. Here, IsoQuant’s de novo approach (labeled

as IsoQuant-noRef in Figure 2) displays better precision than Stringtie2 but lower sensitivity.

Stringtie2 (Stringtie2-noRef) has better overall sensitivity than the other de novo tools, especially in

cDNA (LSK109 & LSK114 in Figure 2B). Although Bambu’s de novo mode has a drastic drop in

precision and sensitivity when compared to guided mode, it performs slightly better than

Stringtie2-noRef (especially in dRNA; Figure 2B). FLAIR in de novo mode regrettably does not

instill confidence in any tested modality, highlighting an issue with a very high false positive rate.

Interestingly, all de novo methods performed relatively poorly compared to guided and ab initio

assembly modalities on the LSK114 SIRV dataset, suggesting that guided and ab initio strategies

might be most suitable for resolving isoforms in genes presenting complex alternative splicing.

The ab initio tools RNAbloom and RNAbloom2 present low precision but relatively high

sensitivity, akin to the guided version of TALON. A sharp eye will notice performance values differ

between Figure 2A & 2B, indicating that depth of sequencing can affect assembly precision (see

below). The poorest performer among ab initio methods appears to be RATTLE, with low sensitivity

and precision slightly above 50%. Despite precision values of ~50-60%, RATTLE outperforms other

ab initio methods for precision on dRNA, while isONclust2 is the most precise for cDNA (N.B. it

does not process dRNA)(Figure 2B). Despite the high precision of isONclust2, it has a low sensitivity

of ~50%, while the previous version (isONclust) has a higher sensitivity ranging between 50-75% but

lower precision.

Noting the differences between the latest (LSK114) and earlier (LSK109) ONT cDNA library

technologies (Figure 2D) one can observe the improvement in average precision of the TALON_reco,

Stringtie2 (both, the guided and de novo versions), RNAbloom and RNAbloom2 with the latest

technology, which presents less sequencing errors. The precision and sensitivity shown in Figure 2C

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.21.586080doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.21.586080
http://creativecommons.org/licenses/by-nc-nd/4.0/


& 2D are the mean of values generated from GFFcompare and SQANTI3’s TP, FP and FN

classifications, which are shown distinctly in Supplemental Figure 1. Similar precision

improvements are observed for RNAbloom and RNAbloom2 with the latest version of the dRNA

chemistry (RNA004) versus the older version (RNA002). Certain tools, such as Mandalorian and

Stringtie2-noRef, have better average sensitivity and precision, respectively, with RNA004 compared

to RNA002 (Figure 2D). FLAMES is also affected in average sensitivity measures for the RNA002

dataset, although to a lesser extent than the gap between Mandalorian’s performance between the

chemistries.

Besides the performance of individual tools, an interesting trend is observed concerning the

choice of reference material: Methods applied to SIRV data present a broader range of sensitivity

versus a broader range of specificity for the Sequins™ data (Figure 1A). This may reflect the

different composition of the mixtures, with SIRVs containing relatively less genes (and more isoforms

per gene) than Sequins™. Control dependent differences are also observed for individual tools

(Figure 2A,C). There is a clear decrease in sensitivity and overall F1 score for isoQuant (guided)

when applied to the SIRV data, with Flair (guided) following a similar pattern. Mandalorion,

Stringtie2, TALON and TALON_reco seem to have improved sensitivity and F1 score with SIRV

versus Sequins™. Among the de novo strategies, we can observe a dramatic decrease in the precision

and sensitivity of Bambu, isoQuant and Stringtie2 for the SIRV dataset, while Flair follows the

opposite trend (corroborated in Figure 2A,C). There is an improvement in performance of all ab initio

tools when used on the SIRV dataset (Figure 2C; absolute values in Supplemental File 1),

suggesting that different transcriptomic features will globally influence accuracy. This is exemplified

with RNAbloom and RNAbloom2, whose accuracies are highly influenced by input parameters. N.B.

TALON and TALON_reco pipelines produced no results when evaluated on SIRV with SQANTI3

(Figure 1A) due to issues with SQANTI3 handling of the strandedness in the assembly.

Overall, the F1 score of reference-guided tools remains fairly consistent across datasets

except IsoQuant, which performs a lot better on Sequins™ than SIRVs (75% and 25%, respectively;

Figure 2C). We observed that de novo and ab initio methods have a very similar predictive
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performance overall (average F1 score, Figure 2C,D), with RNA002 and FLAIR as notable

exceptions.

