- 1 Outer membrane vesicles can contribute to cellulose degradation in
- 2 *Teredinibacter turnerae*, a cultivable intracellular endosymbiont of
- 3 shipworms
- 4
- 5 Mark T. Gasser^a# | Annie Liu^a | Marvin Altamia^b | Bryan R. Brensinger^a | Sarah L. Brewer^a | Ron
- 6 Flatau^b | Eric R. Hancock^a | Sarah P. Preheim^c | Claire Marie Filone^a | Dan L. Distel^b#
- 7
- ⁸ ^aJohns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
- ⁹ ^bOcean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
- 10 ^cJohns Hopkins University, Baltimore, Maryland, USA 21218
- 11
- 12 Running title: Cellulolytic Outer Membrane Vesicles from *T. turnerae*
- 13 Keywords: carbohydrate-active enzymes, CAZymes, lignocellulose degradation, OMVs, protein
- 14 secretion, symbiosis, tonB-dependent receptors
- 15
- -----
- 16 MTG: <u>mark.gasser@jhuapl.edu</u> (ORCID: 0000-0002-9396-4954) #Co-corresponding author
- 17 AL: annie.liu@jhuapl.edu (ORCID: 0009-0002-3224-6008)
- 18 MAA: marvin.altamia@gmail.com (ORCID: 0000-0002-8625-767X)
- 19 BRB: <u>bryan.brensinger@jhuapl.edu</u> (ORCID: 0009-0002-0327-021X)
- 20 SLB: <u>sarah.brewer@jhuapl.edu</u> (ORCID: 0009-0007-9039-0784)
- 21 RF: <u>r.flatau@northeastern.edu</u> (ORCID: 0000-0002-4357-5870)
- 22 ERH: <u>eric.hancock@jhuapl.edu</u> (ORCID: 0009-0002-3041-2148)
- 23 SPP: <u>sprehei1@jhu.edu</u> (ORCID: 0000-0001-7365-2382)

- 24 CMF: <u>claire.marie.filone@jhuapl.edu</u> (ORCID: 0000-0002-4041-3948)
- 25 DLD: d.distel@northeastern.edu (ORCID: 0000-0002-3860-194X) #Co-corresponding author
- 26
- 27 Data availability
- 28 The authors confirm that the data supporting this study's findings are available within the article
- 29 and its supplementary materials. The mass spectrometric raw files are accessible
- 30 at https://massive.ucsd.edu under accession MassIVE MSV000094250 and at
- 31 <u>https://www.proteomexchange.org</u> under accession PXD050419.
- 32
- 33 Funding statement
- 34 Research reported in this publication was supported by the following awards to DLD: National
- 35 Oceanic and Atmospheric Administration (NA19OAR0110303), Gordon and Betty Moore
- 36 Foundation (GBMF 9339), National Institutes of Health (1R01AI162943-01A1, subaward:
- 37 10062083-NE), and JHU/APL Internal Research and Development. The National Science
- 38 Foundation (DBI 1722553) also funded some equipment used in this research.
- 39
- 40 Conflict of interest statement
- 41 The authors report no conflict of interest. The funders had no role in study design, data
- 42 collection, interpretation, or the decision to submit the work for publication.

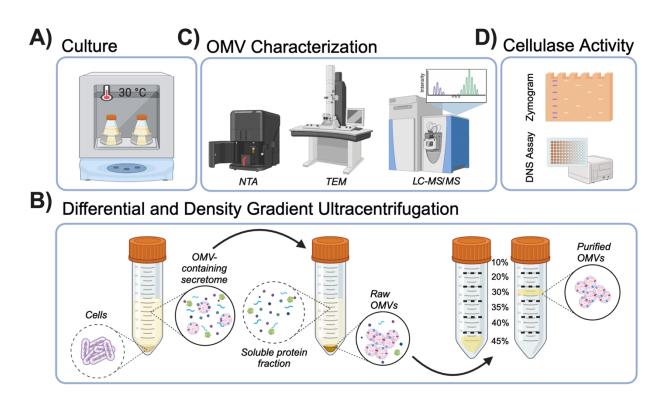
43 Abstract

44	Teredinibacter turnerae is a cultivable cellulolytic Gammaproeteobacterium (Cellvibrionaceae)
45	that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of
46	the family Teredinidae (shipworms). The genome of <i>T. turnerae</i> encodes a broad range of
47	enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to lignocellulose
48	digestion in the shipworm gut. However, the mechanism by which symbiont-made enzymes are
49	secreted by <i>T. turnerae</i> and subsequently transported to the site of lignocellulose digestion in
50	the shipworm gut is incompletely understood. Here, we show that <i>T. turnerae</i> cultures grown on
51	carboxymethyl cellulose (CMC) produce outer membrane vesicles (OMVs) that contain a variety
52	of proteins identified by LC-MS/MS as carbohydrate-active enzymes with predicted activities
53	against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm
54	that these OMVs retain cellulolytic activity, as evidenced by hydrolysis of CMC. Additionally,
55	these OMVs were enriched with TonB-dependent receptors, which are essential to carbohydrate
56	and iron acquisition by free-living bacteria. These observations suggest potential roles for OMVs
57	in lignocellulose utilization by <i>T. turnerae</i> in the free-living state, in enzyme transport and host
58	interaction during symbiotic association, and in commercial applications such as lignocellulosic
59	biomass conversion.

60

61 Introduction

62	The biological degradation of lignocellulose, a primary component of wood and all plant
63	biomass, is a critical process in the global carbon cycle and has potential applications in
64	renewable energy and chemical production through biomass conversion (Ragauskas et al., 2014;
65	Østby et al., 2020). Lignocellulose is a complex composite material composed primarily of
66	microfibrils of cellulose, the most abundant organic polymer on Earth (Dahmen et al., 2019),
67	embedded in a matrix of hemicellulose and lignin. Pectins may also be present in smaller
68	quantities. However, due to its complexity, lignocellulose degradation requires a suite of
69	specialized enzymes to convert its component polymers into accessible nutrients. This
70	complexity precludes most organisms from utilizing lignocellulose and creates obstacles to
71	bioconversion to renewable fuels or fine chemicals (Cragg et al., 2015).
72	One of the unique biological systems where efficient wood digestion occurs is found
73	within shipworms, a group of marine bivalve mollusks of the family Teredinidae and the primary
74	degraders of woody plant material in mangrove forests and in association with driftwood and
75	marine woodfalls (Voight, 2015; Cragg et al., 2020). Shipworms harbor endosymbiotic bacteria
76	in bacteriocytes confined to the gland of Deshayes, a tissue located within their gills (Distel <i>et</i>
77	al., 1991). The genomes of these bacteria, primarily from the genus Teredinibacter, encode a
78	wide variety of enzymes targeting lignocellulose (Distel et al., 2002; Yang et al., 2009; O'Connor
79	et al., 2014; Altamia, Shipway, et al., 2020; Altamia et al., 2021) and express them within this
80	gland (O'Connor <i>et al.</i> , 2014; Sabbadin <i>et al.</i> , 2018). The resulting bacterial enzymes are also
81	found in the shipworm's cecum (O'Connor <i>et al.,</i> 2014; Sabbadin <i>et al.,</i> 2018; Altamia and
82	Distel, 2022), a specialized organ that is the primary location of wood digestion for the
83	shipworm and is nearly devoid of microbes (Betcher et al., 2012). This physical separation


between the bacterial symbionts in the gill and wood digestion in the gut requires a transport
mechanism for symbiont-made cellulolytic enzymes. Recently, a system of ducts called the ducts
of Deshayes was shown to serve as an extracellular transport path for bacterial cellulases from
the gills to the mouth of shipworms (Altamia and Distel, 2022). However, the mechanism by
which enzymes produced by the intracellular bacteria move across multiple membranes to an
external transport path is still unknown.

