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Abstract 
The multiple sequence alignment (MSA) problem is a fundamental pillar in bioinformatics, 

comparative genomics, and phylogenetics. Here we characterize and improve BetaAlign, the 

first deep learning aligner, which substantially deviates from conventional algorithms of 

alignment computation. BetaAlign draws on natural language processing (NLP) techniques 

and trains transformers to map a set of unaligned biological sequences to an MSA. We show 

that our approach is highly accurate, comparable and sometimes better than state-of-the-art 

alignment tools. We characterize the performance of BetaAlign and the effect of various 

aspects on accuracy; for example, the size of the training data, the effect of different 

transformer architectures, and the effect of learning on a subspace of indel-model parameters 

(subspace learning). We also introduce a new technique that leads to improved performance 

compared to our previous approach. Our findings further uncover the potential of NLP-based 

approaches for sequence alignment, highlighting that AI-based methodologies can 

substantially challenge classic tasks in phylogenomics and bioinformatics.  
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Introduction 
The Needleman–Wunsch algorithm was the first to use dynamic programming to efficiently 

find the best global scoring alignment between two sequences (Needleman & Wunsch, 1970). 

The inference of a multiple sequence alignment (MSA) was later shown to be an NP-

complete problem (Wang & Jiang, 1994), making the inference task impractical for a large 

set of sequences. To overcome this hurdle, popular MSA algorithms, such as MAFFT (Katoh 

& Standley, 2013) and PRANK (Löytynoja, 2014), use heuristics to reduce the search space 

and consequently, the running time.  

There is extensive knowledge regarding the variability of the evolutionary process 

among different datasets and lineages. For example, amino-acid replacement matrices vary 

between proteins encoded in the nuclear genome, the mitochondria, and plastids (Pesole et 

al., 1999). Indel dynamics also highly vary between datasets and among different 

phylogenetic groups (Ajawatanawong & Baldauf, 2013; Loewenthal et al., 2021; Wolf et al., 

2007). Furthermore, site-specific evolutionary rates vary along the analyzed sequence. For 

example, amino-acid sites that are exposed to the solvent tend to have higher evolutionary 

rates compared to buried sites (Wang et al., 2008). Alignment algorithms using default 

configurations implicitly assume that the evolutionary dynamics do not vary among different 

datasets and within a single dataset. The general inability of MSA inference algorithms to 

automatically tune their scoring scheme to the specific dataset being analyzed is a 

shortcoming of present alignment programs. The “one matrix fits all biological datasets” and 

“one matrix fits all regions within a dataset” assumptions implicitly employed by current 

methodologies raise fundamental questions about the correctness of alignments produced by 

such methods. Although it is possible to modify gap-penalty parameters in some alignment 

program, these programs do not provide means to automatically tune the parameters to 

specific datasets or regions within a dataset, and hence, by and large, all users employ the 

default settings. 

Alignment algorithms are typically assessed by empirical alignment regions, but these 

regions are not comprehensive enough to cover the entire range of alignment challenges. It is 

worth noting that these regions are often calculated manually, so their reliability as a “gold 

standard” is uncertain (Iantorno et al., 2014). Many differences may exist between empirical 

and simulated datasets, e.g., the former may include evolutionary scenarios that are not 

modeled in simulations such as micro-rearrangements (Walker et al., 2021). Thus, when 
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alignment programs are tested with simulated complex alignments, the results often 

substantially differ from empirical benchmark outcomes (Chang et al., 2014). 

One of the key concepts in learning algorithms, in general, and in deep-learning 

algorithms in particular, is the ability to learn from previously annotated data, i.e., to 

generalize from previous observations to unseen cases. For the task of alignment inference, a 

deep-learning algorithm should learn from “true” alignments (e.g., simulated sequences for 

which the correct alignment is known) and apply the obtained knowledge to align novel 

sequences. In this work, we aimed to harness natural language processing (NLP) learning 

algorithms to the task of aligning sequences, thus to better capture the evolutionary dynamics 

of biological sequences. 

Here we present an evidently effective improvement for our previously developed 

BetaAlign approach (Dotan, et al., 2023a). Instead of computing a single alignment, we now 

calculate multiple alternative alignments and return the alignment that maximizes the 

certainty, leading to significant performance improvement. To further characterize BetaAlign, 

we conducted the following analyses: (1) evaluating the effect of training time and size; (2) 

measuring the performance as a function of the evolutionary dynamics that generated the 

sequences; (3) evaluating the effect of transfer learning; and (4) comparing different 

transformer architectures. We also introduce the term subspace learning to describe training 

on a subspace of the indel parameters and investigate its utility for BetaAlign. Lastly, we 

show that the benefit of our approach is also transferable, that is, the embedding obtained by 

the model could serve as meaningful features for accurate inference in other learning tasks 

such as root length prediction. Table 1 describes the main differences between the previous 

and current work. For completeness, we start by describing the algorithm. 

 

New Approach 
Outline 

Typically, sequence-to-sequence NLP tasks involve a single sentence (or text) as both input 

and output, e.g., translating from one language to another or changing a sentence from active 

to passive (Bahdanau et al., 2016; Shalumov & Haskey, 2023; Sutskever et al., 2014). The 

learning phase of the algorithm is to map a single input sentence to a single output sentence. 

When we aim to apply sequence-to-sequence models to the problem of alignment, we are 

faced with a problem: the input to the alignment task is several “sentences”, each 

corresponding to an unaligned sequence. Similarly, the output is a set of related sentences, 
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each corresponding to a row in the resulting alignment. The first task in the BetaAlign 

algorithm is to transform the set of unaligned sequences to a single “sentence”. Such input-

transformation can be done, e.g., by concatenating all the unaligned sequences, adding a 

special character (we use the pipe character, “|”) to indicate the boundaries between the 

sequences (Fig. 1). For training the algorithm, we also need to provide target sentences. Thus, 

we also need an output-transformation step, in which we convert resulting alignments to a 

single target sentence. In BetaAlign we use the “spaces” representation (Fig. 1). The above 

representations allow providing a sequence-to-sequence model with a large set of examples 

of valid source and target sentences, which are used for model training. The models that we 

use rely on the transformer architecture (Vaswani et al., 2017). Once trained, the optimized 

transformer can process new unseen examples, in our case, it can transform (unseen) 

unaligned sequences to an alignment.  

