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Abstract 19 

Background 20 

Genomic prediction aims to predict the breeding values of multiple complex traits assumed to be 21 

normally distributed, thus imposing linear genetic correlations between traits. However, these 22 

statistical methods are unable to model nonlinear genetic relationships between traits, if existent, 23 

potentially leading to a decrease in prediction accuracy. Deep learning (DL) is a promising 24 

methodology for predicting multiple complex traits, in scenarios where nonlinear genetic 25 

relationships are present, due to its capacity to capture complex and nonlinear patterns in large data. 26 

We proposed a novel pure DL model, designed to obtain predicted genetic values (PGV) while 27 

accounting for nonlinear genetic relationships between traits, and extended this model to a hybrid 28 

DLGBLUP model which uses the output of the traditional GBLUP, and enhances its PGV by using 29 

DL. Using simulated data, we compared the accuracy of the PGV obtained with the proposed pure 30 

DL model, the hybrid DLGBLUP model, and the traditional GBLUP model – the latter being our 31 

baseline reference. 32 

Results 33 

We found that both DL and DLGBLUP models either outperformed GBLUP, or presented equally 34 

accurate PGV, with a particular greater accuracy for traits presenting a strongly characterized 35 

nonlinear genetic relationship. DLGBLUP presented the highest prediction accuracy and smallest 36 

mean squared error of the PGV for all traits. Additionally, we evolved a base population over seven 37 

generations and compared the genetic progress when selecting individuals based on the additive PGV 38 

obtained by either DL, DLGBLUP or GBLUP. For all traits with a nonlinear genetic relationship, 39 

after the fourth generation, the observed genetic gain when selection was based on the additive PGV 40 
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from GBLUP was always inferior to the observed when selection was based on either DL or 41 

DLGBLUP. 42 

Conclusions 43 

The integration of DL into genomic prediction has potential to bring significant advancements in the 44 

field. By identifying nonlinear genetic relationships, our DL and DLGBLUP models improved 45 

prediction accuracy. It offers an insight to genetic relationship and its evolution over generations, 46 

with potential to improve selection strategies in commercial livestock breeding programs. Moreover, 47 

DLGBLUP shows that DL can be used as a complement to statistical methods, by enhancing their 48 

performance. 49 

Background 50 

Genomic prediction (GP) [1] in genetic evaluations uses DNA marker information, most commonly 51 

single nucleotide polymorphisms (SNPs) data, to predict the genetic merit of complex traits, referred 52 

to as genetic value (GV). When focusing on additive genetic values, it is commonly termed as 53 

breeding values (BVs) in both livestock and plant studies. Traditional statistical methods applied to 54 

GP rely on linear mixed models [2], and typically use either the SNP or the genomic best linear 55 

unbiased prediction (SNP-BLUP and GBLUP respectively), or Bayesian approaches, with their 56 

various prior assumptions and alphabets [1, 3] to obtain the predicted genetic values (PGV), by 57 

assuming normally distributed effects. Due to the assumption of normality of the data, when extended 58 

to a multi trait (MT) scenario, the relationship between traits is modeled as linear. These statistical 59 

methods, combined with the current availability of genomic information are very powerful, and have 60 

undoubtedly revolutionized genetic evaluations, but since they fully rely on linear approximations, a 61 

higher prediction accuracy is prevented, despite the efforts of improvement by providing highly 62 
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informative data, such as denser SNP-chips, or using a single-step strategy that combines the pedigree 63 

to the genomic data in a single relationship matrix [4]. 64 

The restriction to linearity, in addition to the continuously increasing amount of recorded and 65 

genotyped animals, which posed computational constraints for genetic evaluations with the classical 66 

statistical models, were among the reasons that pushed geneticists to explore the use of deep learning 67 

(DL) [5] for genetic evaluations and genomic predictions [6]. DL approaches use artificial neural 68 

networks, which have the capacity to learn complex patterns and features from very large datasets, in 69 

order to map input to output data. Different DL algorithms, also called architectures, can be 70 

considered depending on the prediction task such as classification and regression. Among the three 71 

most common DL algorithms we have (1) Multi-layer perceptron (MLP), which is particularly 72 

effective for tasks that involve non-sequential and non-spatial data; (2) Convolutional neural network 73 

(CNN) designed for visual data, such as images and videos; and (3) Transformer [7], the backbone 74 

of most large language models (LLM), used in natural language processing (NLP) tasks, suited for 75 

any data that can be represented as a sequence, including text, time-series data, and even genomic 76 

sequences. DL has been successfully applied in many domains, such as computer vision, speech 77 

recognition, text and image generation, and biomedicine [8, 9, 10, 11, 12]. 78 

Most studies that use DL for GP have focused on the inclusion of the non-additive genetic 79 

effects (epistasis and dominance) to the linear model that uses genotypes to describe phenotypes, by 80 

modeling their non-linearity using DL. There was a focus on the use of CNN since they are designed 81 

to exploit the local characteristics of data, which can be a manner to describe linkage disequilibrium 82 

(LD) between the SNPs in genomic data. Still, some studies have shown that the MLP models gave 83 

better results [6]. Although in some studies DL did outperform the conventional models for very 84 

specific datasets and traits, there was no clear evidence of an overall superiority of DL over the 85 

statistical methods in performing GP [13, 14]. More recently, Lee et al. [15] proposed deepGBLUP, 86 
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a combination of DL and GBLUP into a single model. Given input SNP data, the DL networks of 87 

deepGBLUP extract the effects of adjacent SNPs using locally-connected layers to estimate a GV 88 

through fully-connected layers. In parallel, a GBLUP model accounting for additive, dominance and 89 

epistasis effects (through their respective genetic relationship matrices) is fitted. The final estimated 90 