90 Bacteria use a variety of mechanisms to degrade lignocellulosic substrates in their 91 environments. For example, polysaccharide-degrading bacteria, including the common rumen 92 bacteria *Bacteroides, Clostridia*, and *Fibrobacter*, use the type IX secretion pathway (T9SS) to 93 secrete large molecular-weight proteins, including multidomain carbohydrate-active enzymes 94 (CAZymes) (Gharechahi et al., 2023). These enzymes may be released into the environment or 95 bound to the cell envelope (McGavin et al., 1990; Cai et al., 1999; Yan and Wu, 2013). In 96 addition to the secretion of soluble or membrane-bound enzymes, bacteria may export 97 CAZymes by producing outer membrane vesicles (OMVs). OMVs are spherical buds that 98 originate from the bacterial outer membrane and can contain various cellular components such 99 as lipopolysaccharides, proteins, small molecules, and nucleic acids (Schwechheimer and Kuehn, 100 2015; Huang et al., 2022).

101 Recent studies have shown that OMVs can be highly enriched in CAZymes and retain 102 activity capable of degrading cellulose and other plant biomass (Arntzen *et al.*, 2017; Ichikawa 103 *et al.*, 2019; Salvachúa *et al.*, 2020). The majority of research on OMVs has been done on 104 pathogenic bacteria due to the capacity of OMVs to carry and deliver virulence factors and 105 toxins into host cells (O'Donoghue and Krachler, 2016; Lynch and Alegado, 2017; Caruana and

106	Walper, 2020). However, the role of OMVs in marine and other environments has been
107	increasingly recognized, likely playing crucial roles in nutrient processing and ecological
108	interactions (Frias <i>et al.,</i> 2010; Biller <i>et al.,</i> 2014, 2022; Fischer <i>et al.,</i> 2019; Fadeev <i>et al.,</i> 2023).
109	Teredinibacter turnerae, unlike obligate intracellular symbionts, is also capable of free-living
110	growth (Waterbury et al., 1983) and may directly acquire carbon from cellulose or other plant
111	biomass in the marine environment (Naka and Haygood, 2023). Investigating the functionality of
112	OMVs in <i>T. turnerae</i> could be pivotal to understanding their complex symbiotic interaction and
113	the ecological impact of their dual lifestyle.
114	Here, we purify and characterize the protein composition of OMVs produced by T.
115	turnerae during growth on water-soluble carboxymethyl cellulose (CMC). Proteins putatively
116	involved in interactions with lignocellulose were identified by LC-MS/MS analysis and
117	comparison to the Carbohydrate Active Enzyme Database (CAZy). Additionally, activity assays
118	were used to show that OMVs produced by <i>T. turnerae</i> are capable of cellulose hydrolysis.
119	These observations suggest that OMVs contribute to cellulose utilization by <i>T. turnerae</i> and may
120	play essential roles in their metabolism in free-living and symbiotic states.
121 122 123	Experimental Procedures Strain isolation, selection, and growth conditions <i>T. turnerae</i> is an endosymbiont species with widespread occurrence among shipworm
124	species (Distel <i>et al.</i> , 2002; Altamia <i>et al.</i> , 2014; Altamia, Lin, <i>et al.</i> , 2020). Two strains were
125	selected: T. turnerae T7901 (ATCC 39867), which was previously isolated from Bankia gouldi and
126	was the first shipworm symbiont brought into pure culture (Waterbury et al., 1983; Distel et al.,
127	2002; Yang et al., 2009); and T. turnerae SR01903, a closely related strain of T. turnerae (Altamia
128	et al., 2014). T. turnerae SR01903 was isolated from the gills of a single specimen of Lyrodus

129 pedicellatus found in naturally occurring driftwood collected by hand in shallow water in the 130 Indian River Lagoon, Merit Island, FL. (N 28.40605 W 80.66034) on January 24, 2020. Gills were 131 removed by dissection and homogenized in 1.0 ml of SBM medium (Waterbury et al., 1983) in 132 an autoclave-sterilized glass dounce homogenizer. Homogenate was streaked onto a culture 133 plate containing 1.0% Bacto agar shipworm basal medium (SBM) at pH 8.0 supplemented with 134 0.2% w/v powdered cellulose (Sigmacell Type 101; Sigma-Aldrich) and 0.025% NH₄Cl. Plates 135 were incubated at 30 °C until individual colonies could be observed. An individual colony was 136 then picked and subjected to multiple rounds of restreaking from single colonies to ensure 137 clonality. To identify the isolate, the 16S rRNA gene was PCR amplified, sequenced, and 138 compared to published T. turnerae genomes. The complete genome of T. turnerae SR01903 was 139 then sequenced (SRA number SRR28421271) and submitted to Genbank (Submission number 140 SUB14332655, Bioproject PRJNA1090931, assembly accession number pending; assembly and 141 annotation files provided in additional files for review but not for publication). For the 142 experiments described herein, strains were initially propagated in 6 mL cultures in shipworm 143 basal medium (Waterbury et al., 1983) supplemented with 0.025% NH₄Cl and 0.2% carboxymethyl cellulose for 4 days before being diluted 1/250 in fresh media and harvested 144 145 after 2 days (OD600 0.2-0.3). All cultures were incubated in a shaker incubator at 30 °C and 100 146 rpm. An overview of the procedures conducted in this research is presented in Figure 1.

147

Figure 1. Methods used to isolate and characterize outer membrane vesicles from T. turnerae. Diagram showing: (A) bacterial
 culture, (B) OMV isolation based on differential and density gradient separation, (C) OMV visualization and size by TEM and NTA,
 proteome analysis by LC-MS/MS, and (D) detection of cellulase activity in purified OMV preparations by zymography and
 reducing sugar (DNS) assay. Created with BioRender.com

152 Isolation of Outer Membrane Vesicles (OMVs)

153 Bacterial cells were separated from the culture supernatant by centrifugation at 5,000 x

154 g for 20 minutes at 4 °C. The supernatant was then transferred to a fresh tube, and

155 centrifugation was repeated to remove residual bacterial cells. The final supernatant was

156 carefully collected without disturbing the remaining pellet and filtered through a 0.22 μm

157 polyethersulfone filter as an additional precaution to remove cells. The putative OMVs were

then pelleted from the filtrate by ultracentrifugation at 120,000 x g (T-647.5 rotor, Sorvall) for 90

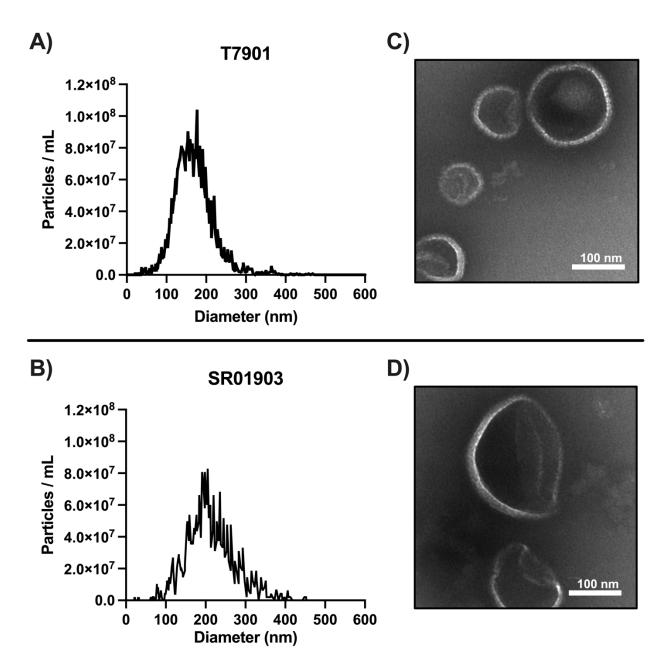
- 159 minutes at 4 °C. For purification, the resulting pellet was resuspended in 0.1 M phosphate-
- 160 buffered saline (PBS) and fractionated by bottom-up density gradient ultracentrifugation using
- 161 Optiprep[™] (iodixanol density gradient medium) as follows. The resuspended OMV-containing
- pellet was mixed with 60% iodixanol solution to a final density of 45% (w/v) and placed at the