There are several aspects that need to be addressed to fully describe the BetaAlign 

algorithm and how its performance was evaluated. These include, for example, the generation 

of training and test data, the transformer architecture and how it was trained, the handling of 

long sequences and how the generation of invalid alignments was prevented. We aim to 

provide a more general description as part of the New Approach section, while technical 

details are provided in the Methods section. 

 

The generation of training and test data 

For both training and testing the performance of BetaAlign, many sets (data points) of 

unaligned sequences and their corresponding “true alignment” were needed. These data 

points were generated using simulations. Specifically, we use SpartaABC (Loewenthal et al., 

2021), which allows different length distributions for insertions and deletions. For example, 

the initial testing and training for the pairwise alignment problem were achieved by 

generating millions of pairs of two unaligned sequences and their corresponding MSAs for 

the training and testing data. The indel rates, their type (insertion or deletion), and their length 

distribution were sampled from specific ranges. We note that we do not assume equal rates of 

insertions and deletions, nor equal length distributions for the two types of events (this is 

mainly important when simulating along a tree rather than when simulating pairwise 

alignments).  
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The transformer architecture 
Transformers are currently the working horse of NLP and other AI domains. A transformer is 

a deep-learning model designed to handle discrete sequential data. The transformer used in 

our work is composed of an encoder and a decoder. The encoder embeds each input sequence 

into a sequence of high-dimensional vector representation. Next, the decoder receives those 

representations and the last generated word and predicts the next word. Transformers may 

vary in architecture, number of layers, and size, which corresponds to the number of tunable 

architectural hyper-parameters. When training a transformer, one can also vary the learning 

hyper-parameters, e.g., the parameter “max tokens” determines how much input to process 

before the model parameters are updated. We have tested several transformer architectures 

and parameters, implemented using the Fairseq library (Ott et al., 2019). Technical details 

regarding transformer optimizations are provided in the Methods. 

 

Transfer learning and subspace learning 
The input and output patterns of the analyzed sequences vary as a function of their number, 

e.g., the number of pipe characters in the “concat” representation. We thus optimized a 

different transformer for each number of sequences. To this end, when optimizing the 

transformer for, say, five sequences, we start the parameter optimization step from the set of 

optimal parameters obtained for the previous transformer that was trained on four sequences, 

a technique called transfer learning (Avram et al., 2023; Tan et al., 2018). 

We also use transfer learning in order to train a transformer on sub-regions of the 

parameter space, i.e., subspace learning (see Methods). For example, we can train a general 

pairwise alignment transformer as described above and then train a different transformer only 

for alignments with a high ratio of indels to substitutions. In essence, this allows training 

several transformers, specialized for sub-regions of the parameter space.  

 

Handling invalid alignments 
Transformers have no inherent mechanism that restricts them to generate valid alignments. 

Thus, in some cases, a trained transformer may produce invalid output. For example, when 

aligning sequences, each output sequence, including gap characters, should have the same 

length (Fig. 2). To this end, we trained several different transformers, which differ from each 

other with respect to their tunable hyper-parameters, on the same training dataset (see 
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Methods). If a transformer provided an invalid alignment, we provided the output of an 

alternative transformer.  

 

Handling long sequences 

The transformers that we have utilized were designed to process text of natural languages and 

not biological sequences. As such, they are limited to processing sentences with up to 1,024 

tokens (a token in natural languages is the building block of a sentence, in our case, each 

token is either a base pair or an amino acid). When aligning biological sequences, the input 

and output sentences often exceed this length threshold. Due to memory and run-time 

constraints, increasing the threshold is infeasible. To overcome this challenge, we introduced 

a “segmentation” methodology, in which we align segments of the alignments, which are 

later concatenated to form the entire MSA. This procedure is achieved by training dedicated 

transformers for this task (Dotan, et al., 2023a). 

 

Considering alternative input and output transformation schemes  
The transformer architectures we harnessed for the task of aligning sequences are sequence-

to-sequence models. One of the key components of our proposed alignment approach is to 

transpose the multiple input sequences into a single sentence that can be processed by the 

transformer. Input transformation converts the unaligned sequences into the “input sentence” 

of the transformer while output transformation converts the “output sentence” of the 

transformer into an MSA.  

There are various transformation schemes available for converting unaligned 

sequences into a single sentence. In Fig. 1a we presented the “concat” representation: the 

unaligned sequences are concatenated with a special character “|”. The vocabulary, which 

encompasses the entire set of possible tokens, of this scheme is {“A”, “C”, “G”, “T” and “|”} 

for the nucleotide sequences. We used the “spaces” representation for output transformation, 

in which each of the amino acids or nucleotides is considered a separate token. The 

vocabulary of this scheme is {“A”, “C”, “G”, “T” and “–”} for the nucleotide sequences. 

However, alternative transformation schemes for the source sequences can be 

considered. We previously considered the “crisscross” scheme, the tokens of the unaligned 

sequences are interleaved (Dotan, et al., 2023a). That is, the first token represents the first 

character from the first unaligned sequence, the second token represents the first token of the 
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second unaligned sequence, and so on. The vocabulary of this scheme is {“A”, “C”, “G”, “T” 

and “–”} for the nucleotide sequences. Of note, the gap character is used to fill the gaps if the 

sequences are of different lengths (Fig. 1b). Similarly, alternative transformation schemes for 

generating the output sentence are possible. 

In the “pairs” scheme each token represents the entire column. The vocabulary of this 

scheme depends on the number of unaligned sequences, for instance, when aligning three 

DNA sequences the vocabulary size is 124 tokens: {“AAA”, “AAC”, “AAG”, “AAT”, “AA–

”, …, “TTG”, and “TTT”}. Of note, the token “– – –” (three gap characters) is invalid as such 

column cannot exist. 

It is important to remember that the transformation schemes are external to the 

transformer itself. Each transformation methodology creates a different mapping from 

unaligned sequences to an MSA, which requires training the transformer on these 

representations. Different considerations come into play when selecting the appropriate 

scheme (Dotan, et al., 2023a). In the “pairs” scheme, the output sequence length is the 

number of columns while in the “spaces” the length is the number of nucleotides. Because 

length is a limiting factor when using current transformer architectures, using the “pairs” 

scheme may be advantageous. However, the “pairs” scheme restricts the use of transfer 

learning (see below). When transitioning from pairwise alignment to aligning three 

sequences, the vocabulary would change (from 24 tokens to 124 tokens) and in general, the 

number of possible tokens exponentially increases as a function of the number of unaligned 

sequences. In our previous work we observed that the “concat” and “spaces” representations 

(shown in Fig. 1a) performed best (Dotan, et al., 2023a). Thus, all the experiments in this 

work are done with these representations for the input sequences and output MSA, 

respectively. 