GV is the sum of all previous estimated GV (DL, additive, dominance and epistasis). Applied to a 91 

real dataset of Korean native cattle, and to simulated data, the results of the proposed deepGBLUP 92 

model outperformed those of the traditional GBLUP and Bayesian methods in different single trait 93 

prediction scenarios. 94 

In livestock production, beyond predicting GV for individual traits, breeders aim to jointly 95 

improve multiple traits of commercial interest, in order to achieve genetic progress for these traits 96 

altogether. When working with multiple traits, genetic relationship between traits [16] must be 97 

considered, since selection for one trait will affect the other correlated traits [17]. Genetic 98 

relationships are thus a relevant factor to account for, on the different stages of a genetic evaluation, 99 

from the estimation of variance components to the prediction of GV, in order to optimally improve 100 

multiple traits of interest altogether. It has been shown, for example, that it is more advantageous to 101 

perform a multitrait model for genetic evaluation, that considers the genetic relationships between 102 

traits to improve their predictive ability [18].  103 

Until now, due to the Gaussian nature of the models employed, the genetic relationship 104 

between traits has been always considered as linear. Therefore, if two traits present a non-linear 105 

genetic relationship, statistical methods will fail to identify this relationship, thus limiting prediction 106 

accuracy of the PGV associated to the traits of interest. Such limitation cannot be overcome, unless 107 

the assumption of normality of the data is dissociated from the model, in order to allow the possibility 108 

of nonlinear relationships. Although the possibility of nonlinear relationships creates a difficulty for 109 

the implementation of the traditional statistical models, it opens an opportunity door for the 110 
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implementation of DL methods. Few studies explored non-linear genetic relationships between traits 111 

[19, 20], and even so, such studies focused merely on how to identify these non-linear genetic 112 

relationships, rather than on how to account for them in GP. 113 

This study aimed to use DL to model non-linear genetic relationships between traits and to 114 

use these identified nonlinear relationships to predict the GV of multiple traits simultaneously. Using 115 

simulated data, we explored (1) how the presence of nonlinear relationships between traits affect the 116 

performance of GBLUP with respect to the accuracy of the PGV, (2) how to use DL to model these 117 

nonlinear relationships and consider them for selecting individuals, and (3) how nonlinear 118 

relationships affect the genetic progress over generations when ignored (GBLUP) or when they are 119 

taken into account (DL methods). We proposed a pure and a hybrid DL model. The pure DL model 120 

consisted of two steps, a first that uses the SNP data as input to predict the GV of multiple traits 121 

accounting only for the genomic effects, and a second that re-predicts a new GV from the initial 122 

predicted GV while allowing the flexibility to capture potential nonlinear genetic relationships 123 

between traits. The hybrid model, called DLGBLUP, combines both DL and GBLUP, thus benefiting 124 

from their strengths while minimizing their pitfalls, and also consists of two steps. A first that predicts 125 

the GV using a multi-trait GBLUP and the genomic data, by learning the output of GBLUP using 126 

DL, and a second that performs exactly the same second step of the original pure DL model. 127 

Methods 128 

Simulated data 129 

The complete simulated genomic data consisted of 10,000 SNPs distributed across 29 chromosomes, 130 

with an average LD pattern resembling that of a cattle population. From the 10,000 simulated SNPs, 131 

512 were assigned as quantitative trait loci (QTL) to be shared between all traits. The non-centered 132 
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SNPs were coded as 0, 1, and 2, referring to homozygous for reference alleles, heterozygous, and 133 

homozygous for alternate alleles, respectively. 134 

A quantitative reference trait was simulated using the 512 QTL for a total of 25,000 individuals, 135 

following the model: 𝐲𝐫𝐞𝐟 =  𝐌 𝛂𝐫𝐞𝐟  +  𝐞𝐫𝐞𝐟 =  𝐠𝐫𝐞𝐟 +  𝐞𝐫𝐞𝐟, where 𝐌 is a matrix of which element 136 

Mi,j corresponds to the centered genotype of individual i at QTL j, 𝛂𝐫𝐞𝐟 =  [αref,1  … . αref,q ] is the 137 

vector of the q=512 additive QTL effects, such that αref,j~ N(0, σαref
) i.i.d. for every j = 1, . . . , q, 138 

𝐠𝐫𝐞𝐟 = 𝐌𝛂𝐫𝐞𝐟 is the vector of the true genetic values (TGV) and 𝐞𝐫𝐞𝐟 ~ N(0, σeref
𝐈) is the vector of 139 

random errors. The genotypes and the reference trait were simulated using the GenEval R package 140 

[19]. 141 

Five dependent traits, were simulated conditional to the TGV of the reference trait as  𝐲𝐭  =142 

 𝐠𝐭   +  𝐞t , for every t =  1, . . . ,5, such that 𝐠𝐭 = ft(𝐠
𝐫𝐞𝐟

) + 𝐠
𝐭_𝟐

, where ft is the function describing the 143 

(potentially) nonlinear relationship between the TGV of two traits. 𝐠𝐭_𝟐 is the vector of the genetic 144 

value specific to each dependent trait, simulated as 𝐠𝐭_𝟐 =  𝐌t𝛂t, where 𝐌𝐭 is the genotype matrix of 145 

specific QTLs different from the common QTLs and different between the dependent traits; 146 

