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Abstract 

 

Maternal obesity has become a growing global health concern that may predispose the offspring to medical 

conditions later in life. However, the metabolic link between maternal pre-pregnant obesity and healthy 

offspring has not yet been fully elucidated. In this study, we conducted a case-control study using coupled 

untargeted and targeted metabolomics approach, from the newborn cord blood metabolomes associated 

with a matched maternal pre-pregnant obesity cohort of 28 cases and 29 controls. The subjects were 

recruited from multi-ethnic populations in Hawaii, including rarely reported Native Hawaiian and other 

Pacific Islanders (NHPI). We found that maternal obesity was the most important factor contributing to 

differences in cord blood metabolomics. Using elastic net regularization based logistic regression model, 

we identified 29 metabolites as potential early-life biomarkers manifesting intrauterine effect of maternal 

obesity, with accuracy as high as 0.947 after adjusting for clinical confounding (maternal and paternal age 

and ethnicity, parity and gravidity). We validated the model results in a subsequent set of samples (N=30) 

with an accuracy of 0.822. Among the metabolites, six metabolites (galactonic acid, butenylcarnitine, 2-

hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3, 1,5-anhydrosorbitol, and 

phosphatidylcholine acyl-alkyl 40:3) were individually and significantly different between the maternal 

obese vs. norm-weight groups. Interestingly, Hydroxy-3-methylbutyric acid showed significnatly higher 

levels in cord blood from the NHPI group, compared to asian and caucasian groups. In summary, significant 

associations were observed between maternal pre-pregnant obesity and offspring metabolomics alternation 

at birth, revealing the inter-generational impact of maternal obesity.  
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Introduction     
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Obesity is a global health concern. While some countries have a relative paucity of obesity, in the United 

States, obesity affects 38% of adults 1, 2. As such, maternal obesity has risen to epidemic proportions in 

recent years and can impose significant risk to both the mother and unborn fetus. By 2015, an estimated 

25.6 % women were obese before becoming pregnant, according to a CDC study3. Maternal pre-pregnant 

obesity can increase the risk for a wide range of health concerns for the baby and the mother during all 

stages of pregnancy. Moreover, research has recently extended the association of maternal obesity during 

pregnancy to the subsequent health of offspring such as diabetes or cardiovascular disease 4.  Since the 

inception of Barker’s hypothesis in the 1990’s, efforts to connect intrauterine exposures with the 

development of disease later in life has been the subject of many studies 5.  Both obesity and its 

accompanying morbidities, such as diabetes, cardiovascular diseases and cancers, are of particular interest 

as considerable evidence has shown that maternal metabolic irregularities may have a role in genotypic 

programming in offspring 6, 7.  Identifying markers of predisposition to health concerns or diseases would 

present an opportunity for early identification and potential intervention, thus providing life-long benefits 

8-10. 

Previous studies have found that infants born to obese mothers consistently demonstrate elevation of 

adiposity and are at more substantial risk for the development of metabolic disease 11. While animal models 

have been used to demonstrate early molecular programming under the effect of obesity, human research 

to elucidate the underlying mechanisms in origins of childhood disease is lacking 12. In Drosophila 

melanogaster, offspring of females given a high-sucrose diet exhibited metabolic aberrations both at the 

larvae and adult developmental stages 13, 14. Though an invertebrate model, mammalian lipid and 

carbohydrate systems show high level of conservation in Drosophila melanogaster 15, 16. In a mouse model 

of maternal obesity, progeny demonstrated significant elevations of both leptin and triglycerides when 

compared with offspring of control mothers of normal weight 6. The authors proposed that epigenetic 

modifications of obesogenic genes during intrauterine fetal growth play a role in adaption to an expected 

future environment.  Recently, Tillery et al. used a primate model to examine the origins of metabolic 

disturbances and altered gene expression in offspring subjected to maternal obesity 17. The offspring 
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consistently displayed significant increases in triglyceride level and also fatty liver disease on histologic 

preparations. However, human studies that explore the fetal metabolic consequences of maternal obesity 

are still in need of investigation.  

 

Metabolomics is the study of small molecules using high throughput platforms, such as mass spectroscopy 

18. It is a desirable technology that can detect distinct chemical imprints in tissues and body fluids 19.  The 

field of metabolomics has shown great promise in various applications including early diagnostic marker 

identification 20, where a set of metabolomics biomarkers can differentiate samples of two different states 

(eg. disease and normal states). Cord blood metabolites provide information on fetal nutritional and 

metabolic health 21, and could provide an early window of detection to potential health issues among 

newborns. Previously, some studies have reported differential metabolite profiles associated with 

pregnancy outcomes such as intrauterine growth restriction 22 and low birth weight 23. For example, 

abnormal lipid metabolism and significant differences in relative amounts of amino acids were found in 

metabolomic signatures in cord blood from infants with intrauterine growth restriction in comparison to 

normal weight infants 22. In another study higher phenylalanine and citrulline levels but lower glutamine, 

choline, alanine, proline and glucose levels were observed in cord blood of infants of low-birth weight 23. 

However, thus far no metabolomics studies have been reported to specifically investigate the impact of 

maternal obesity on metabolomics profiles in fetal cord blood 22-25.  

 

This study aims to investigate metabolomics changes in fetal cord blood associated with obese (BMI>30) 

and normal pre-pregnant weight (18.5<BMI<25) mothers. Uniquely, we recruited mothers from the multi-

ethnic population in Hawaii, including Native Hawaiian and other Pacific Islanders (NHPI).  NHPI is a 

particularly under-represented minority population across most scientific studies.  

 

Methods 

 

Chemicals & Reagents 
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Ethanol, pyridine, methoxyamine hydrochloride, C8–C30 fatty acid methyl esters (FAMEs), and 

ammonium acetate were purchased from Sigma Aldrich (St. Louis, MO). LC-MS Optima grade methanol 

and acetonitrile, formic acid, N-Methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% TMCS, and 

hexane were obtained from Fisher Sci. (Fair Lawn, NJ). The ultra-pure water was produced by Millipore 

Advantage A10 system with a LC-MS Polisher filter (Billerica, MA). Analytical grade sodium hydroxide, 

sodium bicarbonate, and anhydrous sodium sulfate were obtained from JT Baker Co. (Phillipsburg, NJ, 

USA). The amino acid and lipid standards were included in the AbsoluteIDQ™ p180 Kit (Biocrates Life 

Sciences, Austria). All other standards were commercially purchased from Sigma-Aldrich and Nu-Chek 

Prep (Elysian, MN, USA). 