 

Increasing the accuracy by generating alternative alignments for the same set of 
unaligned sequences and selecting the best one 

We present a method for generating multiple alternative MSAs from the same input data. 

This is done by randomizing the order in which the input unaligned sequences are 

concatenated (see Methods). We also show how we select a single MSA from this set using a 

“majority voting” approach. We show that this data augmentation followed by majority 

voting approach provides a more accurate MSA than relying on a randomly sampled MSA 

from the set of alternative MSAs, on average. The majority voting approach relies on 
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computing for each MSA, the degree of its agreement with all other alternative MSAs and 

selecting the one that agrees the most (see Methods).  

Results 
The effect of training time and size 
We tested how the number of epochs (a single pass on the whole training set) and training 

size affect the accuracy and coverage of BetaAlign. We compared the model’s performance 

when trained on three training data sizes: 50,000, 100,000 and 200,000 protein alignments. 

Our results clearly indicate that for all datasets, the training loss decreases as the number of 

epochs increases, reaching almost a plateau when the data size is 200,000 alignments (Fig. 3). 

For each training data size, the validation loss follows the decrease in the training loss, 

suggesting that there is no over-fitting for the transformer. The coverage (fraction of resulting 

alignments that are valid) also continuously increases, e.g., after 20 epochs the coverage was 

~ 40% while after 60 epochs, the coverage was already ~80%.  

The CS-error seems to substantially fluctuate even after 30 epochs (we note that the 

CS-error quantifies the error on valid alignments only, while the loss function quantifies the 

error on all alignments). The results further suggest that the loss function is correlated to the 

CS-error, but the correlation is mediocre at best. The correlation between the loss on the 

validation data and the CS-error on the dataset of 100,000 alignments, between epochs 20 and 

60 was �� = 0.467 (P = 0.0023). We speculate that this low correlation reflects the fact that 

the loss function is different from the CS-error. 

Comparing the training and validation loss between the different training size datasets 

indicated that increasing the training size decreases the loss as expected (training loss at 

epoch 60: 0.989, 0.985, 0.977, for datasets of 50,000, 100,000, 200,000, respectively). This 

gain in accuracy as reflected in the loss function was not evident when the performance is 

measured by the CS-error, probably reflecting the mediocre correlation between the two 

scores discussed above. 

 

The effect of indel model parameters on BetaAlign performance 
We next studied the effect of the different indel parameters (of the assumed indel model that 

generated the simulated data) on the performance. To this end, we divided the alignments into 

bins by their evolutionary parameters: the insertion and deletion rate parameters (�� and ��, 

respectively) and the parameters that determine the distribution of indel lengths (�� and �� 
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for the insertion and deletion distributions, respectively). As expected, increasing the indel 

rate parameters �� and �� substantially decreases accuracy (Fig. 4a). The size distribution of 

the indels had little effect on accuracy (Fig. 4b). 

 

Subspace learning 
As stated above, we can train a transformer on a set of MSAs that share specific features, e.g., 

training them on MSAs with a high deletion rate and a low insertion rate. To determine if 

such a subspace-learning approach increases accuracy, we simulated three nucleotide datasets 

of five sequences per sample (see Methods). The first dataset, “general” (ND10), was 

simulated with a wide range of indel model parameters. The second dataset, “specific” 

(ND11), was simulated on a sub-space of the indel model parameter space, i.e., the generated 

MSAs resemble each other in terms of indel dynamics. Finally, the third dataset, “ultra-

specific” (ND12), is even more restrictive in terms of the allowed indel dynamics (see Table 

S2). Our results suggest that subspace learning can improve both coverage and accuracy (Fig. 

5), with a more substantial effect on coverage. This highlights the importance of fitting the 

correct configuration of the alignment program (and in our case the training of the 

transformer) to the specific data. These results demonstrate that subspace learning has the 

potential to improve the accuracy of BetaAlign.  

 

Embedding extraction for downstream tasks 
Transformers are composed of two parts, the encoder and the decoder. The encoder creates 

high dimensional vector representations of the source sentence, i.e., the unaligned sequences, 

which are passed to the decoder to create the translated sentence, i.e., the aligned sequences. 

This high-dimensional vector embeds the information in sequences as a numeric 

representation. We compressed this vector to a vector of a size that does not depend on the 

number of positions. In the case of n sequences, the dimension of the vector is 1024 �

�2	 
 1� (see Methods). To exemplify the utility of such a representation, we used this 

vector representation as input for a different machine-learning task, which is to estimate the 

ancestral sequences length that generated the resulting sequences. To this end, we trained a 

linear regression model that takes the coordinates of the compressed high-dimensional vector 

as input. The training set includes 90,000 nucleotide MSAs, each with five sequences 

(ND10). The accuracy of the linear-regression model using these features was evaluated on 

test data comprising 10,000 MSAs (Fig. 6). The significant correlation between the true and 
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inferred root lengths (�� � 0.91 and 2.003 base pairs Mean Squared Error (MSE)), suggests 

that our approach can be used to compactly code sequences, as a preliminary step for 

downstream machine-learning tasks.  

 

Transfer learning 
Our approach heavily depends on transfer learning. Except for the first transformers, for 

which the weights were randomly initialized, all other transformers used initial weights that 

were optimized on a previous dataset. The transformers of the nucleotide datasets have a 

different path of training from the transformers of the amino-acid datasets. In addition, each 

transformer is optimized based on the previous transformer with the same configuration (as 

we trained two different transformers for each dataset). To evaluate the contribution of 

transfer learning to performance, we tested three alternative scenarios (Fig. 7a, see Methods). 

Briefly, the transformer in scenario 1 (transformer 1) is trained once on a target dataset. 