𝛂𝐭~ N(0, σαt
I) is the vector of the corresponding additive QTL effects. 𝐠𝐭 was normalized such as 147 

σgt
2 =  σyt

2 × h2, which h2 is the heritability. The error vector 𝐞𝐭~ N(0, σet
𝐈) with σet

=  σyt
2 − σgt 

2 . 148 

We fixed a σy
2 = 20 for all traits. We choose a default h2 of 0.3 and 50 specifc QTLs. Then we tested 149 

different levels of h2 for the traits, from high to low (0.6, 0.15, 0.05), with the 50 specific QTLs, and 150 

different numbers of specific QTLs (0, 10, 250), that defined the level of genetic relationships 151 

between traits, with h2 of 0.3. For each of the dependent traits, the following different relationships 152 

were considered: (1) linear, (2) quadratic, (3) sinusoidal, (4) logistic and (5) exponential. While 153 

different levels of h2 and number of specific QTL were tested, each set of simulated reference and 154 

dependent traits had the same h2 and number of specific QTLs.  155 
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To train and evaluate the DL models, the dataset was split into three sets: training (80%), 156 

validation (10%), and test set (10%), being the test set that for which PGV are to be obtained in the 157 

absence of phenotypic records, while both the training and validation sets are those for which 158 

individuals have genotypes and phenotypic records. Different from statistical models, DL requires an 159 

internal validation set with the complete information to fine-tune the model parameters. For the 160 

GBLUP model, the training and validation sets were combined to fit the model, and the same test set 161 

(10% of individuals) was kept for evaluation. To assess the repeatability of our findings, we simulated 162 

20 replicas of the complete data set under each combination of different levels of h2 and number of 163 

QTL. 164 

 165 

Multi-Trait Genomic Prediction: 166 

We used three models to perform GP: a baseline GBLUP, a pure DL model, and a hybrid DLGBLUP 167 

model that combines the two previous ones. 168 

Genomic Best Linear Unbiased Prediction (GBLUP) 169 

The GBLUP model is one of the most popular statistical methods used to predict the GV of genotyped 170 

individuals using their genomic relationship matrix. The model considered for multi-trait GBLUP is: 171 

𝐘 =  𝐗 𝛃 +  𝐙 𝐠 +  𝐞      (1) 172 

where 𝐘 = [𝐘1 … 𝐘k] is a matrix of the phenotype vectors for all trait included in the model; 𝐗 is a 173 

design matrix for the fixed effects,  𝛃 = [𝛃1 … 𝛃k], such that 𝛃k is the vector of fixed effects for each 174 

of the k = 1, … , K traits; 𝐙 is an incidence matrix linking the phenotypic records to the breeding 175 

values 𝐠 = [𝐠1 … 𝐠k], such that 𝐠k is the vector of breeding values for each of the k = 1, … , K traits, 176 

with distribution, vec(𝐠)~ N(𝟎, 𝚺g⨂𝐆) in which 𝚺g is the additive genetic (co)variance matrix of the 177 

traits, vec(g) is the vector version of the matrix 𝐠, 𝐆 is the genomic relationship matrix (GRM), and 178 
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⊗ represents their Kronecker product; and 𝐞 = [𝐞1 … 𝐞k] is the matrix of normally distributed 179 

random errors with vec(𝐞) ∼ N(𝟎, 𝐑), in which R is the error (co)variance matrix between the traits. 180 

We used the R (4.1.1) package BGLR package (1.0.8) [22] to perform the multi-trait GBLUP, here 181 

we did not consider a fixed effect so 𝛃 is just the vector of the intercepts. 182 

Deep Learning model 183 

The MLP [23] is a feedforward network that maps an input to an output using learned parameters. It 184 

consists of several layers, including hidden layers with nonlinear activation functions, each layer 185 

having multiple nodes. The model takes the input layer and passes it into a network of multiple 186 

connected layers (hidden layers) up to the output. In a general execution, each node is characterized 187 

by the following equation:  188 

yj  =  f( Σi=1
I wj,ixi +  bj)      (2) 189 

where yj is the scalar output of node j, bj is the bias, xi represents the output of node i ∈  {1, . . . , I} of 190 

the previous layer, wj,i symbolizes the weight assigned to this xi, and f is a nonlinear activation 191 

function. During training, the optimization process adjusts the weights and biases of the MLP by 192 

minimizing a loss function between the predicted and true outputs of the training set. The Mean 193 

Squared Error (MSE) and Mean Absolute Error (MAE) losses are commonly used for regression, 194 

while cross entropy loss is used for classification. The backpropagation algorithm is used to 195 

efficiently compute gradients, and to understand how changes in model parameters can affect the 196 

output error. Stochastic gradient descent is used to update these parameters in the direction that 197 

minimizes the loss. 198 

The proposed DL model, illustrated in Figure 1, comprises three distinct steps (also called 199 

modules hereafter): SNPs2Trait, Trait2Trait and MeanTrait2Trait. The first step, SNPs2Trait, takes 200 

the SNP data as input, and then extracts the important information in the hidden layer. The prediction 201 

of each trait was made separately in the output layer by processing all information from the hidden 202 
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layer related to each trait. However, this separation does not allow the model to capture the 203 

relationships between traits. This module will output a first predicted GV (PGV_1) for multiple traits 204 

simultaneously, by capturing the relationship between the genomic data and the phenotype, which 205 

represents both the additive and some non-additive effects. Then the module Trait2Trait uses the 206 