163	bottom of an ultracentrifuge tube. A discontinuous density gradient was generated using a
164	syringe and G21 needle to deposit layers of 40%, 35%, 30%, 20%, and 10% iodixanol with a final
165	layer of 0.25 mL 0.1 M PBS on top. The resulting gradient was then subjected to centrifugation
166	for 16 hours at 150,000 x g and 4 °C (SW55 Ti rotor, Beckman-Coulter). Sample banding was
167	visually observed at the interface of the 30% and 20% fractions (Supporting Information: Figure
168	S1). All fractions were collected, and iodixanol was removed by passive diffusion dialysis (1,000
169	kDa MWCO) in exchanging buffer of 50 mM ammonium bicarbonate pH 8.3 at 4 °C. OMV
170	samples were removed from the dialysis bag and concentrated under vacuum to 100 μL
171	(SPD121P SpeedVac, Thermo Scientific). Particle visualization and characterization proceeded
172	with the single 30% fraction.
173 174	Transmission electron microscopy (TEM) Purified OMVs were diluted and absorbed onto 200 mesh formvar-treated and carbon-
175	coated copper grids for 60 seconds. Samples were then fixed for 5 minutes in 4% glutaraldehyde
176	in 0.1 M sodium cacodylate, and grids were stained with 1% aqueous uranyl acetate for 60
177	seconds and left to dry. OMVs were imaged in an FEI Tecnai T12 (Thermo Fisher) transmission
178	electron microscope at 80 KV with an AMT bottom-mount camera.
179 180	Nanoparticle tracking analysis (NTA) NTA was performed using the ZetaView [®] PMX-220 Twin (Particle Metrix) configured with
181	488 nm and 640 nm lasers with long wave-pass cut-off filters (500 nm and 660 nm, respectively)
182	and a sensitive CMOS camera 640 x 480 pixels. Samples were diluted in 2 mL of 0.1 μ m filtered
183	deionized water (18 MΩ/cm) to obtain a particle concentration between 1 x 10 7 and 1 x 10 8
184	particles/mL. The instrument was set to a sensitivity of 80, a shutter speed of 100, and a frame
185	rate of 30 frames per second. Each sample was measured at 11 different positions throughout

186	the sample cell, with 1 cycle of reading at each position to have a minimum of 1,000 traces. If
187	the number of traces was below 1,000 counts, some additional sample was flushed inside the
188	sample cell, and the acquisition was repeated. Post-acquisition parameters were set to a
189	minimum brightness of 20, a maximum size area of 1,000 pixels, a minimum size area of 10
190	pixels, and tracelength of 15 frames. Automated cell quality control was checked using high-
191	quality deionized water. Camera alignment and focus optimization were performed using
192	polystyrene Nanosphere™ 100 nm size standard beads. Data analysis was performed with
193	ZetaView [®] 8.05.14 software provided by the manufacturer. Automated reports of the particle
194	recordings across the 11 positions were manually checked, and any outlier position was
195	removed to calculate particle concentration and distribution.
196 197	Proteomic analysis OMVs were lysed and denatured in a solution containing 5% sodium dodecyl sulfate
198	(SDS), 100 mM Tris (pH=8), 20 mM chloroacetamide, and 10 mM tris (2-carboxyethyl) phosphine

199 hydrochloride and incubated at 90 °C for 10 minutes. Proteins were aggregated and isolated using Sera-Mag[™] carboxylate-modified SpeedBeads (SP3 beads) and digested in 100 mM 200 201 NH₄HCO₃ containing Trypsin (final concentration 6 ng/µL) overnight at 37 °C and 1,200 rpm. 202 Digested samples were loaded onto C18 tips, and peptides were separated online using an 88-203 minute LC gradient (Evosep LC system). MS analysis was performed on a Q-Exactive HF-X Hybrid 204 Orbitrap mass spectrometer (Thermo Scientific). One full high-resolution MS spectrum was acquired with a resolution of 45,000, an AGC target of 3 x 10⁶ with a maximum ion time of 45 205 206 ms, and a scan range of 400-1,500 m/z, followed by 20 HCD MS/MS scans with a resolution of 207 1,5000, an AGC target of 1 x 10⁵ with a maximum ion time of 120 ms, NCE of 27, and isolation 208 window of 2 m/z. The resulting MS/MS spectra were searched against the strain-specific and

- 209 universal contaminant protein databases using Sequest within Proteome Discoverer 1.4.
- 210 Identifications were filtered to include only high-confidence peptides based on a better than 1%
- false discovery rate (FDR) against a decoy database. Proteins were linked to peptides, and only
- 212 proteins with >2 peptide spectral matches (PSM) with two unique peptides were kept
- 213 (Supporting Information: Dataset S1).
- 214 Functional characterization of OMV proteins
- 215 Identified proteins were annotated against the Clusters of Orthologous Groups (COG) of
- 216 proteins database (Galperin *et al.*, 2021), and their subcellular locations were predicted using
- 217 CELLO v2.5 (http://cello.life.nctu.edu.tw/) (Yu *et al.*, 2006) and PSORTdb v4.0
- 218 (https://db.psort.org/) (Lau *et al.*, 2021). Enrichment and functional associations between
- 219 proteins were determined by STRINGdb v11 (https://string-db.org/) (Szklarczyk et al., 2019) and
- 220 ShinyGO v0.8 (<u>http://bioinformatics.sdstate.edu/go/</u>) (Ge *et al.*, 2020). Settings were selected to
- use all coding sequences in the T7901 genome as background and a minimum FDR stringency of
- 1 x 10⁻⁵. We then established which OMV proteins are predicted to exhibit carbohydrate-active
- 223 properties using the annotated T7901 genome in the Carbohydrate Active Enzymes Database
- 224 (CAZy, <u>https://cazy.org</u>).
- Enzymatic activity assays
 The cellulolytic activity of proteins in OMV preparations was visualized and size
 fractionated by denaturing polyacrylamide gel electrophoresis (SDS-PAGE, 1.5 mm thickness, 9%
 acrylamide, and 0.2% CMC final concentration). For zymographic analysis, 14 µg of protein
 sample determined by Pierce 660 assay (Thermo Scientific) using bovine serum albumin as
 standard were heat denatured by boiling for 3 minutes in SDS without a reducing agent to
 facilitate recovery of activity after refolding and added to each lane. After electrophoresis, the


232	SDS-PAGE gel was transferred to 500 mL of refolding buffer (20% isopropanol, 0.1% Triton X-100
233	in 1x PBS, pH 7.4) and gently shaken for 1 hour at room temperature. The gel was then
234	incubated in fresh 1x PBS buffer, pH 7.4, for 16 hours at room temperature before being stained
235	with 0.1% Congo Red in 1x PBS buffer, pH 7.4 for 1 hour. The zymogram was destained with 1 M
236	NaCl overnight to visualize regions where cellulase activity removed CMC. Additionally, the
237	production of reducing ends was measured by the colorimetric 3,5-dinitrosalicylic acid (DNS)
238	method (Ghose, 1987). Reactions were carried out in 96-well plates containing 50 μ L 1% CMC,
239	30 μL 50 mM citrate buffer, and 20 μL purified OMV suspension and incubated for 4 hours at 37
240	°C. Next, 900 μL of DNS was added to each reaction, and reactions were heated at 99 °C for 10
241	minutes. Absorbance was measured at 540 nm, and sugar concentration was calculated by
242	comparison to a glucose standard curve. The enzyme activity unit was defined as the amount of
243	enzyme that liberated 1 μ mol of reducing sugar per minute.
244 245 246	Results OMV isolation and characterization OMVs were isolated from cell-free supernatants of two closely related strains, T7901 and
247	SR01903, by density gradient ultracentrifugation. The presence of OMVs was confirmed by NTA
248	and TEM (Figure 2 A-D). The mean concentration of particles and average particle diameter size

determined by NTA were 1.67 x 10^9 particles/mL and 162.5 \pm 49.7 nm for T7901 and 1.30 x 10^9

particles/mL and 206.6 \pm 61.7 nm for SR01903. TEM images (Figure 2 C-D) show that the

251 putative OMV-enriched fractions from strains T7901 and SR01903 contain particles with size

252 distribution and morphology typical of bacterial OMVs.

253

Figure 2. Size, concentration, and visualization of OMVs isolated from T. turnerae culture supernatants after growth on
 carboxymethyl cellulose (CMC). (A-B) Size distribution and particle concentration for strains T7901 and SR01903, respectively.
 OMVs from SR01903 were slightly larger in average size than OMVs from T7901. (C-D) Isolated OMVs from strains T7901 and
 SR01903 were imaged using transmission electron microscopy. Scale bar = 100 nm.