Transformer 2 started from the end point of transformer 1 and was retrained on the same 

target dataset. Transformer 3 (scenario 3) started from the end point of transformer 1 and was 

trained on various other datasets, and then retrained on the same target dataset. Our results 

demonstrated the benefit of transfer learning (Fig. 7b). Transformer 3 outperformed 

transformer 1, both for protein and DNA sequences, with error reduction of 37.3% and 

33.3%, respectively (paired t-test; � � 0.005). It may be that the increased accuracy resulted 

from the fact that transformer 3 was trained twice on the target dataset and not due to the 

additional training. To test this hypothesis, we compared it to transformer 2. Our analysis 

suggests that some of the improved accuracy is indeed due to the extra training (comparing 

transformers 1 and 2). Nevertheless, it also shows that transfer learning substantially 

contributes to performance (comparing transformers 2 and 3), resulting in 16% and 25% error 

reductions for protein and DNA, respectively (paired t-test; � � 0.005).  

 

Correlation of certainty and the alignment accuracy 
We found a strong dependence between the alignment certainty and the CS-score (Fig. 8). As 

the certainty of alignments can be calculated by creating multiple alternative alignments for 

the same set of unaligned sequences (see methods), we could utilize this dependence to infer 

the most accurate alignment, similar to a previous approach (Edgar, 2022). 

Having observed that the alignment with the highest (alignment) certainty is ranked 

higher than expected (among the set of alternative alignments from a specific dataset), we 
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next directly compared performance between choosing the alignment alternative with the 

highest certainty and selecting the first alternative alignment. We tested this approach on 10-

sequences data points (SND1 and SPD1) and observed a significant CS-error reduction of 

9.8% and 20.9% for DNA and protein alignments, respectively (paired t-test; � = 0.002). 

 

Comparing performance  
We compared the performance BetaAlign after selecting the MSA with the highest certainty 

against other commonly used alignment programs, both for DNA and protein sequences (Fig. 

9). For DNA sequences, regardless of the number of sequences analyzed, BetaAlign was the 

most accurate (paired t-test; � � 10���, with a minimal error reduction of 12.7%. The second 

most accurate alignment program was MUSCLE for 4-7 sequences and PRANK for 8-10 

sequences. For 10 sequences, for example, BetaAlign had an 13.7% error reduction compared 

to PRANK (paired t-test; � � 10���) and similar results were obtained for other number of 

sequences. MAFFT, DIALIGN, and ClustalW had a significantly lower performance, with 

MAFFT outperforming the two other alignment programs. Notably, for protein sequences, 

BetaAlign was typically the second most accurate. For 10 sequences, the error reduction of 

PRANK was 5.1% relative to BetaAlign.  
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Methods 
The generation of training and test data 

We first describe in detail the simulation of nucleotide dataset SND1, in which each data 

point includes ten unaligned sequences and their corresponding ‘true’ MSA. We generated 

395,000 and 3,000 data points for training and testing data, respectively. For each data point, 

we sampled a random tree using the program ETE 3 (Huerta-Cepas et al., 2016), with tree 

lengths uniformly distributed in the range �0.05, 0.1�. The sequences along each tree were 

simulated using SpartaABC (Loewenthal et al., 2021). Specifically, indel parameters were 

sampled from the following ranges: �� , �� � �0.0, 0.05�, �� , �� � �1.01, 2.0�, and root 

length � �32, 44�. Of note, the insertion (�� and ��) and deletion rates (�� and ��) were 

sampled independently allowing a rich-indel model, in which insertions and deletions can 

have different evolutionary dynamics. The above parameter ranges were found to accurately 

describe the indel evolution rates along the tree of life (Loewenthal et al., 2021). The 

WAG+G and the GTR+G substitution models were used for the protein and nucleotide 

datasets, respectively. The GTR+G frequencies were �0.37, 0.166, 0.307, 0.158� for the “T”, 

“C”, “A” and “G”, respectively. Substitution rates were 

�0.444, 0.0843, 0.116, 0.107, 0.00027� for the “a”, “b”, “c”, “d”, and “e” rate parameters as 

defined in Yang (1994). These frequencies and rate parameters reflect those that characterize 

the Yeast Intron Database (Lopez & Séraphin, 2000). Specific information for the simulation 

of each dataset is provided in Table S2. The datasets are available on HuggingFace (Wolf et 

al., 2020) at: https://huggingface.co/dotan1111. 

 

The transformer architecture 

We applied the “vaswani_wmt_en_de_big” architecture (Vaswani et al., 2017) with 16 

attention heads, embeddings size of 1,024 and 6 layers. We also conducted an experiment to 

evaluate the effect alternative architectures on performance (see Supplementary Information). 

We considered a variety of training hyper-parameters configurations for the transformer, 

including different max tokens values, learning rates, and warmup updates and evaluated 

them on datasets of pairwise alignments (Supplementary Table S1). We continued to train 

two configurations that yielded the best results, which we denote as “original” and 

“alternative”. The max token parameter values were 4,096 and 2,048 for the original and 

alternative transformers, respectively. For both configurations we used the same learning rate 
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(5E-5) and warmup updates (3,000). Model training and evaluations were executed on a 

Tesla V100-SXM2-32GB GPU machine.  

Using alternative alignments to increase the accuracy of BetaAlign 
A “column certainty” metric was employed to compute “alignment certainty”. Given an 

alignment, �, and a set of alternative alignments, �, the column certainty of each column in �, 

is the number of times the column appears in each alternative alignment � �  � divided by 

the total number of alignments in �. As a result, column certainty values range between 0 and 

1, where a score of 1 indicates high certainty. The alignment certainty is defined as the 

average of the column certainty values (Fig. 10). 

It is possible to generate alternative MSAs for the same set of sequences. For 

example, alternative MSAs are generated by GUIDANCE to quantify the reliability of 

different regions within an MSA (Sela et al., 2015). These alternative MSAs are computed by 

considering alternative guide trees, considering co-optimal solution of pairwise alignments, 

and changing the alignment scoring scheme. Alternative MSAs are also computed within the 

alignment program Muscle (Edgar, 2022). The alignment that agrees best with the set of 

alternative MSAs is then chosen as the inferred MSA. We developed a similar approach for 

generating alternative MSAs, which is based on the deep learning methodology proposed 

here. Specifically, we alternate the order of the unaligned sequences given as input to the 

“concat” representation. This results in the inference of different MSAs for the same input. 

For example, an MSA of three sequences results in six different permutations, thus providing 

six alternative MSAs and similarly k! alternative alignments for k sequences. In addition, as 

we trained several transformers with different training parameters for each dataset, we can 

add alternative alignments from two or more transformers by processing the same input using 

these different transformers (Dotan, et al., 2023a). 