 

Study population   

We performed a multi-ethnic case-control study at Kapiolani Medical Center for Women and Children, 

Honolulu, HI from June 2015 through June 2017. The study was approved by the Western IRB board 

(WIRB Protocol 20151223). To avoid confounding of inflammation accompanying labor and natural births 

26 we recruited women scheduled for full-term cesarean section at ≥ 37 weeks gestation. All subjects fasted 

for at least 8 hours before the scheduled cesarean delivery. Patients meeting inclusion criteria were 

identified from pre-admission medical records with pre-pregnancy BMI ≥30.0 (cases) or 18.5-25.0 

(controls). The pre-pregnancy BMIs were also confirmed during the enrollment.  Women with preterm 

rupture of membranes (PROM), labor (being active contractions with cervical dilation), multiple gestations, 

pre-gestational diabetes, hypertensive disorders, cigarette smokers, HIV, HBV, and chronic drug users were 

excluded. Clinical characteristics were recorded, including maternal and paternal age, maternal and paternal 

ethinicities, mother’s pre-pregnancy BMI, net weight gain, gestational age, parity, gravidity and ethnicity. 

Neonate weight was recorded in kilograms and the weight of baby was taken directly after the birth in the 

newborn nursey. For the discovery cohort, a total of 57 subjects (28 cases and 29 controls) were recruited. 

Additionally, to confirm the results, we recruited 30 subjects ( 12 cases and 18 controls) from the same site 

but different time interval ( July 2017 to June 2018). 
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Sample collection, preparation and quality control    

Cord blood was collected under sterile conditions at the time of cesarean section using Pall Medical cord 

blood collection kit with 25 mL citrate phosphate dextrose (CPD) in the operating room. The umbilical cord 

was cleansed with chlorhexidine swab before collection to ensure sterility.  The volume of collected blood 

was measured and recorded before aliquoting to conicals for centrifugation. Conicals were centrifuged at 

200g for 10 minutes and plasma was collected. The plasma was centrifuged at 350g for 10 minutes and 

aliquoted into polypropylene cryotubes, and stored at -80C. 

 

The investigators all took and passed courses where transport, collection and laboratory use of biologic 

specimens was tested.  During the handling of samples gloves were used and documentation for biohazard 

materials accompanied the transportation of materials.  Laboratory grade cryo-plasticware was used for 

storage and all samples were labeled stringently and kept in 100-well boxes with record sheets in Excel 

spreadsheet. Upon the use of samples for metabolome profiling, all samples were treated as biohazards. 

The investigators all received appropriate vaccinations and personal protective equipment including gloves, 

lab coats, disposable face mask, and glasses for eye protection were used during sample preparation. 

 

 

Metabolome profiling 

The plasma samples were thawed and extracted with 3-vol cold organic mixture of ethanol: chloroform and 

centrifuged at 4 °C at 14,500 rpm for 20 min. The supernatant was split for lipid and amino acid profiling 

with an Acquity ultra performance liquid chromatography coupled to a Xevo TQ-S mass spectrometry 

(UPLC-MS/MS, Waters Corp., Milford, MA). Metabolic profiling of other metabolites including organic 

acids, carbohydrates, amino acids, and nucleotides were measured with an Agilent 7890A gas 

chromatography coupled to a Leco Pegasus time of flight mass spectrometry (Leco Corp., St Joseph, MI). 

The raw data files generated from LC-MS (targeted) and GC-MS (untargeted) were processed with 
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TargetLynx Application Manager (Waters Corp., Milford, MA) and ChromaTOF software (Leco Corp., St 

Joseph, MI) respectively. Peak signal, mass spectral data, and retention times were obtained for each 

metabolite. The detected metabolites from GC-MS were annotated and combined using an automated mass 

spectral data processing  software package 27. The levels of lipids and amino acids detected from LC-MS 

were measured using the AbsoluteIDQ™ p180 Kit (Biocrates Life Sciences, Austria) commercially 

available. The reference standards of those measured lipids and amino acids were integrated in the kit28.  

More details of metabolomics experiments and data pre-processing is described in the following subsections.  

Sample Preparation for metabolic profiling 

Plasma samples were prepared as previously described with minor modifications29.  Each 150 µL of cold 

organic mixture (ethanol: chloroform = 3:1, v/v) is used to extract small-molecule metabolites from 50 µL 

of blood sample, spiked with two internal standard solutions (10 µL of L-2-chlorophenylalanine in water, 

0.3 mg/ml; 10 µL of heptadecanoic acid in methanol, 1 mg/mL). The sample extracts were centrifuged at 4 

°C and 14, 500 rpm for 20 min. The supernatant was split for lipid and amino acid profiling with an Acquity 

ultra performance liquid chromatography coupled to a Xevo TQ-S mass spectrometry (UPLC-MS/MS, 

Waters Corp., Milford, MA) and for untargeted metabolic profiling with Gas Chromatography -Time-of-

Flight Mass Spectrometry (GC−TOFMS). 

Quantitation of amino acids and lipids with LC-MS/MS  

For targeted metabolomics analyses of plasma samples, the AbsoluteIDQ™ p180 Kit (Biocrates Life 

Sciences, Austria) was used, which allows for the simultaneous quantification of metabolites from different 

compound classes [21 amino acids (AA), 21 biogenic amines (BA), 40 acylcarnitines (AC), 38 acyl/acyl 

phosphatidylcholines (PC aa), 38 acyl/alkyl phosphatidylcholines (PC ae), 14 lyso-phosphatidylcholines 

(lysoPC), 15 sphingomyelins (SM), and the sum of hexoses (H1)]. The lipids, acylcarnitines, and the 

hexoses were determined by FIA-MS/MS, while the amino acids and biogenic amines were measured by 

LC-MS/MS. In brief, each aliquot of the 20- µL supernatant was added to a 96-well Biocrates Kit plate 

(Biocrates Life Sciences, Austria) for metabolite quantitation. After samples were dried under nitrogen, 
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each 300 µL of extraction solvent (5 mM ammonium acetate in methanol) was added and the kit plate was 

gently shaken at room temperature for 30 min. The extracts were derivatizaed with phenylisothiocyanate 

for amino acids and biogenic amine quantification.  The data was acquired by using MassLynx 4.1 software 

(Waters) and was analyzed using TargetLynx applications manager version 4.1 (Waters) to obtain 

calibration equations and the quantitative concentration of each metabolite in the samples.  Another aliquot 

of 20 µL of the extracts was further diluted with 380 µL of methanol with 5 mM ammonium acetate for 

FIA analysis of lipids. An Acquity ultra performance liquid chromatography coupled to a Xevo TQ-S mass 

spectrometer (UPLC-MS/MS, Waters Corp., Milford, MA) was used for targeted metabolite analysis of 

140 lipids in cell line samples. Each 10 µL of sample was directly injected into mass spectrometer with 

elution solvent (methanol with 5 mM ammonium acetate) at a varied flow rate from 30 to 200 µL/min 

within 3 min. 30 Concentrations of lipids were directly calculated in MetIDQ (version 4.7.2, Biocrates). 