Significant differences in performance were observed between many assembly tools that can

be attributed to the method used for qualitative evaluation. Stringtie2-noRef performs at 55% and

75% in sensitivity and precision, respectively, when evaluated with GFFcompare but both metrics fall

to 15% with SQANTI3 for the same assembly (Supplemental Figure 1A,B). This suggests that the

choice of quality metrics used to benchmark assembly and isoform detection performance can have a

drastic impact on the resulting assembly strategy, while highlighting that isoform class definitions is a

somewhat subjective evaluation.

These comparisons were performed with static read depths to directly compare assembly

accuracies in a normalized manner. Since depth of sequencing can impact assembly accuracy by

increased sampling of lower abundance transcripts and experimental artifacts, we evaluate the

performance of representative tools on different sampling depths of the LSK114_sequins dataset, from

1,000 reads to 4.3 million reads (Figure 3). Overall, higher depth of sequencing is associated with

increased sensitivity and lower specificity, with the notable exception of guided assembly modalities.

Bambu, in particular, outputs all transcripts from the reference, yielding a sensitivity above the

maximal theoretical value. Both IsoQuant and Stringtie2 approach 100% sensitivity and 75%

precision at maximal depth, irregardless of the scoring metric. However, the de novo versions of

Bambu and IsoQuant stagnate after 100k and 500k reads, respectively, evolving within the 48-55%

sensitivity and 60-75% precision ranges (Figure 3, second column). In contrast, de novo Stringtie2’s

sensitivity scales with sampling depth. Of the two ab initio methods we tested, isONclust2 presents

relatively stable precision in function of depth, with comparable if not superior performance to the 3

de novo methods in the middle panel. A drastic increase in precision for the isONclust result at 500k

reads, evaluated using SQANTI3, presents an unusual outlier that we could not dismiss. Overall, the

surveyed ab initio and de novo assembly modalities display a significantly lower sensitivity than

theoretically expected, suggesting that the use of a minimum coverage threshold might restrict

isoform discovery. Interestingly, ab initio methods appear to perform slightly better than de novo
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strategies when evaluating with SQANTI3 (at least, for sensitivity), while the converse is observed

with GFFcompare.

Figure 3. Sequencing depth impact on assembly. Precision and sensitivity values calculated as per

GFFcompare (top panels) and SQANTI3 (bottom panels) classifications for all subsets available

(ranging from 1,000=1k to 4,300,000=4.3M reads) of the LSK114_sequins dataset. Selected pipelines

are Bambu, isoQuant and Stringtie2 for guided strategies; Bambu-noRef, isoQuant-noRef and

Stringtie2-noRef for de novo strategies; and isONclust and isONclust2 for ab initio assembly

strategies. The “max value per relative abundance” is calculated, from expected abundance as

disclosed by Sequins™, as the maximum sensitivity for the number of transcripts detectable with at

least 1 transcript per million (TPM) based on the number of input reads.

One of the advantages of generating bespoke transcriptome annotations is to improve

isoform-level quantification, thereby providing a robust foundation upon which subsequent

post-processing procedures can be reliably executed. We compared the expected vs observed

quantifications obtained based on the assemblies generated by Bambu, IsoQuant, Stringtie2-noRef
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and Flair-noRef. These tools have been selected to highlight biases in assembly precision or

sensitivity and their potential effect on resulting quantification. Bambu and IsoQuant have a similar

precision (99% and 98% respectively) but a gap of 26% in sensitivity, whilst Stringtie2-noRef and

Flair-noRef have a similar sensitivities (62% and 55% respectively) but a gap of 65% in precision

(Figure 2B-D). We only assessed correlations for assembled transcripts that were classified as true

positives while using the complete assembly as a reference for quantification (see Methods). Results

indicate that guided strategies (i.e. Bambu and IsoQuant) are very close to the expected abundances

(R2 > 0.8) and stable across evaluators (Figure 4). However, although Stringtie2-noRef and

FLAIR-noRef yield similar correlation coefficients (between 0.69-0.76 and 0.6-0.76 respectively), the