Formally, let �, and � be a list of unaligned sequences, and an aligner program, 

respectively. When computing alignment, the aligner is dependent on a set of parameters, i.e., 

a configuration, denoted by �. Altering � would output a different alignment for the same � 

and �. Thus, for a list of 	 different configurations: ��, … , �� , … , ��, one would receive 	 

different alignments: � � !�	����, … , �	����, … , �	����". Of note, the alignments of 

different configurations could be the same. Creating the different configurations could be 

done by changing the scoring scheme for the aligners or by changing the permutation of the 

unaligned sequences in the case of BetaAlign (see above). For each alignment �	���� we 

calculate the alignment certainty described above, by comparing it to all the other alignments 
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� \ !�	����". We return the alignment that maximizes the alignment certainty. Specifically, 

we have two transformer configuration (“original” and “alternative”) and for each, we 

generated 10 alternative MSAs. We return the valid alignment with the highest certainty. 

 

Evaluating accuracy and coverage 
We evaluated the performance of BetaAlign using two metrics: (1) column score (CS), which 

identifies how many columns are shared between the inferred and the true alignment. Of note, 

a shared column requires the same characters with the same positions of each character (Sela 

et al., 2015). The CS is the number of shared columns divided by the number of columns and 

thus the score is in the range [0,1]. The CS-error is the complementary of the CS to 1; (2) We 

use the term coverage to denote the percentage of valid alignments from the total number of 

MSAs generated by the transformer. Examples of invalid alignments are illustrated in Fig. 2.  

 

Evaluating the effect of training time and size 
We generated datasets containing 50,000, 100,000, and 200,000 alignments. Next, we trained 

transformers on each of the datasets for 60 epochs with the original transformer training 

parameters. We evaluated the performance of the transformers at the end of each epoch, with 

respect to the following metrics: (1) training loss, (2) validation loss, (3) fraction of invalid 

alignments (i.e., 1 – coverage), and (4) CS-error. The validation data contained 2,000 

alignments (used to measure the validation loss), and the test data contained 3,000 alignments 

(used to measure the fraction of invalid alignments and CS-error). Of note, in each of the 

three experiments we initialized the model with random weights, and thus, transfer learning 

did not affect these results.  

 

Evaluating the effect of indel parameters on alignment inference accuracy 
To quantify the effect of the evolutionary parameters on alignment inference accuracy we 

generated training and test data using the same random topology and branch lengths as were 

used in PD14 (see Table S2). The range of indel evolutionary parameters was binned: For �� 

and �� that dictate indel-length distribution for insertions and deletions, respectively, the 

following ten bins were considered for each parameter: (1.0, 1.1), (1.1, 1.2) … (1.9, 2.0). For 

�� and �� that dictate indel rates relative to substitutions for insertions and deletions, 

respectively, the following ten bins were considered for each parameter: (0.000, 0.005), 

(0.005, 0.01) … (0.045, 0.05). We thus considered 100 bins for the pair (�� , ��� and 
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similarly for the pair (��, ��). When analyzing the effect of �� and ��, for each of the 100 

(�� , ��� bins, 100 alignments were generated, in which the �� and �� values were sampled 

randomly from the range (0.00, 0.05). Thus, in total 10,000 MSAs were considered when 

studying the effect of the �� and �� parameters. Similarly, 10,000 MSAs were considered 

when studying the effect of the �� and �� parameters, and in this case, in each MSA the �� 

and �� parameters were sampled from the range �1.0, 2.0�. The score of the 100 alignments 

in each bin was averaged to create a total score for each bin.  

 

Subspace learning evaluation 

The MSA in the training data for BetaAlign is generated by evolving sequences along a 

specific phylogenetic tree and different MSAs are generated with different trees and with 

different evolutionary models. The substitution and indel dynamics are dictated in this 

simulation by an evolutionary model (a continuous-time Markov process). Let $ be the set of 

evolutionary models and trees used to generate the data. Clearly, a trained aligner, h, depends 

on $. In other words, our aligner learns to align sequences generated by the set of 

evolutionary models $ that generated the training data. Thus, we can readily create aligners 

that will best suit a specific subspace of model parameters and trees, e.g., aligners for a 

specific phylogenetic tree, and similarly aligners for species or proteins with a specific indel 

or substitution dynamics. In subspace learning, the transformer is optimized on a subspace of 

the alignment parameters space. To test how subspace learning affects performance, we 

generated three nucleotide datasets, each one with a narrower range of model parameters, i.e., 

��, ��, �� and ��, branch lengths and root lengths (ND10, ND11, and ND12). We trained 

BetaAlign starting with the dataset of the widest parameter range (ND10), which we named 

“general”. Then, the optimized transformers were used as the starting point for additional 

training on the next dataset, ND11, whose model parameters are a subset of those of ND10. 

We named this dataset “specific”. The optimized transformers from ND11 were then further 

trained on the next dataset (ND12) “ultra specific”. Each of the three transformers was 

evaluated on each of the three test datasets. 

 

Embedding of MSAs in a high-dimensional space 
The deep learning approach presented here enables embedding the information within the 

sequences in a high-dimensional space, i.e., it allows automatic features extraction, which 

could be utilized for downstream analyses. The high-dimensional vector is created within the 
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encoding process from a set of unaligned sequences. To obtain the embedded vector, the 

unaligned sequences were given as an input to the trained transformer. The vector is 

internally created by the encoder part of the transformer, and we have modified the code of 

the transformer to extract it (to reduce running time, we skipped the decoder step). This high-

dimensional vector contains ~ 1,024 � 	 � % entries, where n is the number of input 

sequences and l is the average length of unaligned sequences. A representation of this vector, 

for three sequences is given in Fig. 11a. 

For various downstream tasks, it is often desirable to compress this vector to a fixed 

size, i.e., a size that does not depend on the sequence length (the compressed vector size does 

depend on the number of sequences). For the compression example shown in Fig. 11, the 

uncompressed vector is of size 1,024 x 15 and the size of the compressed vector is 1,024 x 5. 

Each of the unaligned sequences is represented by 1,024 entries in the compressed vector by 

row-wise averaging of the corresponding tokens in the input sequences. In addition, we use 

the representations of the pipe character in the compressed vector. Thus, the compressed 

vector corresponds to a fixed size vector of 1,024 �  �2	 –  1�. 