 

Untargeted Metabolomics Profiling with GC-TOFMS  

The protocol for untargeted metabolomics profiling was reported earlier 31, 32. Each aliquot of the 150-µL 

above supernatant was dried in a vacuum centrifuge concentrator. The dried material is derivatized with 

50 µL of methoxyamine (15 mg/mL in pyridine) at 30°C for 90 min. After the addition of 10 μL of 

alkynes (retention index standards) and 50 μL of BSTFA (1% TMCS), the mixture is incubated at 70°C 

for 60 min. Retention indices of C8−C30 fatty acid methyl esters (FAMEs) were added for retention-time 

correction. Each 1-µl sample was analyzed on an Agilent 7890A gas chromatograph coupled to a Leco 

Pegasus time of flight mass spectrometer (Leco Corp., St Joseph, MI) for global metabolite analysis. The 

analytes were introduced with a splitless mode to achieve maximum sensitivity and separated on a Rtx-5 

MS capillary column (30 m x 0.25 mm I.D., 0.25 µm) (Restek, Bellefonte, PA). The column temperature 

was initially set to 80 °C for 2 min, increased to 300 °C in 12 min, and maintained at 300 °C for 5 min. 

The solvent delay was set to 4.4 min. The front inlet temperature, transferline temperature, and source 

temperature were set to 260 °C, 270 °C, and 220 °C, respectively. The mass spectrometer was operated 

on a full scan mode from 50 to 500 at an acquisition rate 20 spectra / sec. To provide a set of data that can 
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be used to assess overall reproducibility and to correct for potential analytical variations, a pooled plasma 

sample containing aliquots from all study subjects (or representative subjects depending on the number of 

samples to be tested) were used as a study QC.  The QC samples for this project were prepared with the 

test samples and were injected at regular intervals (after every 10 test samples for GC-TOFMS and after 

every 12 test samples for UPLC-QTOFMS, respectively) to allow evaluating overall process variability 

and monitoring platform performance. The acceptance criterion for RSD is typically set to < 20% (add 

citation/reference) or < 30% (add reference).  

 

Compound annotation and marker selection 

All the features that pass the quality control are subject to compound annotation. This is performed using 

an in-house library containing ~1,000 mammalian metabolites (reference standards). Commercial databases 

including NIST library 2011, LECO/Fiehn Metabolomics Library, etc., are also used for compound 

annotation and verification. For the LC-TQMS data, the data were collected with multiple reaction monitor 

(MRM), and the cone and collision energy for each metabolite used the optimized settings from 

QuanOptimize application manager (Waters) and the metabolites were all annotated with reference 

standards. For the GC−TOFMS generated data, identification was processed by comparing the mass 

fragments and the Rt with our in-house library or the mass fragments with NIST 05 Standard mass spectral 

databases in NIST MS search 2.0 (NIST, Gaithersburg, MD) software using a similarity of more than 70%. 

 

Metabolomics data pre-processing  

The raw LC-MS/MS data files were processed with TargetLynx Application Manager (Waters Corp., 

Milford, MA) to extract peak area and retention time of each metabolite. The raw GC-TOFMS data files 

were processed with ChromaTOF software (Leco Corp., St Joseph, MI) to extract peak signal and retention 

times for each metabolite. The detected metabolites were annotated with our internal metabolite database 

using an automated mass spectral data processing software package, ADAP-GC 27.  
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Metabolomics data processing  

Samples were received in 3 different batches. Batch # 1 (N=36), #2 (N=21) and #3 (N=30) detected 93, 120 

and 106 untargeted metabolites respectively. A total of 79 untargeted metabolites were common in the 

discovery cohort (batch 1 and 2) and were combined with the 151 targeted metabolites, yielding 230 

metabolites total in the training set. 151 metabolites were identified from LC, and 79 metabolites were from 

GC. Power analysis was done using the module implemented in MetaboAnalystR33, on both the whole 

metabolite list and the selected 29 metabolites.  We conducted data pre-processing similar to the previous 

report34. Briefly, we used K-Nearest Neighbors (KNN) method to impute missing (~ 8%) metabolomics 

data 35. Using KNN method, metabolites missed value was predicted from the mean of the k nearest 

neighbors. To adjust for the offset between high and low-intensity features, and to reduce the 

heteroscedasticity, the logged value of each metabolite was centered by its mean and autoscaled by its 

standard deviation 36.  We used quantile normalization to reduce sample-to-sample variation 37. We applied 

partial least squares discriminant analysis (PLS-DA) to visualize how well metabolites could differentiate 

the obese from normal samples. To explore the contribution of different clinical/physiological factors to 

metabolomics data, we conducted source of variation analysis. We used comBat Bioconductor R package 

38 to adjust for the batch effects in the metabolomics data.  

Classification modeling and evaluation 

To reduce the dimensionality of our data (230 metabolites vs 57 samples), we selected the unique 

metabolites associated with separating obese and normal status. To achieve this, we used a penalized 

logistic regression method called elastic net that was implemented in the glment R package 39. Elastic net 

method selects metabolites that have non-zero coefficients (y-axis, Figure 3S-C) at different value of 

lambda (x-axis, Figure 3S-C), guided by two penalty parameters alpha and lambda 39.  Alpha sets the degree 

of mixing between lasso (when alpha=1) and the ridge regression (when alpha=0). Lambda controls the 

shrunk rate of coefficients regardless of the value of alpha.  When lambda equals zero, no shrinkage is 

performed and the algorithm selects all the features. As lambda increases, the coefficients are shrunk more 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


11 
 

strongly and the algorithm retrieves all features with non-zero coefficients.  To find optimal parameters, we 

performed 10-fold cross-validation for feature selection that yield the smallest prediction minimum square 

error (MSE), similar to previous studies40. We then used the metabolites selected by the elastic net to fit the 

regularized logistic regression model. Three parameters were tuned: cost, which controls the trade-off 

between regularization and correct classification, logistic loss and epsilon, which sets the tolerance of 

termination criterion for optimization.  

To construct and evaluate the model, we conducted cross validation using five folds. We trained the model 

on four folds (80% of data) using leave one out cross validation (LOOCV) and measured model 

performance on the remaining fold (20% of data).  We carried out the above training and testing five times 

on all folds’ combination.  We plotted the receiver-operating characteristic (ROC) curve for all folds’ 

prediction using pROC R package. To adjust confounding other clinical covariants such as ethnicity, 

gravidity and parity, we reconstructed the metabolomics model above by including these factors. 