PGV_1 of all traits as input to capture the relationship between all traits. This provides a new predicted 207 

GV (PGV_2) for all traits simultaneously, that will be considered as the final prediction of the model. 208 

Lastly, in parallel to Trait2Trait, the module MeanTrait2Trait uses PGV ref_1 to output predictions of 209 

the dependent traits which we call PGV_3. As such, MeanTrait2Trait can capture the mean 210 

relationship between reference trait and the other dependent traits but not the dispersion around this 211 

mean. This last module is used for illustration purpose only. 212 

 213 
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Figure 1: GBLUP vs. Deep Learning Genomic Prediction Frameworks. The GBLUP in red and 214 

DL in gray; with the second separated as pure DL in yellow and DLGBLUP in green.  215 

 216 

All modules consist of two linear layers (with 400 and 256 neurons) and use the LeakyReLU 217 

activation functions with a fixed negative slope of 0.1. The model was trained for 100 maximum 218 

epochs, with an early stopping after 10 epochs without improvement of the loss in the validation, 219 

using a batch size of 200. As loss function, we used Huber loss [24], a combination of the MSE and 220 

the MAE, described as: 221 

𝐿(z) =  {

1

2
(z)2                for |z| ≤ δ,

δ|z| − 
1

2
δ2       otherwise.

      (3) 222 

where z is the error and δ is a threshold parameter that dictates the transition between the two losses. 223 

We used Adam optimizer with a learning rate of 10−4. The choice of optimizer, learning rate, 224 

activation function and number of neurons in hidden layers was made after a preliminary grid search. 225 

Two training approaches were used: (1) training the three modules as one model so the loss function 226 

was the sum of loss from each module, i.e., 227 

 L𝑜𝑠𝑠 = ∑ L(yt  − PGVt_1) + L(yt  − PGVt_2) + L(yt  − PGVt_3)t ,    (4) 228 

where y  is the true phenotype value for multiple traits; (2) training modules sequentially in terms of 229 

gradient flow. The first module was trained initially, and once this was completed, its parameters 230 

were fixed by stopping the gradient propagation from a module to another. The trainings of 231 

Trait2Trait and of MeanTrait2Trait were independent. The model was implemented using pytorch 232 

(1.10.2) in python and trained on a single GPU with 48 GB memory (NVIDIA A40).  233 

DLGBLUP model 234 

We proposed a hybrid model called DLGBLUP, where the first module is trained on the GBLUP 235 

output instead of y. The motivation for this replacement was to guide the DL training: using the 236 
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GBLUP output may stabilize the optimization in DL when the 3 modules are jointly optimized. 237 

Indeed, this may help the convergence of SNP2trait toward a solution close to the GBLUP one that 238 

is known to performs well in predicting the additive GV. Note that in the case of a sequential training 239 

SNP2Trait will exactly reproduce the GBLUP predictions (on the training set), up to convergence 240 

tolerance. The Trait2Trait and MeanTrait2Trait are left unchanged. 241 

Inclusion of Non-QTL SNPs  242 

To develop the DL models properly, we first used uniquely the true QTL to minimize the errors 243 

arising from the data. While a first comparison of the accuracy of the PGV from GBLUP to our 244 

proposed DL and DLGBLUP models was performed using this approach, we did evaluate the effect 245 

of having SNPs that were not QTL in the input genomic data on the prediction accuracy. Therefore, 246 

for this evaluation, our baseline prediction data consisted of the QTL only, and then we gradually 247 

added non-causative SNPs to the genomic data used for prediction, so that the whole genomic data 248 

consisted of a total of non-QTL percentage of 10, 25, 50, 75, and finally a final scenario consisted of 249 

using only non-causative SNPs, excluding all the QTL. A comparison of the results from a model 250 

excluding non-causative mutations, but including only half of the QTL was also included in this study. 251 

 252 

Genomic Selection 253 

After performing the multi-trait genomic prediction, we computed a selection index (SI) as: 254 

SI =  ∑ (wt  + ∑ ρt,jwj
T
j=1,j≠t )gt

T
t=1 ,     (5) 255 

in which wt’s are the weights given to traits t = 1, . . . , T, ρt,j is the empirical correlation between the 256 

GVs of traits t and j, and gt’s are the GVs of trait t = 1, . . . , T. For this study, we assigned equal 257 

weights to all traits in order to compare the general evolution of the genetic gain based on the breeding 258 

values obtained with the different models. Based on the SI, at each generation the top 10% eligible 259 

males were selected and mated with all females from the latest generations, in order to generate the 260 
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subsequent generation, maintaining at each new generation a female-to-male proportion of 80%-20%. 261 

Males were kept for breeding across four generations, while females were kept for two generations 262 

only. This selection and mating design were chosen to mimic the breeding program of a dairy cattle 263 

population. A base population of independent individuals (i.e. generation zero, or G0) was considered 264 

to start the selection process, followed by seven simulated generations under selection referred to as 265 