258 OMV proteome analysis

259 The protein contents of OMVs from both strains were analyzed by LC-MS/MS. Peptide-

- 260 generated data were used to search against T7901 and SR01903 annotated protein sequences
- to identify OMV proteins and their relative abundance. A cut-off of two or more unique

262	predicted peptides per identified protein was used, resulting in the identification of 472 and 569
263	proteins for T7901 and SR01903, respectively. The Top 100 most abundant proteins identified in
264	T7901 and SR01903 represented 81% and 74% of the total peptide content, respectively. Among
265	those proteins, 71 were identified in both strains, indicating that the two strains produce a
266	common core set of OMV proteins when grown under the examined culture condition. After
267	protein identification, PSORTdb v4.0 (Lau et al., 2021) and CELLO v2.5 (Yu et al., 2006) were
268	used to predict the subcellular location of all identified proteins. Outer membrane proteins
269	comprised most (~75% and ~60%, respectively) of the OMV protein content of both T7901 and
270	SR01903 (Figure 3 A). OMV proteins were clustered into orthologous groups (COG); 65% and
271	60% of OMV proteins for T7901 and SR01903 were assigned a single cluster, respectively. Most
272	OMV proteins assigned to clusters in both strains were categorized as Cell
273	Wall/Membrane/Envelope Biogenesis, Inorganic Ion Transport and Metabolism, and
274	Carbohydrate Transport and Metabolism (Figure 3 B).

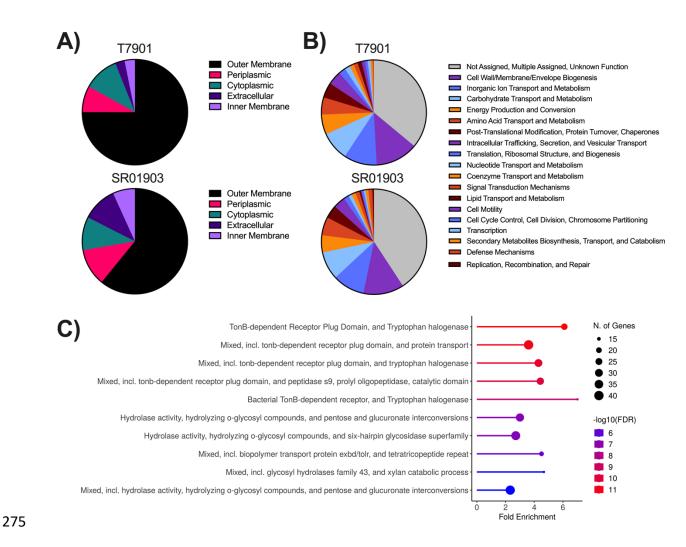
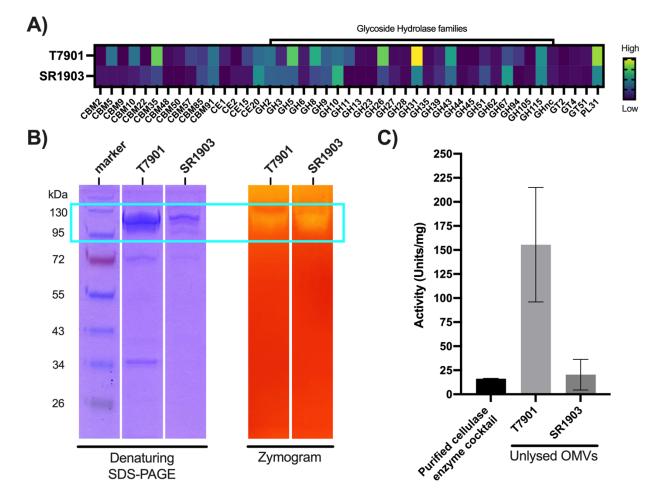



Figure 3. T. turnerae OMV proteome profiles. (A) Relative protein abundance grouped by predicted subcellular location and (B)
 Clusters of Orthologous Groups (COG) functional categories of identified proteins. (C) Top 10 STRINGdb pathways (ranked by
 FDR) found in OMVs of T7901. Similar top pathways were found in OMVs of SR01903.

- 279 *TonB*-dependent receptors and glycosyl hydrolase activity are enriched in OMVs
 280 To highlight functional associations, OMV protein content was analyzed using STRING
- 281 (Szklarczyk *et al.*, 2019) enrichment. We found significant enrichment of pathways involving
- 282 *TonB*-dependent receptors (TBDR) and glycosyl hydrolase activity (Figure 4 C). The most
- abundant proteins were TBDRs, which constituted ~47% and ~44% of the OMV protein content
- in T7901 and SR01903, respectively. TBDRs are known to be deployed for the uptake of sugars
- from complex carbohydrates (Blanvillain et al., 2007; Pollet et al., 2021). Additionally, TonB
- 286 knockouts of *T. turnerae* were shown to have lost the ability to grow on cellulose (Naka and

Haygood, 2023), which suggests that the *TonB* system in *T. turnerae* is critical to celluloseutilization.

289	Efficient utilization of lignocellulose for growth often requires a cocktail of multiple
290	enzymes targeting inner (endo-acting) and outer (exo-acting) polysaccharide glycosidic bonds
291	and various bonds found in heteroxylans. In total, 39 and 48 predicted CAZymes were present,
292	representing 30 and 29 different catalytic CAZy families and 8.3% and 8.4% of identified OMV
293	proteins in T7901 and SR01903, respectively. Most identified CAZy modules belong to glycoside
294	hydrolase families (GH) predicted to be involved in cellulose and hemicellulose degradation
295	(Figure 4 A) and that include several hydrolytic activities: endo-glucanases (GH5, GH8, GH9,
296	GH10, GH11, GH26, GH44, GH45, GH51, GH62), exo-glucanases (GH5, GH9, GH26GH43GH26,
297	GH43), and beta-glucosidases (GH2, GH3, GH5, GH39). In addition, multiple enzymes were
298	predicted to include non-catalytic carbohydrate-binding modules (CBMs), which can enhance
299	enzyme activity by increasing accessibility to the substrate (Hervé et al., 2010).
300 301	Cellulase activity Many OMV proteins were predicted to have or be associated with cellulolytic activity.
302	We confirmed these by testing OMV suspensions for hydrolytic activity against CMC by
303	zymography and reducing sugar DNS assay. In zymograms, clear zones indicating endoglucanase
304	activity (Teather and Wood, 1982) were visualized between 95-130 kDa for both strains after 16-
305	hour incubation (Figure 4 B). The production of reducing sugars from CMC was measured using
306	DNS assay, and when normalized to total protein content, OMVs produced from SR01903 had
307	the equivalent cellulolytic activity as a commercial soluble cellulase enzyme cocktail. Notably,
308	OMVs produced from T7901 showed \sim 10x the activity of the commercial cellulase cocktail
309	(Figure 4 C).

310

Figure 4. Carbohydrate-active modules and observed cellulase activity of T. turnerae OMVs. (A) Heatmap profile of the relative

abundance of the predicted carbohydrate-active enzymes found in OMVs. (B) Denaturing SDS-PAGE (left) and zymogram (right;
 CMC substrate) of isolated OMVs. (C) Histogram showing cellulase activity (CMC substrate) in Units/mg (as determined by DNS
 assay) for isolated OMVs and a purified cellulase enzyme cocktail (Cellulase R-10, Goldbio CAS# 9012-54-8). Bars indicate means
 (error bars: standard deviations of three replicates).