 

Evaluating and implementing transfer learning  
In our work, transfer learning was repeatedly used for training the transformers. The first 

protein transformer was trained on a simple dataset of pairwise amino acid sequences (we 

denote this dataset PD1, for protein dataset 1). Its weights were randomly sampled with 

default values of the Fairseq library (Ott et al., 2019). The resulting trained transformer is 

termed “PT1”, for protein transformer 1. PT1 was next trained on PD2, resulting in PT2, etc. 

The term transfer learning is used to denote the fact that in order to obtain PT2, the 

transformer trained on PD2, was initialized with weights transferred from PT1, rather than 

random initialization. A similar process was used to train the nucleotide-based transformers 

(NT1, NT2, etc.) on nucleotide datasets (ND1, ND2, etc.). Of note, transfer learning was 

applied across this study only between models that processed data with the same 

representation, i.e., they share the same dictionaries. 

We aimed to evaluate the contribution of transfer learning. To this end, we compared 

three different scenarios (illustrated in Fig. 7). In scenario 1, we evaluate a transformer that 

first encounters protein data PD5 (three protein sequences). This transformer was trained 

before on simpler datasets. In scenario 2, the trained transformer from scenario 1 was 
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retrained on PD5, without experiencing more complex datasets. In scenario 3, the trained 

transformer from scenario 1 was trained on additional more complex datasets (PD6, PD7, 

PD8, PD9, PD10, PD11, PD12, PD13, PD14, PD15) and was then re-trained on PD5.  

A similar evaluation was done on nucleotide transformers. Here instead of PD5, the 

base-dataset was ND4, comprised of alignments of three sequences. In scenario 3, the 

additional more complex datasets are: ND5, ND6, ND7, ND8, ND9, ND10, ND11, ND12, 

ND13, ND14. 

 

Comparing against other alignment programs 
The performance of BetaAlign was compared to the following programs used with default 

parameters: MUSCLE v3.8.1551 (Edgar, 2004), MAFFT v7.475 (Katoh & Standley, 2013), 

PRANK v.150803 (Löytynoja & Goldman, 2008), ClustalW 2.1 (Larkin et al., 2007), and 

DIALIGN dialign2-2 (Morgenstern, 2004). 
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Discussion 
The weights that are learned by the encoder can be used as a starting point for other machine-

learning tasks, i.e., the sequences are embedded as meaningful vectors that hold contextual 

information. In this work, we demonstrated using such embedding for predicting the length of 

ancestral sequences, without computing the MSA. A similar approach can be used for other 

machine-learning tasks, e.g., secondary structure prediction, predicting the stability of 

proteins, and ancestral sequence reconstruction. In NLP, transferring representations from 

one task to another is highly common, and encoder-decoder models are commonly used for 

this purpose (McCann et al., 2017). 

There are limitations when using NLP approaches for sequence alignment, one of 

which arises from the maximum sequence length that can be inserted into an attention-based 

model. This limitation stems from computing attention matrices, in which the memory 

requirement increases quadratically with the sequence length. To overcome this issue, we 

have developed a novel approach that involves splitting and merging the alignment while 

training the transformer on a slightly different task (Dotan, et al., 2023a). It is possible to 

apply different techniques to increase the limit on the sizes of the sequences. For example, a 

different tokenization technique allows multiple amino-acids or nucleotides to be considered 

as a single token, and thus reduces the number of tokens for the entire sequence (Dotan, et al., 

2023b). 

We have coupled the NLP domain and the MSA problem by using transformers that 

were originally designed for natural languages. Thus, future improvements in the NLP field 

are likely to have a direct impact on future alignment methodologies. We expect that in the 

next few years, transformers that are dedicated to the task of sequence alignment, together 

with other breakthroughs in machine learning, will lead to alignment algorithms that account 

for the specific grammar rules of each set of analyzed sequences and will substantially 

outperform existing aligners. 
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Table 1 
The different topics discussed in this research compared to the previous version of BetaAlign. 

Topic What is new in this work 

Algorithm: increasing the accuracy by generating 

alternative alignments for the same set of 

unaligned sequences and selecting the best one 

 

We changed our alignment methodology. In the new 

algorithm we calculate multiple alternative alignments 

and return the alignment that maximizes the certainty. 

Thus, all the results in the current manuscript are new, 

as they are computed with the novel alignment 

algorithm 

 

Analysis: the effect of training time and size We investigated the effect of the training phase on 

BetaAlign's loss and performance 

 

Analysis: the effect of indel model parameters on 

BetaAlign performance 

We investigated the effect of indel parameters on 

BetaAlign’s performance 

 

Analysis: subspace learning We introduce the term subspace learning to describe 

training on a subspace of the indel parameters. We 

investigate how subspace learning affects BetaAlign's 

performance 

 

Algorithm: embedding extraction for downstream 

tasks 

We introduced a new approach to gather meaningful 

representations of unaligned and aligned sequences 

and evaluate its performance 

 

Analysis: transfer learning We investigated the effect of transfer learning on 

BetaAlign's performance 

 

Analysis: architecture comparisons We investigated the effect of different transformer 

architectures 

 

Algorithm: handling invalid alignments and long 

sequences 

These issues were explained in our previous paper and 

are hence only shortly described here 
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Fig. 1  
Example of aligning three sequences with BetaAlign (a): (�) Consider the unaligned sequences 
“AAG”, “ACGG” and “ACG”; (�) The unaligned sequences are concatenated to a single sentence 
with a special character “|” between each original sequence; (�) The trained model processes the 
single input sentence and generates the single output sentence; (�) The processed output is structured 
such that the first three nucleotides represent the first column, the next three nucleotides represent the 
second column, and so on; (�) The output is converted into an MSA. (b) An illustration of the 
different input (�) and output (�) transformation schemes. 
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Fig. 2 
Example of handling invalid alignments. Consider the unaligned sequences from Fig. 1: “AAG”, 
“ACGG” and “ACG”. (a) When aligning these sequences, BetaAlign mistakenly mutated the 
character “A” to “G” (red); (b) Aligning the same sequences with a different transformer resulted in a 
different output, but here the transformer generated a shorter sequence in which the last two 
characters are missing (the red “X” was added to mark the missing nucleotides); (c) The third 
transformer provided a valid alignment as output and can be used as the output of BetalAlign.  
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Fig. 3 
Effect of increasing the training time (number of epochs) and size (number of different MSAs) on the 
fraction of invalid alignments (blue dots), CS-error (orange dots), validation loss (red dots), and 
training loss (green dots). All alignments were of three protein sequences, dataset SPD2. Note that the 
figure contains the four metrics together for comparing the correlation between the metrics. Each 
metric has a different range, and thus, there are multiple y-axes. Also note that the errors and coverage 
in this graph are based on a single alternative alignment, while in practice both the accuracy and 
coverage are substantially improved by considering a set of alternative MSAs (see text for details). 
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Fig. 4 
The effect of indel parameters on BetaAlign performance: (a) The effect of  and  (in this case  
and  were sampled from the entire range); (b) The effect of  and  (in this case  and  were 
sampled from the entire range). Figure illustrates the results on protein dataset SPD3. 
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Fig. 5 
Effect of subspace learning on the CS-error (a) and the fraction of invalid alignments (b). The three 
transformers: “general”, “specific” and “ultra specific” were trained on the “general”, “specific” and 
“ultra specific” datasets, respectively. The “ultra specific” dataset (ND12) parameters are a subset of 
the “specific” dataset (ND11) parameters, which are a subset of the “general” dataset (ND10) 
parameters. The difference between the accuracy of “general” and “ultra specific” transformers on the 
“ultra specific” dataset is significant (paired t-test; � � 0.05). 