Metabolites importance score 

To rank the metabolites based on their contribution to the model performance, we used the model-based 

approach implemented in the Classification And REgression Training (CARET) R package41. The 

importance of each metabolite is evaluated individually using a “filter” approach42. The ROC curve 

analysis is conducted on each metabolite to predict the class using a series of cutoffs. The sensitivity and 

specificity are computed for each cutoff and the ROC curve is computed. The trapezoidal rule is used to 

compute the area under the ROC curve. This area is used as the measure of variable importance. These 

scores were scaled to have a maximum of 100.  

Metabolomics pathway analysis 

We performed metabolomic pathway analysis on metabolites chosen by the elastic net method using 

Consensus Pathway DataBase (CPDB). We used rcorr function implemented in Hmisc R package to 

compute the correlations among clinical and metabolomics data.   

Source of variation analysis 
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To estimate the relative contribution of the confounder factors such as maternal age and ethnicity to the 

variability of the metabolomics data, we built the ANOVA model using the metabolomics and cofounder 

factors, the resulting F-value is used to calculate p-values.  

Data availability 

The metabolomics raw data files as well as processed data generated by this study have been deposited to 

Metabolomics workbench repository (https://www.metabolomicsworkbench.org/, Study ID ST001114). 

The list of unknown metabolites and their characteristics are included in Supplementary Tables 1, 2 and 3. 

 

Results   

 

Cohort subject characteristics  

Our discovery cohort consisted of 57 samples (29 normal and 28 obese subjects) from different ethnic 

groups. It consisted of three ethnic groups: Caucasian, Asian and Native Hawaiian and other Pacific Islander 

(NHPI). Women undergoing scheduled cesarean delivery were included based on the previously described 

inclusion and exclusion criteria (Methods). Demographical and clinical characteristics in obese and control 

groups are summarized in Table 1. In the Caucasian group (10 mothers), 6 were categorized as non-obese 

and 4 as obese. In the Asian group (23 mothers), 16 were categorized as non-obese and 7 as obese. In the 

NHPI group (24 mothers), 7 (24%) were categorized as non-obese and 17 (61%) as obese.  The variation 

in recruitment of cases versus controls in each ethnic background reflects the demographics in Hawaii. 

Compared to mothers of normal pre-pregnant BMI, obese mothers had significantly higher pre-pregnancy 

BMI (33.51+/- 4.49 vs 21.89 +/- 1.86 kg/m2, p=9.18e-11). Mothers had no statistical difference regarding 

their ages (32.10 +/- 4.88 vs 32.48 +/- 5.66, p=0.7) or gestational age (39.04 weeks+/- 0.22 vs 38.93 +/- 

0.45 p=0.38), excluding the possibility of confouding from these factors. Babies of obese mothers had 

significantly (P=0.03) higher birth weight averages in comparison to the normal pre pregnant weight group, 

consistent with earlier observations 43, 44.  
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Preliminary assessment of metabolomics results  

Our discovery cohort has a total of 230 metabolites, including 79 untargeted and 151 targeted metabolites. 

To explore which clinical or physiological covariates were associated with the variations in the 

metabolomics, we conducted source of variation analysis using a linear mixed model that includes 

multiple clinical variables. Figure 1A shows the F value for each factor in the ANOVA model relative to 

the error. The Y-axis is the F value and X-axis are the factors specified in ANOVA model and the Error 

term. Indeed, maternal obesity was the predominantly the most important factor contributing to 

metabolomics difference, rather than other factors (Fig 1A). To test if these metabolites allow a clear 

separation between the obese and normal-weight subjects, we used elastic net regularization based logistic 

regression, rather than the partial least squares discriminant analysis (PLS-DA) model, a routine 

supervised multivariate method which only yielded modest accuracy AUC=0.62 (Fig 2S-B). PLS-DA has 

high probability to develop models that fit the training data well, however, produce poor predictive 

performance on the validation set45.  

On the other hand, elastic net offers potential improvements over PLS-DA due to the presence of 

the constrain, which promotes sparse solutions. Moreover, elastic net regularization overcomes the 

limitation of either ridge and lasso regularization alone and combines their strengths to identify optimized 

set metabolites [25]. Using the optimized regularization parameters (Fig. 3S), we identified a total of 29 

metabolite features (Table 2), which together yields the highest predictive performance with AUC=0.97, 

95 % CI=[0.904-0.986] in 20% hold-out test dataset (Figure 1B). The 29 selected metabolites by the 

elastic-net collectively yields a statistical power of 0.93, much improved from the initial power of 0.67 

estimated from the total 230 metabolites (Fig. 4S), and supports the validity of the statistical modeling 

approach. Among them, six metabolites have large contributions to the separations between the case and 

controls, with an importance score of at least 70% individually (Figure 1C). These are galactonic acid, 

butenylcarnitine (C4:1), 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl C40:3 (PC aa 

C40:3), 1,5-anhydrosorbitol, and phosphatidylcholine acyl-alkyl 40:3 (PC ae C40:3). Thus, metabolites 

selected by the elastic net method indeed improved the prediction power of the model overall. 
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Calibrated maternal-obese predictive model with consideration of confounding 

 

For statiscal rigor, it is important to consider possible clinical confounders (if available), such as maternal 

and paternal ethnicity and parity (Table 1) that we collected for additional calibration. Towards this, we 

conducted two investigations. First, we explored the correlations among the demographic factors and 

metabolomics data. It is evident that several metabolites are correlated with maternal and paternal ethnicity, 

gravidity, and/or parity (Figure 2-A). For example, maternal ethnicity is positively correlated with 2-

hydroxy-3-methylbutyric acid. Secondly, we built a logistic regression model using the above-mentioned 

four covariates alone (parity, gravidity, maternal and paternal ethnicity). This model yields a modest AUC 

of 0.701 95% CI= [0.55-0.82] (Figure 4S-A), again suggesting existence of confounding. These 

observations prompted us to recalibrate the 29-metabolite elastic net model, by adjusting the metabolomics 

model using maternal and parental age and ethnicity, gravidity and parity (Figure 2B). The resulting 

modified model remains to have very high accuracy, with AUC= 0.947, 95% CI= [0.88-0.98]. In the new 

model, besides the original 6 metabolite features, maternal ethnicity and paternal ethnicity also have 

importance scores greater than 70% (Figure 2C).  