316 Discussion

317 *T. turnerae* secretes a broad array of carbohydrate-active enzymes within the host's gills

- and when grown in pure culture (Yang *et al.*, 2009; O'Connor *et al.*, 2014; Sabbadin *et al.*, 2018).
- 319 Genome sequence suggests these enzymes may be translocated across the inner membrane by
- 320 Sec and Sec-independent (twin-arginine, Tat) pathways and through the outer membrane by the
- 321 Type II (T2SS) generalized secretory pathway. The *T. turnerae* genome also encodes the
- 322 complete Type VI secretion system (T6SS), which mediates many types of bacteria-bacteria and

323 bacteria-host interactions (Yang et al., 2009). However, the role of OMVs in the transport of 324 cellulolytic enzymes by T. turnerae has not been investigated. Here, we show that T. turnerae 325 strains T7901 and SR01903 produce OMVs that contain diverse carbohydrate-active enzymes, 326 including glycoside hydrolases, carbohydrate esterases, and polysaccharide lyase with predicted 327 activity against cellulose, hemicellulose, and pectin. We further show that these OMV 328 preparations can hydrolyze carboxymethyl cellulose (CMC) with specific activities comparable to 329 or greater than that observed for a commercial purified cellulase enzyme cocktail (Figure 4 C). 330 In purified OMVs isolated from *T. turnerae* strains T7901 and SR01903, we detected 331 representatives of 11 carbohydrate-binding module (CBM) families (CBM2, 5, 9, 10, 22, 35, 48, 332 50, 57, 85, and 91). Each of these families is known to bind cellulose or hemicellulose 333 components, except for CBM50, which typically binds peptidoglycan or chitin. Additionally, 334 catalytic modules representing 23 glycoside hydrolase (GH) families, four carbohydrate esterase 335 (CE) families, and one polysaccharide lyase (PL) were detected. All of these GH families (GH2, 3, 336 5, 8, 9, 10, 11, 13, 23, 26, 28, 31, 35, 39, 43, 44, 45, 51, 62, 67, 94, 105, and 115) target bonds 337 found within cellulose, hemicellulose or pectin, except GH23, which primarily acts on 338 peptidoglycan. Finally, the four carbohydrate esterase (CE) families detected (CE1, 2, 15, and 20) 339 target bonds found in hemicellulose, or bonds covalently linking hemicellulose to lignin. This 340 combination of modules indicates a complete lignocellulose deconstruction system, including 341 potential endo- and exo-activities against cellulose and hemicellulose backbones, debranching 342 of hemicellulose sidechains, and hydrolysis of the resulting oligomers and monomers. The fact that this wide array of activities was found in OMVs produced by cells of T. 343 344 turnerae strains T7901 and SR01903 grown with cellulose as a sole carbon source indicates that

345	the expression of genes active against other lignocellulose components was either constitutive
346	or co-regulated with expression of genes targeting cellulose. The ability of <i>T. turnerae</i> to express
347	these activities in the absence of induction by their specific target substrates is consistent with
348	the observation that shipworm endosymbionts express a wide range of lignocellulolytic
349	enzymes when growing within the gill bacteriocytes of the host where they have no direct
350	contact with lignocellulose (O'Connor et al., 2014; Sabbadin et al., 2018). Notably, six of the
351	catalytic module families detected in <i>T. turnerae</i> OMVs (CE11, 15, and GH9, 10, 11, and 45) were
352	also detected in the cecum content of <i>Bankia setacea</i> in a previous investigation (O'Connor et
353	al., 2014); however, it should be noted that this shipworm species hosts four Teredinibacter
354	species, T. waterburyi (Altamia, Shipway, et al., 2020), T. franksiae, T. haidensis, and T. purpureus
355	(Altamia <i>et al.,</i> 2021) but does not harbor <i>T. turnerae</i> (O'Connor <i>et al.,</i> 2014).
356	While diverse CAZymes are present in the OMV proteome of <i>T. turnerae</i> , they comprise
356 357	While diverse CAZymes are present in the OMV proteome of <i>T. turnerae</i> , they comprise less than 10% of the total protein content of OMVs produced under the conditions examined
357	less than 10% of the total protein content of OMVs produced under the conditions examined
357 358	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent
357 358 359	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent receptors (TBDR), accounting for nearly half of the proteins detected. TBDR enrichment has
357 358 359 360	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent receptors (TBDR), accounting for nearly half of the proteins detected. TBDR enrichment has been previously reported in OMVs of several Gram-negative bacteria (Veith <i>et al.</i> , 2015;
357 358 359 360 361	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent receptors (TBDR), accounting for nearly half of the proteins detected. TBDR enrichment has been previously reported in OMVs of several Gram-negative bacteria (Veith <i>et al.</i> , 2015; Zakharzhevskaya <i>et al.</i> , 2017; Dhurve <i>et al.</i> , 2022; Fadeev <i>et al.</i> , 2023). TBDRs are outer
357 358 359 360 361 362	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent receptors (TBDR), accounting for nearly half of the proteins detected. TBDR enrichment has been previously reported in OMVs of several Gram-negative bacteria (Veith <i>et al.</i> , 2015; Zakharzhevskaya <i>et al.</i> , 2017; Dhurve <i>et al.</i> , 2022; Fadeev <i>et al.</i> , 2023). TBDRs are outer membrane-associated proteins that bind and mediate the energy-dependent movement of
357 358 359 360 361 362 363	less than 10% of the total protein content of OMVs produced under the conditions examined here. Interestingly, the most abundant proteins observed were identified as TonB-dependent receptors (TBDR), accounting for nearly half of the proteins detected. TBDR enrichment has been previously reported in OMVs of several Gram-negative bacteria (Veith <i>et al.</i> , 2015; Zakharzhevskaya <i>et al.</i> , 2017; Dhurve <i>et al.</i> , 2022; Fadeev <i>et al.</i> , 2023). TBDRs are outer membrane-associated proteins that bind and mediate the energy-dependent movement of siderophores and various nutrients, including carbohydrates that are too large to be taken up

polysaccharide utilization (Neumann *et al.*, 2015). Recently, it was shown that two of *T*. *turnerae's* four *TonB* genes are essential for growth in iron-limiting conditions and for growth
with cellulose as a sole carbon source. This dependence indicates that the *TonB* system is
essential for both iron acquisition and cellulose catabolism by *T. turnerae* (Naka and Haygood,
2023).

372 Interestingly, in a proteomic examination of the shipworm *Banka setacea*, a TBDR was 373 the only major symbiont-derived protein observed in the cecum content that was not 374 associated with the decomposition of lignocellulose (O'Connor et al., 2014). This finding 375 suggests the presence of symbiont outer membranes in the cecum. However, the cecum of 376 shipworms has been shown by microscopic (Betcher et al., 2012; Pesante et al., 2021), 377 transcriptomic (Sabbadin et al., 2018), and proteomic (O'Connor et al., 2014) methods to be 378 nearly devoid of intact bacterial cells. These observations argue against the transport of whole 379 bacterial cells from the gill to the cecum as suggested in (Pesante et al., 2021), but might 380 suggest a role for OMVs in transporting lignocellulose degrading enzymes from the gill to the 381 gut in shipworms.

Outer membrane vesicles are critical in bacterial interactions with many animal and plant hosts (Berleman and Auer, 2013; Lynch and Alegado, 2017). While most research has focused on pathogenic interactions, OMVs may also contribute to beneficial host-symbiont associations. For example, OMVs have been shown to mimic whole cells of *Vibrio fisheri* in the induction of specific aspects of light organ development in the Hawaiian bobtail squid *Euprymna scolopes* (Aschtgen *et al.*, 2016). OMVs have also been shown to be produced by chemoautotrophic symbionts that occur in the trophosome of flatworms of the genus