(a) 

 

 

(b) 
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Fig. 6 
Results of the linear regressor trained to predict the root length from the embedding of the unaligned 
sequences, with an  of  and  of 2.003 base pairs. The orange line is the regression line, and 
the red line reflects the  function. The embeddings are of the ND10 dataset sequences. 
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Fig. 7 
Quantifying the contribution of transfer learning to performance. (a) The transfer learning path. 
Scenario 1 includes training on “D1”, “D2” and “D3”. Scenario 2 is the same as Scenario 1, but the 
transformer was trained twice on “D3”. Scenario 3 includes training on “D1”, “D2”, “D3”, “D4”, 
“D5” and then again on “D3”. “D1” and “D2” represent simpler datasets. “D3” is the target dataset, 
composed of MSAs of three DNA or amino-acid sequences, on which the performance was evaluated. 
“D4” and “D5” represent more complex datasets. Arrows between datasets represent the transfer 
learning path, i.e., the transformer optimized on a dataset was used as a base transformer for the next 
dataset; (b) The effect of transfer learning on the performance. 

(a) 

 

 

(b) 

 
  

Scenario 1 

Scenario 3 

Scenario 2 
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Fig. 8 
The frequency of the optimal alternative alignment for each certainty rank. For each data point, a total 
of 20 alternative alignments were considered, each with 10 sequences (SND1 and SPD1 for the 
nucleotide and protein datasets, respectively). The 20 MSAs were ranked according to their certainty. 
Next, the most accurate MSA was detected (based on the CS accuracy score) and its ranked recorded. 
Of note, some of the alternative MSAs may be identical. In case the most accurate MSA was ranked 
multiple times (e.g., the first and second ranks), we consider its ranked to be the higher rank (e.g., the 
first). Shown is the distribution of ranks among 3,000 independent data points. A uniform distribution 
is expected if the certainty rank does not provide any information regarding the alignment accuracy. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.24.586462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.24.586462
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 9 
Comparing the results of BetaAlign to different aligners on SND1 (panel (a)) and SPD1 (panel (b)). 
The y-axis represents the performance of the sequence alignment programs. The lower the CS-error 
the better the performance. 

 

(a) 

 

(b) 
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Fig. 10 
An illustration of calculating the alignment certainty on pairwise alignment. Consider x to be a 
pairwise alignment where “AAGT” is aligned to “ACGT” and Y to be the collection of two alternative 
alignments: (1) where “AAG-T” is aligned to “A-CGT” and (2) where "AAGT” is aligned to 
"ACGT”. To determine the certainty for each column in x, we count the number of appearances in the 
set of alternative alignments Y and divide it by the size of the set Y. For example, the first column, 
“AA”, appears both in alignments (1) and (2) and thus its certainty is 2 / 2. The second column, “AC” 
appears only in alignment (2) and thus its certainty is 1 / 2.  

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.24.586462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.24.586462
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 11 
Example of compressing the embedding vector to a fixed size. Consider (a) to be the embedding of 
three sequences, two of length 4 nucleotides and one of length 5 nucleotides. The embedding 
dimension is of  as there are 15 characters is the input sentence (13 nucleotides and 2 
separation characters) and each character is encoded in a numeric vector of size 1,024. The 
compressed vector is (b) is of size  as each one of the input sequences and the pipe sign 
corresponds to 1,024 entries in the compressed vector. The four first columns in this matrix are 
averaged and the resulting column vector represents a fixed size vector for the first sequence. This 
vector is transposed to form c1. The vector representing the pipe character remains the same, it is just 
transposed to form the vector p1. The next five columns are averaged and transposed to form c2, etc. 
One should emphasize that the pre-compressed representation already integrates information from all 
sequences due to the transformer self-attention mechanism, and consequently, the compressed 
representation also integrates information from all sequences. 
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(a) 
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Supplementary Information 
Comparing different transformer architectures 
We considered two different architectures for the transformers: “vaswani_wmt_en_de_big” 

(Vaswani et al., 2017) and “BART” (Lewis et al., 2019). Both types of transformers were 

trained applying the “concat” with the “spaces” representations. We tested the results on 

proteins datasets: PD1, PD2, PD3, and PD4. Of note, for the comparison to be fair, the two 

transformers were not pre-trained when applied to PD1 and thus their training started from 

random weights. Both architectures contain 16 attention heads, with an embedding size of 

1,024, they differ in the details of their network design, including a different number of 

layers: 6 and 12 for “vaswani_wmt_en_de_big” and “BART”, respectively. The performance 

of these architectures was tested with several different sets of internal parameters (max 

tokens and learning rate). Both the coverage and the CS-score were higher for the 

“vaswani_wmt_en_de_big” architecture for the two datasets that are most difficult, i.e., PD3 

and PD4 (Table S1). We thus selected this architecture for all analyses. 
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Table S1 
We trained two transformer architectures on the same amino-acid datasets and measured the 
alignment accuracy and coverage. The “concat” and “spaces” representations were used for input and 
output transformation, respectively. Datasets PD1, PD2, and PD3 are of pairwise alignments and 
dataset PD4 includes alignments of three sequences. 