G1, …, G7. 266 

This simulation scheme under selection allowed us to both study the evolution of the nonlinear 267 

genetic relationships between traits when the population is under selection, and compare the genetic 268 

gain of selection, based on the additive GV obtained with the different models, using their values to 269 

construct the SI in equation (5). Because of the way we simulate the data, the PGV obtained by all 270 

prediction models could express non-additive effects. Since we are interested in the additive PGV, 271 

we computed it as follow: at each generation we simulated the genotype of 20 offspring for each 272 

eligible male based on random mating schemes with the females. Then, the PGVs of these simulated 273 

offspring were predicted with the different models (GBLUP, DL, and DLGBLUP) trained on a dataset 274 

where all individuals until the latest generation were genotyped and phenotyped. The additive PGV 275 

of the eligible males were finally computed as the average of the PGVs of their simulated offspring. 276 

The GVs for the reference trait on all subsequent generations were simulated using the same 277 

original QTL effects of G0, and the other dependent traits were simulated as previously described in 278 

the ‘Simulated Data’ section. The number of individuals in each of the generations G1 to G7 was 279 

maintained as 5,000. With each new generation, the reference population to perform the prediction 280 

models was updated to comprise all individuals from G0 to the latest with both genotypes and 281 

phenotypic records, and then used to perform the genetic evaluation. For DL and DLGBLUP, the 282 

genetic evaluation model with a new generation was initialized using the weights (DL parameters) 283 

obtained at the evaluation of the previous generation. 284 
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Evaluation metrics  285 

To evaluate the performance of each model in predicting genetic values, we used the Pearson 286 

correlation coefficient to calculate the prediction accuracy for each individual trait, as well as the 287 

MSE between the TGV and PGV, and performed a visual assessment of the relationship form between 288 

traits. To evaluate the performance of each model with respect to genomic selection, we used the 289 

genetic gain computed as the difference between the mean of the TGV for individuals in G0 and the 290 

mean of the TGV for individuals in the next generation. 291 

 292 

Results 293 

Here we present the results of DL-based model trained following the second training approach 294 

(sequential training) which gave better results. In addition, for the simplicity, we called the traits 295 

based on the form of relationship they have with the reference trait, for example quadratic trait 296 

correspond to the trait with f as quadratic.  297 

Genomic Prediction 298 

Prediction Accuracy 299 

Figure 2 presents the boxplots comparing the performance of the GBLUP, pure DL, and DLGBLUP 300 

models using only the QTL as input data, with respect to the prediction accuracy and the MSE, over 301 

the 20 replicates performed. 302 
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 303 

Figure 2: Performance comparison of different prediction models for various traits. GBLUP 304 

(red), Deep Learning (DL) (yellow) and DLGBLUP (green); with the two components SNPs2Trait 305 

and Trait2Trait. The prediction was made using genomic data with just QTL. 306 

 307 

At the additive effect level, GBLUP demonstrated superior prediction accuracy compared to 308 

the pure DL SNP2Trait models for almost all trait except the quadratic one; nonetheless, the later 309 

presented a consistently lower MSE. Once trained to predict the output of GBLUP, the results of 310 

DLGBLUP SNP2Trait were very similar to those of GBLUP. 311 

Both the GBLUP and DLGBLUP SNP2Trait models excelled in predicting the GV for the linear 312 

and logistic traits, achieving remarkable accuracy, while their performance was diminished for the 313 

other nonlinear traits, but always superior to an accuracy of 0.8 for every trait. 314 

The prediction accuracy of DLGBLUP for the quadratic, sinusoidal, and exponential traits was 315 

improved after passing the PGV through the Trait2Trait step of the model that predicted the GV from 316 
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its relationship with other traits. This improvement varied from 0.01 to 0.1, depending on the type of 317 

nonlinear relationship between traits, and on the previous GV predicted from the additive effect. After 318 

passing through the Trait2Trait step, the DLGBLUP model did not provide any further improvement 319 

for the prediction accuracy of the linear traits (reference included), which were already well predicted 320 

by GBLUP. 321 

The DLGBLUP model outperformed the pure DL model by a margin of 0.01 to 0.04 in terms 322 

of prediction accuracy. Of all the evaluated models, the DLGBLUP Trait2Trait model consistently 323 

yielded the lowest MSE across all dependent traits, with more reliable and precise estimation, with a 324 

prediction accuracy either higher than all the other models, or just as high as GBLUP.  325 

Prediction of nonlinear relationship function 326 

Both DLGBLUP and pure DL models, with the MeanTrait2Trat step, were capable of identifying the 327 

true form of the relationship between traits, whether it was linear or nonlinear. Moreover, the shape 328 

of the PGV was adjusted according to the trait’s relationship through the Trait2Trait part. A more 329 

accurate input, i.e. the GBLUP predictions, to the MeanTrait2Trait and Trait2Trait steps, enabled the 330 

prediction of a clearer and more precise relationship between traits, as illustrated in Figure 3.  331 

Additionally, MeanTrait2Trait was able to detect the genetic relationships between traits, 332 

while GBLUP was able to do so only for the linear trait. For the other nonlinear traits, we observed 333 

that GBLUP transformed their relationship to be linear, sometimes identifying a level of linear 334 

relationship (logistic and exponential traits), or completely missing any relationship between traits 335 

(quadratic and sinusoidal traits).  336 
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 337 

Figure 3: Comparison plots of predicted genetic relationship between traits with different 338 

prediction model. The reference trait is represented on the x-axis and all dependent traits on the y-339 

axes. The colored points represent the PGV of GBLUP (red), DL (yellow) and DLGBLUP (green) 340 

and the TGV (blue) of a population. In black the mean relationship between traits as obtained from 341 