389	Paracatenula, where they play a critical role in provisioning the host with carbohydrates
390	synthesized by the symbionts (Jäckle et al., 2019). In the human gut microbiome, members of
391	Bacteroides have been shown to tailor OMV content to specific polysaccharides (Sartorio et al.,
392	2023), and OMVs produced by human and ruminant gut bacteria, including Bacteroides,
393	Fibrobacter, and Clostridium, communally degrade polysaccharides into nutrients available to
394	the hosts (Rakoff-Nahoum <i>et al.,</i> 2014; Arntzen <i>et al.,</i> 2017; Gharechahi <i>et al.,</i> 2023).
395	Outer membrane vesicles can also transport proteins across the plasma membranes of
396	eukaryotic organisms (O'Donoghue and Krachler, 2016; Schorey et al., 2021; Toyofuku et al.,
397	2023). While previous research has focused mainly on the role of OMVs in introducing bacterial
398	molecules into eukaryotic cells, OMVs may also transport molecules produced by intracellular
399	bacteria out of their eukaryotic host. For example, Salmonella enterica, which grows in vesicles
400	within their host's cells, produces toxin-loaded OMVs that escape the infected host cells and
401	deliver their toxic cargo to uninfected neighboring cells (O'Donoghue and Krachler, 2016).
402	Similarly, OMVs produced by Mycobacterium tuberculosis are released from infected
403	macrophages, exporting Mycobacterial lipoproteins and lipoglycans that affect the immune
404	functions of neighboring uninfected host cells (Athman et al., 2015). Thus, OMV-mediated
405	mechanisms could potentially explain the transport of cellulolytic proteins produced by T.
406	turnerae in their intracellular location within the host's bacteriocytes to an extracellular
407	location, allowing subsequent transport to the host's gut.
408	Packaging enzymes within OMVs or bound to OMV surfaces can have distinct advantages
409	over their secretion as soluble proteins or proteins bound to the cell surface. For example,
410	OMVs may protect proteins from degradation in the environment (Bonnington and Kuehn,

411	2014; Alves <i>et al.</i> , 2016; Zingl <i>et al.</i> , 2021), selectively concentrate proteins with specific			
412	functions (Orench-Rivera and Kuehn, 2021; Sartorio et al., 2023), and deliver proteins to remote			
413	locations in sufficient quantity to produce a desired effect without the dilution that would be			
414	experienced by soluble proteins (Toyofuku <i>et al.,</i> 2023). These factors may be especially			
415	important for the degradation of complex substrates like lignocellulose, where the simultaneous			
416	delivery of specific sets of proteins in the correct proportions and spatial orientation can yield			
417	significant synergistic interactions that enhance efficiency (Park et al., 2014).			
418	However, little is known about OMV production and its function in environmental			
419	lignocellulose degradation. Several investigations of lignocellulose-degrading microorganisms			
420	from soil suggest OMVs play critical roles in terrestrial plant biomass degradation. For example,			
421	when grown in the presence of lignin, <i>Pseudomonas putida</i> produces OMVs containing enzymes			
422	functionally active against lignin aromatic components (Salvachúa et al., 2020). Similarly,			
423	Trichoderma reesei, a filamentous fungus, produces OMVs containing a variety of cellulases			
424	when grown in the presence of cellulose (De Paula <i>et al.,</i> 2019).			
425	In addition to their potential roles in shipworm symbiosis and the environmental			
426	turnover of lignocellulose in terrestrial and aquatic environments, cellulolytic OMVs are of			
427	significant interest in converting plant biomass into renewable liquid fuels or fine chemicals			
428	(Thakur et al., 2023). A significant challenge in biomass conversion is understanding how			
429	cooperation among cellulases and associated enzymes can improve the design of efficient			
430	enzyme cocktails tailored to individual feedstocks (Østby et al., 2020). OMVs produced by T.			
431	turnerae and other lignocellulolytic organisms may represent nature-based solutions that reveal			
432	specific combinations, concentrations, and spatial organization of cooperating enzymes that			

- 433 significantly enhance lignocellulose degradation in nature and so might inspire the design of
- 434 engineered lignocellulose deconstruction systems.

435

- **436** Figure legends
- 437 Figure 1. Methods used to isolate and characterize outer membrane vesicles from *T. turnerae*.
- 438 Diagram showing: (A) bacterial culture, (B) OMV isolation based on differential and
- 439 density gradient separation, (C) OMV visualization and size by TEM and NTA, proteome
- 440 analysis by LC-MS/MS, and (D) detection of cellulase activity in purified OMV
- 441 preparations by zymography and reducing sugar (DNS) assay. Created with
- 442 BioRender.com.
- 443 Figure 2. Size, concentration, and visualization of OMVs isolated from *T. turnerae* culture
- 444 supernatants after growth on carboxymethyl cellulose (CMC). (A-B) Size distribution
- and particle concentration for strains T7901 and SR01903, respectively. OMVs from
- 446 SR01903 were slightly larger in average size than OMVs from T7901. (C-D) Isolated
- 447 OMVs from strains T7901 and SR01903 were imaged using transmission electron
- 448 microscopy. Scale bar = 100 nm.
- 449 Figure 3. T. turnerae OMV proteome profiles. (A) Relative protein abundance grouped by
- 450 predicted subcellular location and (B) Clusters of Orthologous Groups (COG) functional
- 451 categories of identified proteins. (C) Top 10 STRINGdb pathways (ranked by FDR) found
- 452 in OMVs of T7901. Similar top pathways were found in OMVs of SR01903.
- 453 Figure 4. Carbohydrate-active modules and observed cellulase activity of *T. turnerae* OMVs. (A)
- 454 Heatmap profile of the relative abundance of the predicted carbohydrate-active
- 455 enzymes found in OMVs. (B) Denaturing SDS-PAGE (left) and zymogram (right; CMC

1=0			
456	substrate) of isolated OMVs	. (C) Histogram showing	cellulase activity (CMC substrate)

- 457 in Units/mg (as determined by DNS assay) for isolated OMVs and a purified cellulase
- 458 enzyme cocktail (Cellulase R-10, Goldbio CAS# 9012-54-8). Bars indicate means (error
- 459 bars: standard deviations of three replicates).
- 460

461 Author Contribution Statement

- 462 Mark T. Gasser: Conceptualization; investigation; formal analysis; methodology; writing –
- 463 original draft preparation. Annie Liu: Investigation; methodology. Marvin A. Altamia:
- 464 Investigation; methodology. Bryan R. Brensinger: Investigation; methodology. Sarah L. Brewer:
- 465 Investigation; methodology. Ron Flatau: Investigation; methodology. Eric R. Hancock:
- 466 Investigation; methodology. Sarah P. Preheim: Supervision; writing review and editing. Claire
- 467 **Marie Filone:** Funding acquisition; supervision; writing review and editing. **Dan L. Distel:**
- 468 Funding acquisition; Conceptualization; supervision; writing original draft preparation; writing
- 469 review and editing.
- 470

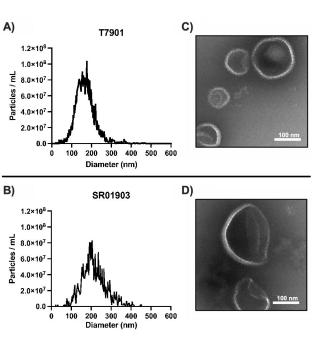
471 Acknowledgments

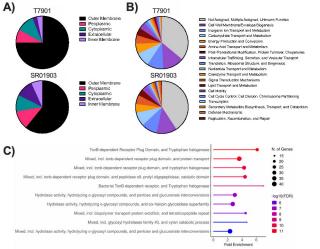
- 472 We would like to thank the PennVet Extracellular Vesicle Core SCR_022444 (Philadelphia,
- 473 Pennsylvania) for work and assistance with OMV isolation and NTA analysis; the University of
- 474 Maryland School of Medicine's and School of Dentistry's Electron Microscopy Core Imaging
- 475 Facility EMCIF (Baltimore, Maryland) for work and assistance with TEM imaging; and the NYU
- 476 Langone's Proteomics Laboratory SCR_017926 (New York, New York) for work and assistance
- 477 with mass spectrometry analysis.
- 478

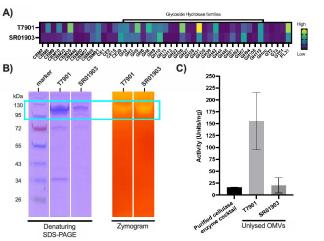
- 479 Supplemental Information
- 480 Figure_S1_SuppInfo.docx
- 481 Dataset_S1_SuppInfo.xlsx