Metabolite features and their pathway enrichment analysis 

The 29 metabolite features selected by the model belong to acylcarnitine, glycerophospholipid, amino acids 

and organic acids classes. Their log fold changes ranged from -0.66 (2-hydroxy-3-methylbutyric acid) to -

0.45 (hydroxyhexadecenoylcarnitine, or C16:1-OH) (Figure 3A and Table 2). Among them,  15 metabolites 

were higher in obese associated cord blood samples, including 2-hydroxy-3-methylbutyric acid, galactonic 

acid, PC ae C40:3, propionylcarnitine (C3), PC aa C40:3, o-butanoyl-carnitine (C4:1), hexanoylcarnitine 

(C6 (C4:1 -DC)), ohosphatidylcholine diacyl C40:2 (PC aa C40:2), benzoic acid, 1,5-anhydrosorbitol, 

isovalerylcarnitine (C5), PC ae C40:2, L-arabitol, octadecenoylcarnitine (C18:1) (Figure 3A, Table 2). The 

remaining 14 metabolites are lower in obese associated cord blood samples: malic acid, aspartate, citric 

acid, PC ae C34:0, isoleucine, PC ae C36:2, oleic acid, PC aa C36:5, PC ae C34:3, PC ae C40:6, C5:1-DC, 

2-hydroxybutyric acid, myoinositol, and C16:1 -OH (Figure 3A, Table 2). The individual metabolite levels 
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of hexanoylcarnitine (C6(C4:1-DC)), o-butanoyl-carnitine (C4:1), PC aa C40:3, propionylcarnitine (C3), 

PC ae C40:3, galactonic acid, and 2-hydroxy-3-methylbutyric acid increased significantly in obese cases 

(p<0.05, t-test).  

To elucidate the biological processes in newborns that may be effected by maternal obesity, we performed 

pathway enrichment analysis on the 29 metabolite features, using Consensus pathway database (CPDB) 

tool 46. We combined multiple pathway databases including KEGG, Wikipathways, Reactome, EHNM 

and SMPDB. A list of the enriched pathways is plotted with adjusted p-value q<0.05 (Figure 3B). We 

removed large pathways such as SLC-mediated transmembrane transport for non-specificity. Among the 

filtered pathways, alanine and aspartate metabolism is the most significantly enriched pathway (q=0.004). 

One should note that given the small number of identified metabolites in the dataset, the pathway analysis 

may have limited reliability. 

 

The influence of ethinicity on metabolite levels 

In general, the level of 2-hydroxy-3-methylbutyric acid in obese subjects is higher than compared to the 

normal-weighted subjects (Figure 4A). Our earlier correlational analysis suggested that maternal ethnicity 

may be correlated with 2-hydroxy-3-methylbutyric acid level (Figure 2A). To confirm this, we conducted 

2-way ANOVA statistical tests and indeed obtained significant p-value (P=0.023, chi-square test). We thus 

stratified the levels of 2-hydroxy-3-methylbutyric acid by ethnicity (Figure 4B). There was no significant 

difference in normal pre pregnant-weight subjects across the three ethnic groups (Figure 4B). However, in 

cord blood samples associated with obese mothers, the concentration of 2-hydroxy-3-methylbutyric acid 

was much higher in NHPI, as compared to Caucasians (p=0.05) or Asians (p=0.04) (Figure 4B). 2-hydroxy-

3-methylbutyric acid originates mainly from ketogenesis through the metabolism of valine, leucine and 

isoleucine 47. Since all subjects fasted 8 hours before the C-section, we expect the confounding from diets 
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is minimized among the three ethnic groups. Thus the higher 2-hydroxy-3-methylbutyric acid level may 

indicate the higher efficiency of ketogenesis in babies born from obese NHPI mothers. 

 

Validation on an independent cohort 

We subsequently collected a new set of 30 patients (18 normal-weight and 12 obese). We decided to treat 

this set as “validation cohort”, following the convention of machine-learning dataset design, as samples 

were processed in different times/batches. We aimed to test if the previous model built on the 57 samples 

is predictive, given the modest size and heterogeneity among samples. We then performed new 

metabolomics measurements and processed the data as earlier described. The model built on 57 samples 

yields an AUC of 0.822 (95% CI= [0.74-0.89], Figure 5A) in the new set of 30 samples, confirming the 

reproducibility of our findings. Moreover, we observed a similar trend of higher concentration of 2-

hydroxy-3-methylbutyric acid in the obese subjects compared to normal-weight (Figure 5B). Importantly, 

the levels of 2-hydroxy-3-methylbutyric acid has a similar trend in NHPI compared to Asians and 

Caucasians (p=0.001) in the obese group, whereas no statistical difference between ethnicities exists in the 

control group (Figure 5C). Moreover, within this cohort, four of the six metabolites that had large 

contributions to the separations between case/control (importance score > 70%) in the discovery cohort, 

had consistent trend of changes in the validation cohort. 

 

Discussion 

 

This study aims to distinguish key cord blood metabolites associated with maternal pre-pregnancy obesity. 

As maternal obesity is a health condition rather than a disease, we had to set stringent inclusion and 

exclusion crtieria to exclude as many confouding factors as possible, to ensure the quality of the 

metabolomics data. To avoid the sources of confounding from labor and vaginal delivery (diets, multiple 

operators due to unpredictable delivery time etc.), we only targeted mothers having elective C-sections. We 

also excluded obese mothers who had known complications during pregnancy, such as pre-gestational 
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diabetes, smoking, and hypertension. To minimize confounding due to maternal diet, all subjects fasted 8 

hours before the Cesarean section. These criteria helped to improve the quality of the samples and hence 

metabolomics data, albeit the size of the study is modest. 

Such careful experimental design did yield good data quality, as the source of variation analysis did show 

that maternal obesity is the only dominate factor contributing to metabolomics difference in the cord blood. 

Additionally, we conducted rigorous statistical modeling and found that metabolites can distinguish the two 

maternal groups with accuracy as high as AUC=0.97 under cross-validation (or 0.947 after adjusting for 

confounding effects). Among all metabolites and physiological/demographic features selected by the 

combined model, galactonic acid has the largest impact on the model performance (importance score 

=86%). Galactonic acid is a sugar acid and breakdown product of galactose. When present in sufficiently 

high levels, galactonic acid can act as an acidogen and a metabotoxin which has multiple adverse effects 

on many organ systems. Galactonic acid, was previously shown to be associated with diabetes in a mouse 

model, due to a proposed mechanism of oxidative stress 48.  On the other hand, maternal ethnicity has the 

largest impact among physiological factors (importance score =84%).  