FLAIR-noRef quantification generates a regression curve substantially lower than the expected x=y

line, indicating that erroneous transcripts might be ‘absorbing’ read assignments from true positive

isoforms. As expected given the lack of reverse transcription and PCR, direct RNA reads (RNA002 &

RNA004) generate quantifications that correlate better with expected values than cDNA for all

assemblies.
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Figure 4. Assembly impact on quantification. Transcript-level quantification results as generated by

Salmon from read alignments to transcriptome assemblies generated by Bambu, isoQuant,

Stringtie2-noRef and Flair-noRef pipelines outputs on the LSK114_sequins_sub150k and the

RNA004_sequins_sub150k datasets. Only True Positive (TP, see Methods for definition) transcripts as

defined for GFFcompare (top panels) and SQANTI3 (bottom panels) are assigned to an expected
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abundance, as per abundance information provided by Sequins™. False Positive (FP) transcripts were

assigned a null expected abundance and removed from the linear regression equation and correlation

coefficient (R2) calculation. Number of transcripts for each category (TP, FP) is available on each

panel as n = [number of TP transcripts in assembly] - [nb of FP transcripts in assembly], as well as the

correlation coefficient.

With respect to ease of use and the execution time, most (but not all) tools leverage CPU

multithreading (20 threads applied when possible). Depending on the input file, some guided methods

(FLAIR, FLAMES, IsoQuant, Mandalorion) integrate the alignment step, while others do not

(TALON, Stringtie2, Bambu). As shown in Figure 5, TALON_reco displays a significantly shorter

alignment step and a significantly longer pre-processing step due to the alignment options and the use

of the additional TranscriptClean script, which consumes 98% of the pre-processing time. Otherwise,

all assemblers require similar computation time for 150 k reads except FLAIR, which, like TALON,

includes a correction step. Notably, FLAMES performs similarly to other guided methods despite

using a single thread. For de novo and ab initio methods, IsoQuant-noRef (13min15sec), isONclust

(7min) and isONclust2 (1min30sec) stand out with significantly shorter execution times than all the

other tools.

Figure 5. Execution time. Elapsed time as outputted by the /user/bin/time system function multiplied

by the CPU usage percentage for all steps of all pipelines applied to the LSK114_sequins_sub150k

dataset. When allowed, all tools were executed with 20 threads on a workstation with 2x16 core 2.30

GHz Intel Xeon Gold 5218 workstation with M.2 NVMe solid state drives.

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.21.586080doi: bioRxiv preprint 

https://drive.google.com/file/d/1InaJ4DlqZku7wg8mwyi4dOw-jY2xAU9I/view?usp=drive_link
https://doi.org/10.1101/2024.03.21.586080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

This benchmarking study on assembly algorithms using nanopore RNA-seq data was originally

intended to expose the best methodology for the resolution of RNA isoforms. This was prompted by

improved nanopore sequencing accessibility and accuracy that can easily identify numerous novel

RNA isoforms, even in extensively sequenced model organisms. In our opinion, the common practice

of relying on a reference transcriptome annotation (i.e., Refseq or Gencode) can lead to significant

biases by including genes and isoforms that are not expressed in a given experimental condition and,

more importantly, by ignoring or omitting unannotated transcripts that might be highly expressed or

significantly regulated between conditions. This is notably the case for extensively spliced long

non-coding RNA genes, which now outnumber protein-coding genes in recent Gencode annotations.

The results we have obtained from RNA standards indicate that there is substantial variability in the

accuracy of isoform reconstruction tools; a greater diversity than we expected given the single

molecule nature of nanopore sequencing data. Hence, there appears to be no clear “one size fits all”

solution for transcriptome assembly at the moment.

There are nonetheless several notable observations that can help guide future nanopore

RNA-seq analyses. Providing a reference annotation and a reference genome unsurprisingly yields the

most accurate (although not necessarily perfect) results. This modality might not detect novel

isoforms beyond those in the reference–a possibility we briefly explored by removing a fraction of the

isoforms in the reference annotation and assessing their discovery thereafter (not shown). In practice,

this equates to the de novo modality, where reads are aligned to a genome prior to assembly and

without a reference. Although this strategy greatly facilitates isoform discovery, the assembly must

then be annotated by comparison to a gene reference with tools like GFFcompare and SQANTI3,

which is a somewhat subjective undertaking that can complexify downstream analyses (see below).