MeanTrait2Trait module. The prediction was made using genomic data with just QTL, h2 equal 0.3 342 

and 50 specific QTLs. 343 

 344 

Effect of Heritability, number of specific QTL, and level of Genetic Relationship  345 

Heritability directly influences the quality of GV predictions from additive effects. The higher the 346 

heritability, the higher the prediction accuracy of GBLUP, as well as the prediction accuracy made 347 
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by the Trait2Trait part and its improvement in comparison to GBLUP, for the nonlinear traits, 348 

reaching 0.17 for the quadratic traits with heritability of 0.6. Moreover, there was an effect of the 349 

number of specific QTL that control the genetic relationship (Figure 4).  350 

 351 

Figure 4: Comparison plots of true genetic relationship between traits with different number 352 

of specific QTLs. The reference trait is represented in x-axis and all dependent traits in y-axes. The 353 

blue points represent the True GV of a population. 354 

 355 

The higher the number of specific QTL the less clear the relationship between traits. A higher 356 

genetic relationship -a lower number of specific QTL in our case- intensifies the nonlinear effects, 357 

reducing GBLUP's prediction accuracy while simultaneously increasing the potential for 358 

improvement via the Trait2Trait component, as shown in Table 1. 359 
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Table 1: Prediction accuracy comparison of different prediction models with different heritability 360 
and number of specific QTL. 361 

   Traits 

Heritability QTLs Model Reference Linear Quadratic Sinusoidal Logistic Exponential 

0.05 

50 

GBLUP 0.83 0.8 0.8 0.82 0.84 0.83 

DL 0.72 0.67 0.7 0.72 0.74 0.76 

DLGBLUP 0.82 0.79 0.8 0.81 0.83 0.83 

0.15 

GBLUP 0.93 0.94 0.82 0.87 0.93 0.91 

DL 0.88 0.89 0.81 0.83 0.89 0.87 

DLGBLUP 0.93 0.93 0.87 0.87 0.92 0.92 

0.3 

GBLUP 0.97 0.97 0.84 0.83 0.96 0.92 

DL 0.95 0.95 0.91 0.85 0.94 0.92 

DLGBLUP 0.97 0.97 0.94 0.89 0.95 0.94 

0 

GBLUP 0.99 0.99 0.13 0.15 0.94 0.79 

DL 0.97 0.97 0.85 0.28 0.93 0.88 

DLGBLUP 0.99 0.99 0.95 0.89 0.97 0.93 

10 

GBLUP 0.98 0.98 0.42 0.6 0.95 0.86 

DL 0.96 0.96 0.82 0.6 0.94 0.9 

DLGBLUP 0.98 0.97 0.9 0.84 0.96 0.94 

250 

GBLUP 0.92 0.93 0.9 0.9 0.93 0.92 

DL 0.89 0.89 0.86 0.86 0.89 0.88 

DLGBLUP 0.92 0.92 0.91 0.9 0.93 0.92 

0.6 50 

GBLUP 0.99 0.99 0.79 0.81 0.96 0.93 

DL 0.98 0.98 0.96 0.86 0.97 0.96 

DLGBLUP 0.99 0.99 0.96 0.88 0.98 0.97 

 362 

Effect of Non-QTL SNPs  363 

Table 2 presents the effect on the model’s performances of incorporating SNPs that were not QTL in 364 

the genomic data used. The most accurate predictions were achieved when the input data comprised 365 

exclusively all the QTLs implicated in the TGV of a trait, as expected, with DLGBLUP achieving the 366 

best predictions. When excluding half of the QTLs, or when adding non-causative SNPs to the input 367 

genotypes the prediction accuracy decreased. The decrease in prediction accuracy when non-368 

causative SNPs were introduced was progressive as more and more SNPs were included to the 369 

genomic data, which results in a decrease in the advantage of DLGBLUP. Excluding all QTL, and 370 
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keeping only non-causative SNPs in LD with the QTL, resulted in PGV with accuracies ranging from 371 

0.55 to 0.7, and an improvement made by DLGBLUP ranging from 0.01 to 0.03.  372 

Table 2: Prediction accuracy comparison of different prediction models using genomic data with 373 