Few cord blood metabolomics studies have been carried out to associate with maternal obesity directly, or 

birth weight 23, 49, 50. In a recent Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study, Lowe et 

al. reported that branched-chain amino acids and their metabilites, such as valine, phenylalanie, 

leucine/isoleucine and AC C4, AC C3, AC C5 are associated with maternal BMI in a meta-analysis over 4 

large cohorts (400 subjects in each) 50. In another study to associate cord blood metabolomics with low 

birth weight (LBW), Ivorra et al. found that newborns of LBW (birth weight < 10th percentile, n = 20) had 

higher levels of phenylalanine and citrulline, compared to the control newborns (birth weight between the 

75th-90th percentiles, n = 30) 23. They also found lower levels of choline, proline, glutamine, alanine and 

glucose in new borns of LBW, however, there was no significant differences between the mothers of the 

two groups.  In our study, isoleucine is also identified as one of the 29 metablite features related to maternal 

obesity; although alanine iteself is not selected by the model to be a maternal obesity biomarker in cord 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://pubchem.ncbi.nlm.nih.gov/compound/acidogen
https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


18 
 

blood, we did find that alanine and aspartate metabolism are enriched in the cord blood samples associated 

with maternal obesity group. 

Metabolomics pathway analysis on the metabolite features in the model identified six filtered significant 

pathways (Figure 3A).  Among them, alanine and aspartate metabolism was previously reported to be 

associated with obesity 51 52. Aspartate and alanine cycling has known association with insulin resistance 

and metabolic related diseases, such as cancer 53, 54. Alanine, a highly gluconeogenic amino acid, contributes 

to the development of glucose intolerance in obesity, as circulating alanine levels are elevated in obese 

mothers. Our study also demonstrates that in infants of obese mothers this pathway is also enriched. 

Additionally, glycolysis is the metabolic pathway that converts glucose into pyruvate, while 

gluconeogenesis is the reverse generating glucose from non-carbohydrate carbon substrates. The offspring 

of obese, but not normal-weight mothers in another study demonstrated downregulation of the glycolysis 

pathway (p=0.049) 55.  Recent research showed that increase in hepatic gluconeogenesis was a major source 

of the total maternal glucose used by the fetus 56. Interestingly, 1,5-anhydrosorbitol, which has been shown 

to be a maternal marker of short-term glycemic control, was observed in our cord blood study as a marker 

too, likely from maternal origin. Thus, the changes in glycolysis and gluconeogenesis may suggest that 

obese mothers have greater glucose metabolism compared to normal controls.  Phosphatidylinositol (PI) 

metabolism is a key regulator for energy metabolism. We found elevated levels of lipids such as PC aa 40:3 

and PC ae 40:3 in obese subjects, in concert with this pathway.  Altogether, the cord blood in babies of 

obese mothers demonstrates pathways enriched in metabolic syndrome and obesity, even though the 

phenotypic differences (obesity) does not exist in the babies but only mothers. 

Notably, our study has identified 5 metabolites which are previously not reported in the literature with 

association to obesity or maternal obesity: galactonic acid, L-arabitol, indoxyl sulfate, 2-hydroxy-3-

methylbutyric acid and citric acid. Except citric acid, all the other four metabolites are increased in obese 

associated cord blood samples. 2-hydroxy-3-methylbutyric acid concentrations varied by ethnicity, but only 

in babies born from obese pre-pregnant mothers. 2-hydroxy-3-methylbutyric acid is known to accumulate 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2019. ; https://doi.org/10.1101/264374doi: bioRxiv preprint 

https://doi.org/10.1101/264374
http://creativecommons.org/licenses/by/4.0/


19 
 

in high levels during ketoacidosis and fatty acid breakdown. Therefore, the higher elevation of 2-hydroxy-

3-methylbutyric acid is likely due to increased cellular ketoacidosis and fatty acid breakdown in newborns 

from obese pre-pregnant mothers. To the best of our knowledge, this is the first study that shows differences 

in the 2-hydroxy-3-methylbutyric acid concentration levels among different ethnicities. Additionally, 

indoxyl sulfate is a metabolite of the amino acid tryptophan. As tryptophan is commonly found in fatty 

food, red meat and cheese, it is possible that high levels of indoxyl sulfate detected in the cord blood 

associated with obese pre-pregnant mothers could be due to the maternal high fat diet. Oppositely, citric 

acid, a compound associated with the citric acid cycle 57, is decreased in the cord blood associated with 

obese pre-pregnant mothers. This could be related to the lower vegetable and fruit consumptions among 

obese pre-pregnant mothers. In all, the data suggest that maternal obesity may impact offspring cord blood 

metabolites. Further research into the specific mode of action of these metabolites would be beneficial in 

understanding its association with maternal obesity. 

 

This study may benefit from improvement in the future follow-up. We determined the subjects’ ethnicity 

by self-reporting rather than genotyping, due to the restriction of the currently approved IRB protocol. 

Additionally, there has been debate on the use of BMI as an indicator of obesity 58, more direct measures 

of body fat could be considered such as skin-fold thickness measurements, bioelectrical impedance and 

energy x-ray absorptiometry 59, 60. Moreover, dietary and exposomic data will be very interesting to study 

in a follow-up large-scale cohort with IRB approval. Nevertheless, this study has established relationships 

between cord blood metabolomics with maternal pre-pregnant obesity, which in turn is associated with 

socioeconomic disparities.   

 

Conclusion 

 
In this study, we identified 29 cord blood metabolites that are associated with maternal obesity with high 

accuracy, in a discovery set of 57 samples and a validation set of 30 samples. These metabolites may have 

the potential to be maternal obesity-related bio-markers in newborns.  
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Tables  

 
Table 1: Demographical and clinical characteristics in obese and control groups. 

 Control(n=29) Case(n=28) P-value* Confounder** SOV*** 

 Mean (SD)     

Maternal age, years 32.48 (5.66) 32.10 (4.88) 0.78 Yes 0.79 

Paternal age, years 34.68(7.14) 35.21(6.43) 0.79 Yes 0.94 

Pre-pregnancy BMI, kg/m2 21.89(1.86) 33.51(4.49) 1.12  e-14 Yes 1.61 

Gestational Age, Weeks 39.04(0.218) 38.93(0.45) 0.3812 Not included  

Net weight gain  30.85(10.92) 29.4(13.55) 0.7335 

Baby weight (kg) 3.29(0.32) 3.54(0.5) 0.03 

Head Circle (cm) 34.89(1.10) 35.55(1.36) 0.05 

Baby length (cm) 51.3(1.9) 51.4(2.36) 0.8 

Parity   

                  0 

                  1 

                  2 

                  3 and above  

 

5 

16 

7 

1 

 

2 

7 

10 

9 

0.03 Yes 0.80 
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Gravidity  

                  1 

                  2 

                  3 

                  4 and above 

                 

 

5 

12 

7 

5 

 

 

1 

5 

8 

14 

 

0.12 Yes 0.98 

Maternal Ethnicity 

Caucasian  

Asian 

Pacific island 

 

6 

16 

7 

 

4 

7 

17 

 

0.01 Yes 0.73 

Paternal Ethnicity 

Caucasian  

Asian 

Pacific island 

 

8 

14 

7 

 

 

3 

9 

16 

 

0.03 Yes 0.88 

*Categorical variables were compared using chi-square test, whereas continuous variables 

were compared using t test. 