482


- 483 References
- Altamia, M.A. and Distel, D.L. (2022) Transport of symbiont-encoded cellulases from the gill to
 the gut of shipworms via the enigmatic ducts of Deshayes: a 174-year mystery solved.
 Proc R Soc B 289: 20221478.
- Altamia, M.A., Lin, Z., Trindade-Silva, A.E., Uy, I.D., Shipway, J.R., Wilke, D.V., et al. (2020)
 Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by
 Comparison of Metagenomes and Nearly Complete Symbiont Genomes. *mSystems* 5:
 e00261-20.
- Altamia, M.A., Shipway, J.R., Stein, D., Betcher, M.A., Fung, J.M., Jospin, G., et al. (2021)
 Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter
 franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of
 the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended
 description of the genus Teredinibacter. *International Journal of Systematic and Evolutionary Microbiology* **71**:.
- Altamia, M.A., Shipway, J.R., Stein, D., Betcher, M.A., Fung, J.M., Jospin, G., et al. (2020)
 Teredinibacter waterburyi sp. nov., a marine, cellulolytic endosymbiotic bacterium
 isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae)
 and emended description of the genus Teredinibacter. *International Journal of Systematic and Evolutionary Microbiology* **70**: 2388–2394.
- Altamia, M.A., Wood, N., Fung, J.M., Dedrick, S., Linton, E.W., Concepcion, G.P., et al. (2014)
 Genetic differentiation among isolates of *Teredinibacter turnerae*, a widely occurring
 intracellular endosymbiont of shipworms. *Molecular Ecology* 23: 1418–1432.
- Alves, N.J., Turner, K.B., Medintz, I.L., and Walper, S.A. (2016) Protecting enzymatic function
 through directed packaging into bacterial outer membrane vesicles. *Sci Rep* 6: 24866.
- Arntzen, M.Ø., Várnai, A., Mackie, R.I., Eijsink, V.G.H., and Pope, P.B. (2017) Outer membrane
 vesicles from *Fibrobacter succinogenes* S85 contain an array of carbohydrate-active
 enzymes with versatile polysaccharide-degrading capacity. *Environmental Microbiology* **19**: 2701–2714.
- Aschtgen, M.-S., Wetzel, K., Goldman, W., McFall-Ngai, M., and Ruby, E. (2016) *Vibrio fischeri* derived outer membrane vesicles trigger host development: OMV deliver signals in the
 squid/vibrio symbiosis. *Cellular Microbiology* 18: 488–499.
- Athman, J.J., Wang, Y., McDonald, D.J., Boom, W.H., Harding, C.V., and Wearsch, P.A. (2015)
 Bacterial Membrane Vesicles Mediate the Release of *Mycobacterium tuberculosis* Lipoglycans and Lipoproteins from Infected Macrophages. *The Journal of Immunology*
- **195**: 1044–1053.


518 Berleman, J. and Auer, M. (2013) The role of bacterial outer membrane vesicles for intra- and 519 interspecies delivery. Environmental Microbiology 15: 347-354. 520 Betcher, M.A., Fung, J.M., Han, A.W., O'Connor, R., Seronay, R., Concepcion, G.P., et al. (2012) 521 Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species 522 (Bivalvia: Teredinidae). PLoS ONE 7: e45309. 523 Biller, S.J., Coe, A., Arellano, A.A., Dooley, K., Gong, J.S., Yeager, E.A., et al. (2022) Environmental 524 and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems, 525 Microbiology. 526 Biller, S.J., Schubotz, F., Roggensack, S.E., Thompson, A.W., Summons, R.E., and Chisholm, S.W. 527 (2014) Bacterial Vesicles in Marine Ecosystems. Science 343: 183–186. 528 Blanvillain, S., Meyer, D., Boulanger, A., Lautier, M., Guynet, C., Denancé, N., et al. (2007) Plant 529 Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by 530 Phytopathogenic and Aquatic Bacteria. PLoS ONE 2: e224. 531 Bonnington, K.E. and Kuehn, M.J. (2014) Protein selection and export via outer membrane 532 vesicles. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1843: 1612-533 1619. 534 Cai, Y.J., Chapman, S.J., Buswell, J.A., and Chang, S. (1999) Production and Distribution of 535 Endoglucanase, Cellobiohydrolase, and β -Glucosidase Components of the Cellulolytic 536 System of Volvariella volvacea, the Edible Straw Mushroom. Appl Environ Microbiol 65: 537 553-559. 538 Caruana, J.C. and Walper, S.A. (2020) Bacterial Membrane Vesicles as Mediators of Microbe – 539 Microbe and Microbe – Host Community Interactions. Front Microbiol 11: 432. 540 Cragg, S.M., Beckham, G.T., Bruce, N.C., Bugg, T.D., Distel, D.L., Dupree, P., et al. (2015) 541 Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in 542 Chemical Biology 29: 108–119. 543 Cragg, S.M., Friess, D.A., Gillis, L.G., Trevathan-Tackett, S.M., Terrett, O.M., Watts, J.E.M., et al. 544 (2020) Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and 545 Sinks. Annu Rev Mar Sci 12: 469–497. 546 Dahmen, N., Lewandowski, I., Zibek, S., and Weidtmann, A. (2019) Integrated lignocellulosic 547 value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 11: 548 107-117. 549 De Paula, R.G., Antoniêto, A.C.C., Nogueira, K.M.V., Ribeiro, L.F.C., Rocha, M.C., Malavazi, I., et al. 550 (2019) Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. 551 Biotechnol Biofuels 12: 146. 552 Dhurve, G., Madikonda, A.K., Jagannadham, M.V., and Siddavattam, D. (2022) Outer Membrane 553 Vesicles of Acinetobacter baumannii DS002 Are Selectively Enriched with TonB-554 Dependent Transporters and Play a Key Role in Iron Acquisition. *Microbiol Spectr* **10**: 555 e00293-22. Distel, D.L., DeLong, E.F., and Waterbury, J.B. (1991) Phylogenetic characterization and in situ 556 557 localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S 558 rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl Environ 559 Microbiol 57: 2376-2382. 560 Distel, D.L., Morrill, W., MacLaren-Toussaint, N., Franks, D., and Waterbury, J. (2002) 561 Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic,


562 endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs 563 (Bivalvia: Teredinidae). International Journal of Systematic and Evolutionary 564 Microbiology 52: 2261–2269. 565 Fadeev, E., Carpaneto Bastos, C., Hennenfeind, J.H., Biller, S.J., Sher, D., Wietz, M., and Herndl, 566 G.J. (2023) Characterization of membrane vesicles in Alteromonas macleodii indicates 567 potential roles in their copiotrophic lifestyle. *microLife* **4**: ugac025. 568 Fischer, T., Schorb, M., Reintjes, G., Kolovou, A., Santarella-Mellwig, R., Markert, S., et al. (2019) 569 Biopearling of Interconnected Outer Membrane Vesicle Chains by a Marine 570 Flavobacterium. Appl Environ Microbiol 85: e00829-19. 571 Frias, A., Manresa, A., De Oliveira, E., López-Iglesias, C., and Mercade, E. (2010) Membrane 572 Vesicles: A Common Feature in the Extracellular Matter of Cold-Adapted Antarctic 573 Bacteria. Microb Ecol 59: 476-486. 574 Galperin, M.Y., Wolf, Y.I., Makarova, K.S., Vera Alvarez, R., Landsman, D., and Koonin, E.V. (2021) 575 COG database update: focus on microbial diversity, model organisms, and widespread 576 pathogens. Nucleic Acids Research 49: D274–D281. 577 Ge, S.X., Jung, D., and Yao, R. (2020) ShinyGO: a graphical gene-set enrichment tool for animals 578 and plants. Bioinformatics 36: 2628-2629. 579 Gharechahi, J., Vahidi, M.F., Sharifi, G., Ariaeenejad, S., Ding, X.-Z., Han, J.-L., and Salekdeh, G.H. 580 (2023) Lignocellulose degradation by rumen bacterial communities: New insights from 581 metagenome analyses. Environmental Research 229: 115925. Ghose, T.K. (1987) Measurement of cellulase activities. Pure and Applied Chemistry 59: 257-582 583 268. 584 Hervé, C., Rogowski, A., Blake, A.W., Marcus, S.E., Gilbert, H.J., and Knox, J.P. (2010) 585 Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant 586 cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 107: 15293–15298. 587 Huang, Y., Nieh, M., Chen, W., and Lei, Y. (2022) Outer membrane vesicles (OMVs) enabled bio-588 applications: A critical review. *Biotechnol Bioeng* **119**: 34–47. 589 Ichikawa, S., Ogawa, S., Nishida, A., Kobayashi, Y., Kurosawa, T., and Karita, S. (2019) 590 Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum. FEMS Microbiology Letters 366: fnz145. 591 592 Jäckle, O., Seah, B.K.B., Tietien, M., Leisch, N., Liebeke, M., Kleiner, M., et al. (2019) 593 Chemosynthetic symbiont with a drastically reduced genome serves as primary energy 594 storage in the marine flatworm Paracatenula. Proc Natl Acad Sci USA 116: 8505–8514. 595 Lau, W.Y.V., Hoad, G.R., Jin, V., Winsor, G.L., Madyan, A., Gray, K.L., et al. (2021) PSORTdb 4.0: 596 expanded and redesigned bacterial and archaeal protein subcellular localization 597 database incorporating new secondary localizations. Nucleic Acids Research 49: D803-598 D808. 599 Lynch, J.B. and Alegado, R.A. (2017) Spheres of Hope, Packets of Doom: the Good and Bad of 600 Outer Membrane Vesicles in Interspecies and Ecological Dynamics. J Bacteriol 199:. 601 Manck, L.E., Espinoza, J.L., Dupont, C.L., and Barbeau, K.A. (2020) Transcriptomic Study of 602 Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph 603 Alteromonas macleodii. mSystems 5: e00070-20.


