RT Journal Article SR Electronic T1 HIGH FIDELITY DETECTION OF CROP BIOMASS QTL FROM LOW-COST IMAGING IN THE FIELD JF bioRxiv FD Cold Spring Harbor Laboratory SP 150144 DO 10.1101/150144 A1 Darshi Banan A1 Rachel Paul A1 Max Feldman A1 Mark Holmes A1 Hannah Schlake A1 Ivan Baxter A1 Andrew D.B. Leakey YR 2017 UL http://biorxiv.org/content/early/2017/06/14/150144.abstract AB Above-ground biomass production is a key target for studies of crop abiotic stress tolerance, disease resistance and yield improvement. However, biomass is slow and laborious to evaluate in the field using traditional destructive methods. High-throughput phenotyping (HTP) is widely promoted as a potential solution that can rapidly and non-destructively assess plant traits by exploiting advances in sensor and computing technology. A key potential application of HTP is for quantitative genetics studies that identify loci where allelic variation is associated with variation in crop production. And, the value of performing such studies in the field, where environmental conditions match that of production farming, is recognized. To date, HTP of biomass productivity in field trials has largely focused on expensive and complex methods, which – even if successful – will limit their use to a subset of wealthy research institutions and companies with extensive research infrastructure and highly-trained personnel. Even with investment in ground vehicles, aerial vehicles and gantry systems ranging from thousands to millions of dollars, there are very few examples where Quantitative trait loci (QTLs) detected by HTP of biomass production in a field-grown crop are shown to match QTLs detected by direct measures of biomass traits by destructive harvest techniques. Until such proof of concept for HTP proxies is generated it is unlikely to replace existing technology and be widely adopted. Therefore, there is a need for methods that can be used to assess crop performance by small teams with limited training and at field sites that are remote or have limited infrastructure. Here we use an inexpensive and simple, miniaturized system of hemispherical imaging and light attenuation modeling to identify the same set of key QTLs for biomass production as traditional destructive harvest methods applied to a field-grown Setaria mapping population. This provides a case study of a HTP technology that can deliver results for QTL mapping without high costs or complexity.