** Yes if the factor is accounted for when building the classifier model 

*** The source of variation of the factor. It represents the contribution of the factor to the 

variability of the metabolomics data. It is the F-stats that were taken from a linear regression 

ANOVA model comprising maternal and paternal age and ethnicity, parity and gravidity (Figure 

1A). 

 

 

 

Table 2: A list of metabolites associated with obese-control maternal status,selected by elastic net 

regularization based logistic regression. The metabolites are sorted by the average log fold change of cases 

over controls. 

 

ID 
Metabolite biochemical 
name 

Abbreviation Class 
PubChe
m ID 

Fold change a 
(Obese-Normal-

weight)  

logFC P_value 

1 
2-hydroxy-3-
methylbutyric acid 

2-hydroxy-3-
methylbutyric 
acid 

Hydroxy fatty 
acids 

99823 
-0.66 0.01 

2 
Galactonic acid Galactonic acid 

Medium-chain 
hydroxy acids 128869 

-0.63 0.02 

3 Phosphatidylcholine acyl-
alkyl C40:3 

PC ae C40:3 
Glycerophospholi
pid  

534817
45 

-0.62 0.02 
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4 Propionylcarnitine C3 Acylcarnitine NA -0.56 0.03 

5 Phosphatidylcholine diacyl 
C40:3 

PC aa C40:3 
Glycerophospholi
pid  

529227
03 

-0.56 0.03 

6 O-butanoyl-carnitine, 
butenylcarnitine 

C4:1 Acylcarnitine 
NA 

-0.56 0.03 

7 Hexanoylcarnitine, 
Fumarylcarnitine 

C6 (C4:1 -DC) Acylcarnitine 
NA 

-0.54 0.04 

8 Phosphatidylcholine diacyl 
C40:2 

PC aa C40:2 
Glycerophospholi
pid  

247790
63 

-0.48 0.07 

9 
Benzoic acid Benzoic acid 

Organic 
compound 
(benzoic acids) 243 

-0.45 0.08 

1
0 

Hydroxyhexadecenoylcarn
itine 

C16:1 -OH Acylcarnitine 
NA 

0.45 0.09 

1
1 

Myoinositol Myoinositol Cyclic polyalcohol  
NA 

0.39 0.14 

1
2 1,5-Anhydrosorbitol 

1,5-
Anhydrosorbito
l 

Monosaccharides 
64960 

-0.37 0.16 

1
3 

Isovalerylcarnitine, 
Valerylcarnitine, 
Methylbutyrylcarnitine 

C5 Acylcarnitine 
NA 

-0.37 0.16 

1
4 

Phosphatidylcholine acyl-
alkyl C40:2 

PC ae C40:2 
Glycerophospholi
pid  

534817
39 

-0.32 0.22 

1
5 

2-Hydroxybutyric acid 
2-
Hydroxybutyric 
acid 

Organic 
compounds 
(alpha hydroxy 
acids)  11266 

0.32 0.22 

1
6 

Glutaconylcarnitine, 
Mesaconylcarnitine 

C5:1-DC Acylcarnitine 
NA 

0.27 0.30 

1
7 

L-Arabitol L-Arabitol Sugar alcohols 
439255 

-0.27 0.31 

1
8 

Phosphatidylcholine acyl-
alkyl C40:6 

PC ae C40:6 
Glycerophospholi
pid  

247793
41 

0.26 0.32 

1
9 

Octadecenoylcarnitine C18:1 Acylcarnitine 
NA 

-0.23 0.38 

2
0 

Phosphatidylcholine acyl-
alkyl C34:3 

PC ae C34:3 
Glycerophospholi
pid  

534817
09 

0.22 0.40 

2
1 

Phosphatidylcholine diacyl 
C36:5 

PC aa C36:5 
Glycerophospholi
pid  

247787
23 

0.22 0.41 

2
2 

Oleic acid Oleic acid 
Unsaturated fatty 
acid  445639 

0.20 0.45 

2
3 

Phosphatidylcholine acyl-
alkyl C36:2 

PC ae C36:2 
Glycerophospholi
pid  

644307
0 

0.19 0.46 

2
4 

Indoxyl sulfate Indoxyl sulfate Arylsulfates 
10258 

-0.18 0.49 
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2
5 

Isoleucine Isoleucine Amino acids 
6306 

0.16 0.55 

2
6 

Phosphatidylcholine acyl-
alkyl C34:0 

PC ae C34:0 
Glycerophospholi
pid  

118031
70 

0.09 0.73 

2
7 

Citric acid Citric acid 

Organic 
compounds 
(tricarboxylic 
acids) 311 

0.06 0.82 

2
8 L-Aspartic acid L-Aspartic acid 

Organic 
compounds 
(aspartic acid) 5960 

0.04 0.89 

2
9 Malic acid Malic acid 

Organic 
compounds (beta 
hydroxy acids)  525 

0.01 0.98 

ID 
Metabolite biochemical 
name 

ChEBI METLIN KEGG InChiKey 

1 2-hydroxy-3-
methylbutyric acid 

60645 5396   NGEWQZIDQIYUN
V-UHFFFAOYSA-N 

2 
Galactonic acid 

16534 3336 C00880 RGHNJXZEOKUKBD
-MGCNEYSASA-N 

3 Phosphatidylcholine acyl-
alkyl C40:3 

NA NA   UMEDQTSZFVUAIR
-PBXDXGQFSA-N 

4 
Propionylcarnitine 

NA NA NA UFAHZIUFPNSHSL-
UHFFFAOYSA-N 

5 Phosphatidylcholine diacyl 
C40:3 

NA NA C00157 LZXZOHSYOCWXFB
-DWTYVZKUSA-N 

6 O-butanoyl-carnitine, 
butenylcarnitine 

NA NA NA 
  

7 Hexanoylcarnitine, 
Fumarylcarnitine 

NA NA NA VVPRQWTYSNDTE
A-UHFFFAOYSA-N 

8 Phosphatidylcholine diacyl 
C40:2 

NA NA C00157 FVYIRCQXEGIKHY-
QYQAGSNQSA-N 

9 
Benzoic acid 

30746 1297 C00180 WPYMKLBDIGXBT
P-UHFFFAOYSA-N 

1
0 

Hydroxyhexadecenoylcarn
itine 

NA NA NA WAGYLURELCUJPG
-RPZXQYRRSA-N 

1
1 Myoinositol 

17268 5221 C00137 CDAISMWEOUEBR
E-GPIVLXJGSA-N 

1
2 

1,5-Anhydrosorbitol 
16070 3775 C07326 MPCAJMNYNOGX

PB-SLPGGIOYSA-N 

1
3 

Isovalerylcarnitine, 
Valerylcarnitine, 
Methylbutyrylcarnitine 

NA NA NA 
IGQBPDJNUXPEMT
-UHFFFAOYSA-N 

1
4 

Phosphatidylcholine acyl-
alkyl C40:2 

NA NA   OQRGDDBNUMCN
LP-ABEXPZPBSA-N 
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1
5 