604 McGavin, M., Lam, J., and Forsberg, C.W. (1990) Regulation and distribution of Fibrobacter 605 succinogenes subsp. succinogenes S85 endoglucanases. Appl Environ Microbiol 56: 606 1235-1244. 607 Naka, H. and Haygood, M.G. (2023) The dual role of TonB genes in turnerbactin uptake and 608 carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. Appl Environ 609 Microbiol 89: e00744-23. 610 Neumann, A.M., Balmonte, J.P., Berger, M., Giebel, H., Arnosti, C., Voget, S., et al. (2015) 611 Different utilization of alginate and other algal polysaccharides by marine A *lteromonas* 612 macleodii ecotypes. Environmental Microbiology 17: 3857–3868. 613 O'Connor, R.M., Fung, J.M., Sharp, K.H., Benner, J.S., McClung, C., Cushing, S., et al. (2014) Gill 614 bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci 615 USA 111: E5096-E5104. 616 O'Donoghue, E.J. and Krachler, A.M. (2016) Mechanisms of outer membrane vesicle entry into 617 host cells: MicroReview - OMV entry into host cells. Cellular Microbiology 18: 1508-618 1517. 619 Orench-Rivera, N. and Kuehn, M.J. (2021) Differential Packaging Into Outer Membrane Vesicles 620 Upon Oxidative Stress Reveals a General Mechanism for Cargo Selectivity. Front 621 *Microbiol* **12**: 561863. 622 Østby, H., Hansen, L.D., Horn, S.J., Eijsink, V.G.H., and Várnai, A. (2020) Enzymatic processing of 623 lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology and Biotechnology 47: 623–657. 624 625 Park, M., Sun, Q., Liu, F., DeLisa, M.P., and Chen, W. (2014) Positional Assembly of Enzymes on 626 Bacterial Outer Membrane Vesicles for Cascade Reactions. PLoS ONE 9: e97103. 627 Pesante, G., Sabbadin, F., Elias, L., Steele-King, C., Shipway, J.R., Dowle, A.A., et al. (2021) 628 Characterisation of the enzyme transport path between shipworms and their bacterial 629 symbionts. BMC Biol 19: 233. Pollet, R.M., Martin, L.M., and Koropatkin, N.M. (2021) TonB-dependent transporters in the 630 631 Bacteroidetes: Unique domain structures and potential functions. *Molecular* 632 Microbiology 115: 490–501. 633 Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., et al. (2014) Lignin 634 Valorization: Improving Lignin Processing in the Biorefinery. Science **344**: 1246843. 635 Rakoff-Nahoum, S., Coyne, M.J., and Comstock, L.E. (2014) An Ecological Network of 636 Polysaccharide Utilization among Human Intestinal Symbionts. Current Biology 24: 40-637 49. 638 Sabbadin, F., Pesante, G., Elias, L., Besser, K., Li, Y., Steele-King, C., et al. (2018) Uncovering the 639 molecular mechanisms of lignocellulose digestion in shipworms. Biotechnol Biofuels 11: 640 59. 641 Salvachúa, D., Werner, A.Z., Pardo, I., Michalska, M., Black, B.A., Donohoe, B.S., et al. (2020) 642 Outer membrane vesicles catabolize lignin-derived aromatic compounds in 643 Pseudomonas putida KT2440. Proc Natl Acad Sci USA 117: 9302–9310. 644 Sartorio, M.G., Pardue, E.J., Scott, N.E., and Feldman, M.F. (2023) Human gut bacteria tailor 645 extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. Proc Natl 646 Acad Sci USA 120: e2306314120.

647 Schorey, J.S., Cheng, Y., and McManus, W.R. (2021) Bacteria- and host-derived extracellular 648 vesicles – two sides of the same coin? Journal of Cell Science 134: jcs256628. 649 Schwechheimer, C. and Kuehn, M.J. (2015) Outer-membrane vesicles from Gram-negative 650 bacteria: biogenesis and functions. Nat Rev Microbiol 13: 605-619. 651 Silale, A. and Van Den Berg, B. (2023) TonB-Dependent Transport Across the Bacterial Outer 652 Membrane. Annu Rev Microbiol 77: 67-88. 653 Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019) STRING 654 v11: protein–protein association networks with increased coverage, supporting 655 functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47: 656 D607-D613. 657 Teather, R.M. and Wood, P.J. (1982) Use of Congo red-polysaccharide interactions in 658 enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl 659 Environ Microbiol 43: 777–780. 660 Thakur, M., Dean, S.N., Caruana, J.C., Walper, S.A., and Ellis, G.A. (2023) Bacterial Membrane 661 Vesicles for In Vitro Catalysis. *Bioengineering* **10**: 1099. 662 Toyofuku, M., Schild, S., Kaparakis-Liaskos, M., and Eberl, L. (2023) Composition and functions of 663 bacterial membrane vesicles. Nat Rev Microbiol 21: 415-430. 664 Veith, P.D., Chen, Y.-Y., Chen, D., O'Brien-Simpson, N.M., Cecil, J.D., Holden, J.A., et al. (2015) 665 Tannerella forsythia Outer Membrane Vesicles Are Enriched with Substrates of the Type IX Secretion System and TonB-Dependent Receptors. J Proteome Res 14: 5355–5366. 666 667 Voight, J.R. (2015) Xylotrophic bivalves: aspects of their biology and the impacts of humans. 668 Journal of Molluscan Studies 81: 175–186. 669 Waterbury, J.B., Calloway, C.B., and Turner, R.D. (1983) A Cellulolytic Nitrogen-Fixing Bacterium 670 Cultured from the Gland of Deshayes in Shipworms (Bivalvia: Teredinidae). Science 221: 671 1401-1403. 672 Yan, S. and Wu, G. (2013) Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels 6: 673 177. 674 Yang, J.C., Madupu, R., Durkin, A.S., Ekborg, N.A., Pedamallu, C.S., Hostetler, J.B., et al. (2009) 675 The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont 676 of Marine Wood-Boring Bivalves (Shipworms). PLoS ONE 4: e6085. 677 Yu, C., Chen, Y., Lu, C., and Hwang, J. (2006) Prediction of protein subcellular localization. 678 Proteins 64: 643-651. 679 Zakharzhevskaya, N.B., Vanyushkina, A.A., Altukhov, I.A., Shavarda, A.L., Butenko, I.O., Rakitina, 680 D.V., et al. (2017) Outer membrane vesicles secreted by pathogenic and nonpathogenic 681 Bacteroides fragilis represent different metabolic activities. Sci Rep 7: 5008. 682 Zingl, F.G., Thapa, H.B., Scharf, M., Kohl, P., Müller, A.M., and Schild, S. (2021) Outer Membrane 683 Vesicles of Vibrio cholerae Protect and Deliver Active Cholera Toxin to Host Cells via 684 Porin-Dependent Uptake. mBio 12: e00534-21. 685 686