For de novo assembly, IsoQuant consistently demonstrates the least amount of false positive

transcripts across all surveyed datasets, while StringTie2 might provide the greatest overall accuracy

(F1 score), closely followed by reference-free Bambu and IsoQuant (Figure 2). Surprisingly to us, the

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.21.586080doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.21.586080
http://creativecommons.org/licenses/by-nc-nd/4.0/


performance of ab inito methods compares favorably to de novo techniques in accuracy and execution

time, especially isONclust & isONclust2. However, isONclust2 requires some enhancements to

accommodate dRNA reads and to facilitate its integration into a streamlined analytical workflow.

These ab initio techniques are often overlooked in model organisms with high-quality genomes, as

well as many benchmarking studies. Their assembled transcriptome output is typically aligned to a

genome prior to comparative reference gene annotation, thus also requiring tools such as GFFcompare

and SQANTI3. Our analysis concurs with the conclusions of recent studies on the accuracy,

effectiveness and versatility of Bambu, IsoQuant and Stringtie2 (Dong et al. 2023; Pardo-Palacios et

al. 2023b). However, our assessment contradicts conclusions by the LRGASP consortium on the

utility of FLAIR, found to be one of the most robust strategies for both well annotated organisms and

orthogonal data integration. Our results suggest that the accuracy of the versions we tested lies far

behind other tools, particularly when executed without a reference annotation (Figure 2).

Given the unsurprising tradeoff between sensitivity and specificity, some methods should be

privileged over others depending on the objective of the sequencing experiment. For example, when

seeking to identify new isoforms of known genes, certain tools might not be suitable. This is the case

for IsoQuant and Bambu in de novo mode on SIRVs (sensitivity and specificity of ~15%, Figure 2A),

a spike-in control set with fewer genes and more alternative splicing isoforms than Sequins™, where

these tools performed much better (45-55% sensitivity). It should be mentioned that the depth of

sequencing may also play a role in assessing each method’s perceived accuracy, as we demonstrated

in Figure 3. Unfortunately, the limited SIRV and dRNA sequencing depth and the large number of

surveyed tools restricted a more comprehensive evaluation of the impact of depth on assembly

accuracy, which undoubtedly has an impact on the assessment of true and false positive isoforms.

Certain factors that can affect transcriptome assembly were not directly evaluated in this

study, either by design or practicality. Firstly, base calling algorithms and their associated error rates

could potentially impact alignment and assembly accuracy, notably at exon-intron boundaries. We

applied the latest base calling algorithms when preparing this manuscript; older versions (with high

error rates) might produce different results. Secondly, we employed a single pairwise alignment tool

(minimap2) when alignment was required. Alternative aligners could significantly impact assemblies,
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particularly in guided and de novo modalities. The impact of alignment can be major––when

confronted with fragmented reads, alignment algorithms can force terminal sequences spanning an

exon junction to align within the intron as the affine gap penalty may be substantially larger than the

associated mismatch penalty, leading to an apparently longer ‘read-through’ exon, a common

observation in de novo transcriptome assemblies. Thirdly, the choice of reverse transcription enzymes,

elongation times and PCR cycles can also have a significant impact on the results; the manufacturer’s

recommended protocols at the time of data generation were used. An additional experimental variable

could be freeze-thaw cycles of the spike-in controls. To the best of our knowledge, only fresh controls

were used. Fourthly, we used the default or recommended execution parameters for the assembly

algorithms. It is to be expected that tweaking these would significantly impact results. In particular,

we did not attempt to normalize the minimum coverage threshold when this parameter was available,

defaulting to the developers’ recommended settings. It is to be expected that a lower threshold would

increase sensitivity and, potentially, reduce specificity for a given tool. In general, the developers bear

the responsibility of optimal default parameter settings. Lastly, we did not evaluate the relative impact

of transcript and sequence features on assembly accuracy. GC content, transcript length, exon length,

number of exons, isoform diversity per gene are features that might help pinpoint the strengths and

limitations of certain tools, while guiding algorithmic improvements to distinguish between biological

signal and noise.