different numbers of SNPs, a h2of 0.3 and 50 specific QTLs. 374 

  Traits 

 Method Reference Linear Quadratic Logistic Sinusoidal Exponential 

Half QTL 

DL 0.82 0.75 0.72 0.77 0.63 0.65 

GBLUP 0.82 0.76 0.66 0.78 0.61 0.64 

DLGBLUP 0.81 0.74 0.72 0.77 0.63 0.65 

Just QTL 

DL 0.95 0.95 0.91 0.94 0.85 0.92 

GBLUP 0.97 0.97 0.84 0.96 0.83 0.92 

DLGBLUP 0.97 0.97 0.94 0.96 0.89 0.94 

10% SNPs 

DL 0.94 0.94 0.9 0.94 0.86 0.92 

GBLUP 0.95 0.95 0.8 0.95 0.81 0.91 

DLGBLUP 0.94 0.94 0.91 0.94 0.87 0.93 

25% SNPs 

DL 0.87 0.89 0.82 0.88 0.76 0.86 

GBLUP 0.91 0.87 0.75 0.9 0.76 0.87 

DLGBLUP 0.9 0.9 0.84 0.89 0.8 0.88 

50% SNPs 

DL 0.82 0.83 0.74 0.82 0.68 0.8 

GBLUP 0.86 0.86 0.7 0.86 0.7 0.82 

DLGBLUP 0.85 0.85 0.78 0.85 0.73 0.83 

75% SNPs 

DL 0.78 0.79 0.71 0.79 0.66 0.77 

GBLUP 0.84 0.84 0.68 0.84 0.69 0.79 

DLGBLUP 0.82 0.83 0.75 0.82 0.7 0.8 

All SNPs 

DL 0.76 0.77 0.69 0.78 0.65 0.75 

GBLUP 0.82 0.82 0.67 0.82 0.68 0.78 

DLGBLUP 0.8 0.81 0.73 0.81 0.69 0.78 

NO QTL 

DL 0.61 0.64 0.57 0.67 0.55 0.64 

GBLUP 0.63 0.67 0.56 0.7 0.57 0.65 

DLGBLUP 0.63 0.67 0.59 0.69 0.58 0.66 

 375 

Genomic Selection 376 

Genetic relationship across generations  377 

Figure 5a shows the evolution of the genetic relationships between the TGV of the traits over the 378 

seven generations, under a multi-trait selection using the linear SI based on the additive GV obtained 379 

with pure DL. As expected, the relationship between the reference trait and the linear trait remained 380 
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linear over all the generations under selection. In contrast, the relationship between the reference trait 381 

and the quadratic trait evolved from nonlinear to linear very quickly, with its nonlinearity being 382 

almost imperceptible from G1. The remaining three traits that were simulated with a nonlinear 383 

relationship with the reference trait (sinusoidal, logistic, and exponential) preserved their nonlinear 384 

characteristics. However, while the shape of the relationship of the sinusoidal and exponential traits 385 

remained the same, the latter trait had its relationship attenuated, and the shape of the relationship of 386 

the logistic trait changed completely with respect to the original one in G0. These trends of 387 

transformations (or not) of the shape of the relationships persisted whether selection was based on 388 

any of the predicted additive GV [See Additional file 1, Figure S1]. 389 

 390 
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Figure 5: Comparative analysis of traits progression across generations. (a) Plots of relationship 391 

between the TGV of reference trait (x-axis) and dependent traits (y-axis) over 8 generations based on 392 

DL predictions. (b) Comparison between the Genetic Gain of 7 generationswith 15% male selection 393 

using the true and the predicted additive GV with GBLUP, DL, and DLGBLUP for all traits. 394 

 395 

Genetic Gain 396 

Genetic gain was achieved for all the traits, following the selection of the top 10% males (Figure 5b), 397 

based on the SI combined with any of the additive GV. The magnitude of this gain varied depending 398 

on the form of relationship, with the most substantial gains observed for the logistic trait. For both 399 

reference and linear traits, the progress based on the SI using the additive GV from all models were 400 

equivalent. Conversely, for each of the nonlinear traits, the genetic progress achieved based on the SI 401 

using the additive GV from either DL or DLGBLUP, or both for some traits, was greater than the 402 

genetic progress achieved using the additive GV from GBLUP. 403 

Discussion 404 

In this study, we proposed a novel hybrid model, DLGBLUP, which integrates DL and statistical 405 

methods to perform a multi-trait prediction of nonlinearly related genetic values. Such nonlinear 406 

genetic relationships between traits have not been greatly explored in GP, due to the difficulty in 407 

addressing such nonlinearity using the classical statistical methods. Although DL methods have been 408 

widely explored in the recent years as an alternative for the statistical methods in GP, the results 409 

obtained with DL in real data sets have not yet significantly overcome those from GBLUP [6]. 410 

Moreover, in spite of DL’s capacity to model nonlinear patterns, these methods have not been greatly 411 

explored to model between-traits relationships. 412 

One possible reason why DL did not achieve higher performance in GP compared to GBLUP, 413 

may be the fact that in GP, the objective falls in predicting the individuals GV, which are not 414 
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observed. While most studies implemented models that have been previously applied in different 415 

domains, in GP these models have to operate on the genotype-phenotype relationships - built-up in 416 

the hidden layers of DL rather than present in the target- to predict the GV. Some studies incorporated 417 

a biological interpretation into their models, which performed better than those DL models that 418 

maintained the same assumptions as GBLUP. GenNet [25] used layers embedded with prior 419 

biological knowledge, such as gene and chromosome annotation. DeepGBLUP [15], on the other 420 

hand, considered that a phenotype is the sum of additive, dominance, and epistasis effects (computed 421 

using GBLUP) in addition to an initial GV predicted from adjacent markers' effects extracted using 422 

a locally connected layer. In this study, we proposed DLGBLUP model that can predict a GV by 423 

learning GBLUP’s predictions and then adjusting the predictions according to the relationships 424 

between traits.  425 

Genomic selection in livestock or plant breeding programs consists of integrating the 426 

information of various traits into a SI, to select individuals that ensure genetic progress for traits of 427 

commercial interest, while not adversely impacting other traits that may be correlated to the targeted 428 

ones. To achieve this progress, two conditions are required: 1) A precise prediction of the individuals’ 429 

