TY - JOUR T1 - G protein-coupled estrogen receptor regulates heart rate by modulating thyroid hormone levels in zebrafish embryos JF - bioRxiv DO - 10.1101/088955 SP - 088955 AU - Shannon N Romano AU - Hailey E Edwards AU - Xiangqin Cui AU - Daniel A Gorelick Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/05/09/088955.abstract N2 - Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. GPER mutant embryos showed a mean 50% reduction in T3 levels compared to wildtype, while exposure to exogenous T3 rescued the reduced heart rate phenotype in GPER mutants. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates basal heart rate by altering total T3 levels. ER -