This study substantiates that assembling a long read transcriptome–even from relatively

simple, well-defined spike-in controls–remains a complex and error-prone endeavor. Even the

methods to compare and evaluate transcriptome annotations are subject to variation, exposing the

subjective nature of qualitative transcript classifications. Most studies rely on either GFFcompare

(Stuart et al. 2024; Saha et al. 2024) or SQANTI3 (Pardo-Palacios et al. 2023b; Brooks et al. 2024) to

this avail. When comparing both methods on the same data, we observed surprisingly different

assembly accuracies (c.f. the performance of Stringtie2-noRef with SIRV data in Figure 2,

Supplemental Figure 1). While GFFcompare assesses a de novo transcriptome assembly with 75%

precision and 55% sensitivity; SQANTI3 assesses 15% for both. This can partially be explained by
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what transcript classifications we esteemed to define true or false positives (we considered incomplete

transcripts, ‘c’ for GFFcompare and ‘ISM’ for SQANTI3, as true positives) but also by the way both

tools classify transcripts, such as nuances in the assessment of intron chains or splice junction

mappings. Another likely source of divergence is how GFFcompare systematically selects the most

similar reference transcript to qualify an isoform, while SQANTI3 remains impartial and simply

classifies any isoform that doesn’t perfectly match the reference features as “new”. Nonetheless, the

isoform definitions we employed herein form an arguably more stringent approach compared to other

studies, where all transcripts classifications that overlap the reference genes are considered true

positives (Song et al. 2019). An interesting solution lies in the sequential use of GFFcompare and

SQANTI3 annotation evaluators described by Wijeratne et al. (Wijeratne et al. 2024). The authors use

GFFcompare to compare transcriptome features across samples and generate a combined list of

non-redundant isoforms, while SQANTI3 is employed for comprehensive characterization of

long-read transcript sequences, including quality control, identification, and quantification of

full-length transcripts.

In summary, evaluating the accuracy of long-read transcriptome assembly strategies exposes

the multi-faceted considerations that impact isoform-level analyses. In addition to the choice of

assembly modality and algorithms, the nature of queried sequencing data and assembly evaluator

characteristics impose nuanced trade-offs for isoform discovery and transcriptome annotation. The

most important consideration, however, is the inclusion of well defined spike-in controls to help

quantify artifacts of transcriptome assembly and establish a baseline of truthfulness in the output. By

integrating these insights, researchers can make informed choices in selecting assembly methods

tailored to their specific experimental objectives and resource constraints.
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Methods

Samples sequencing and data acquisition

The following datasets, LSK109_sequins and LSK114_sequins were obtained by preparing 15ng of

sequin standards RNA mix A (Hardwick et al. 2016) following the PCS109 library preparation

protocol as recommended by manufacturer [Oxford Nanopore Technologies©, UK] up until the PCR

step. Then, the protocol LSK109 (amplicons) and LSK114 (amplicons) was applied to the resulting

cDNA. 50 fmol and 20 fmol of the respective final libraries were loaded onto a R9.4.1 flowcell

(flowcell ID: FAN54376) and a R10.4.1 flowcell (flowcell ID: FAV99142) and ran for 72 hours on a

GridION sequencer and 12 hours on a PromethION sequencer, respectively.

The LSK114_SIRVs dataset was obtained by preparing 0,0375ng of SIRV set-04 [Lexogen,

Austria] spiked-in with 125ng of a human RNA sample, as recommended by the manufacturer. As for

previous datasets, samples were processed following the PCS109 library preparation protocol up until

the PCR step; then the protocol LSK114 (amplicons) was applied to the resulting cDNA as

recommended by the manufacturer [Oxford Nanopore Technologies©, UK]. 18 fmol of the final

library was loaded onto a R10.4.1 flowcell (flowcell ID: PAK95982) that ran for 72 hours on a

PromethION sequencer. A reload was done with an additional 18 fmol of the library after 29 hours.

Only reads mapping to the SIRV set-04 genome were retrieved using minimap2 and seqtk toolkit

(https://github.com/lh3/seqtk).

For the RNA002_sequins dataset, 300ng of sequin standards RNA mix A (Hardwick et al.

2016) was prepared following the RNA002 library preparation protocol as recommended by the

manufacturer [Oxford Nanopore Technologies©, UK]. 20ng of the final library was loaded onto a

R9.4.1 flowcell (flowcell ID: PAM58324) and ran on a PromethION sequencer for 72 hours.