GV and 2) A good understanding of the relationships between traits. If one of these conditions is 430 

unavailable, accurately selecting animals for multiple traits may be challenging. Until now, statistical 431 

methods – and particularly GBLUP – have been the leading choice of breeders for performing genetic 432 

evaluations. On the prediction level, these statistical methods showed a competitive performance 433 

regarding their accuracy of prediction and current computational resources required. These methods 434 

are, however, restricted to the assumption of linearity for the relationships between traits. While this 435 

assumption may not affect the ranking of individuals on an intra-trait perspective, in the case of 436 

nonlinearity in the relationships between traits, the assumption of linearity may have an effect on the 437 

inter-trait level, when performing a genetic evaluation.  438 
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Indeed, we have shown in our study that the pure DL and DLGBLUP models, which are flexible 439 

to the possibility of nonlinear relationships between traits, outperformed GBLUP on the simulated 440 

nonlinear traits, successfully capturing the shape of the relationship, especially if the provided input 441 

is more accurate. In addition, we demonstrated the critical role of an accurate SNPs selection step in 442 

minimizing input noise without eliminating important information, to enhance prediction accuracy. 443 

A significant advantage of DLGBLUP is that it can be complementary to any other single or multi-444 

trait statistical methods, enabling it to achieve superior results, when compared to using DL alone.  445 

While research on the applications of DL for genomic prediction has become more and more 446 

widespread in the recent years, works that apply DL for multitrait prediction models was less popular. 447 

Nevertheless, a previous study considered that relationships between the elements of the output layer 448 

could be learned and captured automatically by a neural network with shared neurons and weights 449 

[18]. However, this study did not explore whether these trait relationships are linear or nonlinear. In 450 

contrast, our study reveals that the SNP2Trait module for the DL model was unable to detect nonlinear 451 

relationships. Instead, the DL model required a proper and exclusive network to map one trait (input) 452 

to another (output), in order to capture nonlinearity.  453 

Our results were obtained on simulated data, for which the dependent traits were partially 454 

conditioned on the GV of a reference trait directly simulated from the genomic data. Although the 455 

application to real data of the DL models proposed by us would be a natural extension of this work, 456 

this practical approach is a complete study in itself, which would derive from the main scope of this 457 

work: introducing DL methods capable to identify nonlinear relationships between traits. Beyond the 458 

DL model developed and presented here, a number of extra factors must be considered for a real data 459 

application: First, the types of phenotypic records are diverse, for example often binary for 460 

reproductive traits and sometimes continuous traits deviate from the assumption of normality, such 461 

as some of the health traits. Second, some traits have more than one record measure per animal, 462 
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requiring a permanent effect included into the model, a lengthy extension to the already complex DL 463 

models by us presented. Third, real genomic data usually contain more non-causative SNPs than the 464 

true QTL, a scenario in which we demonstrated that the models are more sensitive when it comes to 465 

predicting nonlinear relationships between traits. Last, but not least, genetic evaluation models must 466 

deal with all effects, genetic and non-genetic (e.g. the permanent environment, contemporary group, 467 

potential heterogenous variances). As previously mentioned, contemplating all these effects with the 468 

DL models would be a lengthy extension of the complex novel models developed and here presented, 469 

meriting a study in itself. Moreover, a preliminary attempt to operate the DL models on yield 470 

deviations (which synthetize only the genetic and independent residual effects for each individual) 471 

obtained from a previous evaluation accounting for all the genetic and non-genetic effects showed to 472 

be an unsuccessful approach. This approach failed to capture nonlinear relationships between traits, 473 

not due a failure from the DL models, but because the BLUP pre-processing to obtain the yield 474 

deviations forced a linearized output due to the model’s nature, thus erasing completely any form of 475 

nonlinearity. Therefore, further work is required to extend our approach to real data. 476 

Better understanding how multiple traits involved in a breeding program are related is sure to 477 

improve the genetic progress obtained by artificial selection. Here, we maintained the use of a linear 478 

SI to select individuals, however considered the additive GV obtained with the different models 479 

(GBLUP, pure DL, and DLGBLUP) for comparison, and showed that for all traits after seven 480 

generations, genetic gains from SI based on the additive GV from either pure DL or DLGBLUP were 481 

equal or superior to the gains from SI based on the additive GV from GBLUP. 482 

Conclusions 483 

In this study, we proposed a pure DL model and a hybrid variation, DLGBLUP, two framework that 484 

account for nonlinear genetic relationships between traits to predict their GV. From input SNP data 485 

and initial GBLUP predictions, that excel on predicting additive effects, the hybrid DL model can 486 
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learn to predict GBLUP outputs and then readjusts the prediction for potential nonlinear relationships 487 

between traits, when pertinent. Applied to simulated data, DLGBLUP was successful in improving 488 

the accuracy of the predicted GV in scenarios where nonlinear relationships between traits was 489 

present, in comparison to GBLUP. This greater prediction accuracy of the nonlinearly related traits 490 

was due to the ability of DLGBLUP in correctly identifying the mean patterns of such relationships. 491 

Moreover, we showed that selection using a SI built based on the additive PGV from either pure DL 492 

or DLGBLUP achieved greater genetic gain than selection using a SI built based on the additive PGV 493 

from the traditional GBLUP. 494 
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Additional file 1 Figure S1 584 

 585 

Title: Comparative plots of traits progression across 8 generations under selection. 586 

Description: Plots of relationship between the TGV of reference trait (x-axis) and dependent traits 587 

(y-axis) over 8 generations based on additive PGV of GBLUP, DL and DLGBLUP. 588 
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