2-Hydroxybutyric acid 
1148 3783 C05984 AFENDNXGAFYKQ

O-UHFFFAOYSA-N 

1
6 

Glutaconylcarnitine, 
Mesaconylcarnitine 

NA NA NA JXVUHLILXGZLFR-
DNQSNQRASA-N 

1
7 L-Arabitol 

18403 141 C00532 HEBKCHPVOIAQTA
-IMJSIDKUSA-N 

1
8 

Phosphatidylcholine acyl-
alkyl C40:6 

NA NA   QBZALASVZLFAHF-
KYPHJRDXSA-N 

1
9 Octadecenoylcarnitine 

NA NA NA DGNPJQDFCXFOEZ
-OEPBMOORSA-N 

2
0 

Phosphatidylcholine acyl-
alkyl C34:3 

NA NA   QLEHHUPUHJPURI
-PWYDUFMYSA-N 

2
1 

Phosphatidylcholine diacyl 
C36:5 

NA NA C00157 KLTHQSWIRFFBRI-
CPFPVJFHSA-N 

2
2 

Oleic acid 
16196 190 C00712 ZQPPMHVWECSIRJ

-KTKRTIGZSA-N 

2
3 

Phosphatidylcholine acyl-
alkyl C36:2 

NA NA   FDNRZRXSENYWE
R-JTLDGTJHSA-N 

2
4 

Indoxyl sulfate 
43355 524   BXFFHSIDQOFMLE

-UHFFFAOYSA-N 

2
5 

Isoleucine 
17191 5193 C00407 AGPKZVBTJJNPAG-

WHFBIAKZSA-N 

2
6 

Phosphatidylcholine acyl-
alkyl C34:0 

NA NA   PXPSGTINXJQLBR-
VQJSHJPSSA-N 

2
7 

Citric acid 
30769 124 C00158 KRKNYBCHXYNGO

X-UHFFFAOYSA-N 

2
8 L-Aspartic acid 

17053 5206 C00049 CKLJMWTZIZZHCS-
REOHCLBHSA-N 

2
9 

Malic acid 
6650 118 C00711 BJEPYKJPYRNKOW

-UHFFFAOYSA-N 

(a) Fold change was calculated as mean (log2 (obese)) – mean (log2 (control))   

 

 

Figures legends 
 

Figure 1: Source of variation and accuracies of logistic regression models and important features selected 

by the metabolomics model. (A) ANOVA plot of clinical factors using the metabolites levels in cord blood 

samples. Averaged ANOVA F-statistics are calculated for potential confounding factors, including obesity, 

gravida, parity, paternal and maternal age and ethnicity. (B) Model accuracy represented by classification 
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Receiver Operator Curves (ROCs). (C) The ranking of contributions (percentage) of selected metabolomics 

features in the model. 

Figure 2: (A) Correlation coefficients among demographical/physiological factors and the metabolomics 

data. Blue color indicates positive correlations and red indicated negative correlations. (B) Receiver 

Operator Curves (ROCs) of the combined model with metabolomics and physiological/demographic data.  

(C). The ranking of contributions (percentage) of selected features in the model (B). 

 

Figure 3: Analysis of the 29 selected metabolites.  (A) Heatmap of selected metabolites separated by 

maternal group. * indicates metabolites that shows significant p-values (P<0.05, t-test) individually. (B) 

Pathway analysis of the 29 metabolites. X-axis shows size of metabolomic pathway. Y-axis shows the 

adjusted p-value calculated from CPDB tool. The size of the nodes represents the size of metabolomic 

pathway (number of metabolites involved in each pathway). The color of the nodes represents the source 

of these pathways.  

 

Figure 4: Box plot of 2-hydroxy-3-methylbutyric acid in the discovery cohort, stratified by (A) normal 

(n=29) and obese (n=28) subjects, and further by (B) the three ethnic groups: Asian, Caucasian and Native 

Hawaiian and Pacific Islanders (NHPI). 

 

Figure 5: Validation with a subsequent cohort (n=30). (A) Accuracy on classifying cases vs controls in the 

validation cohort, using the model built on the discovery cohort as shown in Fig 2(B). (B-C) Box plots of 

2-hydroxy-3-methylbutyric acid, stratified by (B) normal (n=18) and obese (n=12) subjects, and further by 

(C) ethnic groups of Asians/Caucasians vs. Native Hawaiian and Pacific Islanders (NHPI). Asians (n=2) 

and Caucasians (n=3) were combined, as the number of patients of these ethnicities in the obese group is 

small in the obese group. *: statistically significant with p-value <0.05 (t-test).  
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Supplementary Information 

 
The following supporting information is available free of charge at ACS website http://pubs.acs.org  

 
Figure S1: Discrimination of obese and normal groups by Partial Least Squares (PLS) method. (A) 

Discriminant analysis score plot for obese cases (Green) and normal (Red). (B) The accuracy of the 10 

fold cross-validation of the PLS-DA model. R2 is the sum of squares captured by the model; Q2 is the 

cross-validation of R2. 

Figure S2: Selection of metabolites using elastic net regularization. (A) Tuning alpha parameter, the 

parameter representing the degree of mixing between lasso (alpha=1) and the ridge regularization(alpha 

=0).  Y-axis is the root mean square error of the 10-fold cross-validation. We selected alpha =0.22 as it gave 

us the minimum error. (B) Tuning lambda, the parameter controlling the shrunk rate of coefficients in the 

linear model. Y-axis is the misclassification error of the 10-fold cross validation. X-axis is the range of 

lambda, with the optimal lambda=0.008 as it gave us the minimum misclassification error. (C) The 

shrinkage coefficients of the metabolites using tuned alpha and lambda. Only metabolites with non-zero 

coefficient were be selected.   

Figure S3: Accuracies of logistic regression models and important features selected by the clinical model. 

(A) Model accuracy represented by classification Receiver Operator Curves (ROCs). (B) The ranking of 

contributions (percentage) of selected clinical features in the model. 

Figure S4: Power analysis and sample size estimation plot using (A) 230 metabolites and (B) 29 

metabolites that were selected by elastic-net model.  

Table S1: Unknown metabolites from batch #1 

Table S2: Unknown metabolites from batch #2 

Table S3: Unknown metabolites from batch #3 
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