RNA004_sequins dataset was acquired by preparing 4 samples with 1.5μg of human spiked-in

with 15ng of sequin standards RNA mix A (Hardwick et al. 2016). Samples were prepared following

the RNA004 protocol (bêta testing phase: V2 April 2023). 20ng of the final libraries for each sample
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was loaded onto individual RP4_bêta-testing flowcells (flowcell IDs: PAO83093 - PAO83456 -

PAO84072 - PAO96683) and ran for 68 hours on a PromethION sequencer. A reload with the same

amount of library was done after 44 hours and 15 minutes of sequencing. Only reads mapping to the

Sequins™ reference genome were retrieved using minimap2 and seqtk toolkit

(https://github.com/lh3/seqtk).

Datasets pre-processing

All datasets were basecalled with Guppy v6 [6.0.1 to 6.5.7] super high accuracy mode. For cDNA

datasets (LSK109_sequins, LSK114_seuins, LSK114_SIRVs), pass and fail reads from basecalling

were trimmed and reoriented using Pychopper v2.7.9 (https://github.com/epi2me-labs/pychopper).

Full-length and rescued reads from Pychopper were then processed like raw basecalled pass/fail reads

for dRNA datasets (RNA002_sequins, RNA004_sequins). Minimap2 v2.24 (Li 2021) was used to

generate .bam, and .sam files (-ax splice --secondary=no). The option --MD and .sam output was used

for TALON pipeline only, as required by the tool.

Subsampling and transcriptome assembly

The five datasets (PCS109_sequins, LSK114_sequins, LSK114_SIRVs, RNA002_sequins,

RNA004_sequins) were randomly subsampled after pychopper pre-porcessing for cDNA datasets and

after base calling for dRNA datasets to have the following amount of reads: 1k - 10k - 50k - 100k -

150k - 250k - 500k - 1M - 2M - 4M - Total. All subsampled datasets were processed through

assembly as described below. Subsampled datasets are referred to as subX, where X is the number of

reads in the dataset.

Each tool was run with default parameters using 20 threads when possible. Some tools were

executed in two different ways (Stringtie2/Stringtie2-noRef, Bambu/Bambu-noRef, Flair/Flair-noRef,

isoQuant/isoQuant-noRef) when assembly with and without a transcriptomic reference was allowed.

For RNAbloom, the final assembly assessed doesn’t contain the assembled short transcripts.

isONclust2 was applied to cDNA datasets only (as it is not yet available for dRNA). FLAMES .gff3
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output is filtered based on its transcripts evaluation provided : only transcripts classified as “true” in

the ‘isoform_FSM_annotation.csv’ file are filtered and considered as final assembly. Further details of

pipelines and their execution is available on github (https://github.com/msagniez/LRassBench).

Table 2. List of tools and corresponding input files

Strategy Assembler Version Input* Comment

Ab initio RATTLE 1.0 .fastq pre-filtering with reads longer than
150bp only

Ab initio isONclust 0.0.6.1 .fastq

Ab initio isONclust2 2.4 .fastq Only for cDNA datasets

Ab initio RNAbloom 1.4.3 .fastq

Ab initio RNAbloom2 2.0.1 .fastq

De novo Bambu-noRef 3.3.3 .bam

De novo Flair-noRef 2.0.0 .bam

De novo isoQuant-noRef 3.3.1 .fastq

De novo Stringtie2-noRef 2.2.1 .bam

Guided Bambu 3.3.3 .bam

Guided Flair 2.0.0 .bam

Guided FLAMES 0.1 .fastq

Guided isoQuant 3.3.1 .fastq

Guided Mandalorion 4.3.0 .fastq

Guided Stringtie2 2.2.1 .bam

Guided Talon 5.0 MD.sam

Guided Talon_reco 5.0 .sam** Alignment with options
recommended by Talon authors

* .fastq = fastq file constituted of full-length and rescued reads outputted by Pychopper

.bam = sam file outputted by minimap2 v2.24 (options: -ax splice --secondary=no) and converted to

bam file with samtools v1.19.2

.sam = sam file outputted by minimap2 v2.24 (options: -ax splice --secondary=no)

MD.sam = sam file outputted by minimap2 v2.24 (options: -ax splice --secondary=no --MD)
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**.sam = sam file outputted by minimap2 v2.24 as recommended by Talon’s authors (options: -ax

splice -uf -k14)

Assembly quality assessment

Final assemblies were mapped to the original reference transcriptomes using two different tools to

define the mappings: GFFcompare (Pertea and Pertea 2020) (.tmap file) and SQANTI3

(Pardo-Palacios et al. 2023a) (_classification.txt file). All Figures were plotted using the ggplot2

library in R.