PD1 

Transformer name Architecture Max tokens Learning rate CS-score Coverage 

original BART 4096 5.00E-05 0.9996 0.9716 

alternative BART 2048 5.00E-05 0.9997 0.7724 

alternative_2 BART 4096 1.70E-05 0.9994 0.6161 

alternative_3 BART 2048 1.70E-05 0.9995 0.6039 

original vaswani_wmt_en_de_big 4096 5.00E-05 0.9995 0.9508 

alternative vaswani_wmt_en_de_big 2048 5.00E-05 0.9997 0.6882 

alternative_2 vaswani_wmt_en_de_big 4096 1.70E-05 0.9992 0.1616 

alternative_3 vaswani_wmt_en_de_big 2048 1.70E-05 0.9991 0.1436 

 

 

PD2 

Transformer name Architecture Max tokens Learning rate CS-score Coverage 

original BART 4096 5.00E-05 0.9922 0.2279 

alternative BART 2048 5.00E-05 0.9983 0.8167 

original vaswani_wmt_en_de_big 4096 5.00E-05 0.997 0.8352 

alternative vaswani_wmt_en_de_big 2048 5.00E-05 0.9978 0.6348 

 

 

PD3 

Transformer name Architecture Max tokens Learning rate CS-score Coverage 

original BART 4096 5.00E-05 0.7427 0.5976 

alternative BART 2048 5.00E-05 0.7644 0.5576 

original vaswani_wmt_en_de_big 4096 5.00E-05 0.8389 0.6464 

alternative vaswani_wmt_en_de_big 2048 5.00E-05 0.9362 0.511 

 

 

PD4 

Transformer name Architecture Max tokens Learning rate CS-score Coverage 

original BART 4096 5.00E-05 0.9785 0.5054 

alternative BART 2048 5.00E-05 0.9878 0.8405 

original vaswani_wmt_en_de_big 4096 5.00E-05 0.993 0.995 

alternative vaswani_wmt_en_de_big 2048 5.00E-05 0.9949 0.9794 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.24.586462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.24.586462
http://creativecommons.org/licenses/by-nd/4.0/


39 

 

Table S2 
SpartaABC indel parameters as follow: for the rate of insertion (��), for the rate of deletion (��), a 
parameter for the insertion Zipfian distribution (��), a parameter for the deletion Zipfian distribution 
(��) and the root length. Which the latter is sampled uniformly from ���� �	�
� �  0.8,

�	� �	�
� �  1.1�. The order of the datasets refers to the order in which the transformers were 
trained. For example, the first nucleotide transformer was trained on dataset ND1, then the optimized 
weights were the starting point of ND2, etc. Tables (a), (b), (c) refer to nucleotide, protein datasets 
and a special table for specific datasets, respectively. “S” at the start of the dataset name, refers to a 
special dataset.  

(a) 

Dataset name Branch length Root length �� & �� �� & �� Number input sequences 

ND1 0.03 - 0.1 50 - 60 0.0 - 0.05 1.01 - 2.0 2 

ND2 0.03 - 0.3 100 - 300 0.0 - 0.05 1.01 - 2.0 2 

ND3 0.3 - 0.6 200 - 300 0.04 - 0.05 1.01 - 2.0 2 

ND4 0.1 - 0.3 50 - 60 0.04 - 0.05 1.01 - 2.0 3 

ND5 0.15 55 0.5 1.0 - 1.01 3 

ND6 0.15 55 0.5 1.01 3 

ND7 0.15 55 0.5 1.5 3 

ND8 0.05 - 0.1 55 0.0 - 0.05 1.01 – 2 4 

ND9 0.05 - 0.1 55 0.03 - 0.05 1.01 – 2 4 

ND10 0.07 - 0.1 35 - 45 0.0 - 0.05 1.01 – 2 5 

ND11 0.08 - 0.09 37 - 42 0.03 - 0.05 1.01 – 2 5 

ND12 0.09 40 0.04 1.3 5 

ND13 0.05 - 0.1 55 0.02 - 0.03 1.0 - 1.1 4 

ND14 0.9 40 0.01 - 0.02 1.35 - 1.45 5 

ND15 0.07 - 0.1 35 - 45 0.0 - 0.05 1.01 – 2 7 

ND16 0.07 - 0.1 70 - 80 0.0 - 0.05 1.01 – 2 7 

 

(b) 

Dataset name Branch length Root length �� & �� �� & �� Number input sequences 

PD1 0.03 - 0.05 30 - 40 0.0 - 0.05 1.01 - 2.0 2 

PD2 0.05 - 0.1 70 - 80 0.04 - 0.05 1.01 - 2.0 2 

PD3 0.1 - 0.3 200 - 250 0.04 - 0.05 1.01 - 2.0 2 

PD4 0.03 - 0.1 30 - 40 0.0 - 0.05 1.01 - 2.0 3 

PD5 0.1 - 0.2 50 - 60 0.04 - 0.05 1.01 - 2.0 3 

PD6 0.15 50 0.05 1.01 3 

PD7 0.15 50 0.05 1.5 3 

PD8 0.05 - 0.1 30 - 40 0.0 - 0.05 1.01 - 2 4 

PD9 0.075 35 0.03 1.07 4 

PD10 0.04 - 0.08 30 - 40 0.0 - 0.05 1.01 - 2 5 

PD11 0.04 - 0.08 30 - 40 0.0 - 0.05 1.01 - 2 6 

PD12 0.1 30 - 40 0.0 - 0.05 1.01 - 2 6 

PD13 0.1 30 - 40 0.03 - 0.05 1.01 - 2 6 

PD14 0.07 - 0.1 25 - 35 0.0 - 0.05 1.01 - 2 7 
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PD15 0.08 - 0.09 27 - 32 0.03 - 0.05 1.01 - 2 7 

PD16 0.09 30 0.04 1.3 7 

PD17 0.05 - 0.1 40 0.0 - 0.05 1.01 - 2 10 

PD18 0.07 - 0.1 25 - 35 0.04 - 0.05 1.01 - 2 7 

 

(c) 

Dataset name Branch length Root length �� & �� �� & �� Number input sequences 

SND1 0.05 - 0.1 40 0.0 - 0.05 1.01 - 2.0 10 

SPD1 0.05 - 0.1 40 0.0 - 0.05 1.01 - 2.0 10 

SPD2 0.05 - 0.1 40 0.0 - 0.05 1.01 - 2 10 

SPD3 0.07 - 0.1 25 - 35 Dynamic 7  
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