Sensitivity, Precision and F1 calculation

As described in Figure 1, true positive transcripts (TP) are transcripts labeled “=” and “c” for

GFFcompare as well as “Full Splice Match” and “Incomplete Splice Match” (except intronic

transcripts) for SQANTI3. Potential new transcripts are the transcripts labeled “u” by GFFcompare

and “Intergenic” by SQANTI3. These potential new transcripts are excluded from true positive, false

positive and false negative sets. False positive transcripts (FP) are the ones that don’t match the labels

cited above. False negatives (FN) are the transcripts found in the reference but not assembled by the

tools. The sensitivity is calculated as and the precision is calculated as𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

. The F1 score is calculated as𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

.𝐹1 = (2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

Transcripts discovery accuracy assessment

We selected 9 transcripts to remove from the original Sequin™ .gtf annotation (R1_13_1 ; R1_21_2 ;

R1_51_1 ; R2_116_1 ; R2_116_2 ; R2_47_2 ; R2_59_3 ; R2_6_2 ; R2_72_1) based on their

theoretical abundance, length and number of isoforms. All guided tools were executed again using

LSK114_sequins_sub150k dataset and the incomplete .gtf annotation. The GTFs from all the tools

were parsed in R, and all the genomic coordinates of the assembled transcripts were plotted. The data

was used to narrow down the assemblies that mapped to the region of the 9 artificially created ‘novel’
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transcripts. This subset was then filtered for exons that completely mapped to the known exons, as we

wished to retain the ones that mapped to the nine novel isoforms only. This filtered dataset was used

to visualize the assemblies, compared to the nine novel isoforms, using ggplot2 and ggtranscript

(Supplemental figure 1 and 2).

Sequencing depth analysis

We show Precision and Sensitivity results for the 5 most performant tools (Bambu, isoQuant,

Stringie2, isONclust, isONclust2) on all subsets of the LSK114_sequins dataset. For each of these

subsets we also calculated the maximum sensitivity per relative abundance (MaxSensitivity)

considering the theoretical abundance of each transcript in the mix as:

(in TPM)𝐿𝑖𝑚𝑖𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝐷 =  1/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡

𝐹𝑁
𝐿𝑜𝐷

 = ∑(𝑠𝑒𝑞𝑢𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 <  𝐿𝑜𝐷 (𝑖𝑛 𝑇𝑃𝑀) 𝑓𝑜𝑟 𝑚𝑖𝑥𝐴)  

𝑀𝑎𝑥𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 +  𝐹𝑁

𝐿𝑜𝐷
  

Quantification

Quantification was obtained after mapping the original .fastq files of datasets

LSK114_sequins_sub150k and RNA004_sequins_sub150k to the corresponding output assembly of

Bambu, isoQuant, Stringtie2-noRef and Flair-noRef with minimap2 v2.24 [options: -a -N 100] and

samtools v1.19.2 to convert to bam. Salmon v1.10.1 (Patro et al. 2017) was then executed.

Experimental quantifications (TPM) of TP (as described in Sensitivity, Precision and F1 calculation

section) were compared to theoretical abundances converted to TPMs to generate Pearson’s

correlation coefficient. TPs with null experimental quantifications were excluded from the coefficient

calculation, as they are considered not found in assembly. FP transcripts were attributed a theoretical

abundance of 0, as these are not real transcripts and should not be present.

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2024. ; https://doi.org/10.1101/2024.03.21.586080doi: bioRxiv preprint 

https://paperpile.com/c/FSYGVr/ANPI
https://doi.org/10.1101/2024.03.21.586080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data access

Assembly annotations evaluated as well as GFFcompare (.tmap file) and SQANTI3

(_classification.txt file) evaluations are available along with the code used in our github page

: https://github.com/msagniez/LRassBench. Input .fastq files as used in this study for SIRV and sequin

data are available on SRA [accession numbers]
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