@article {Katsu151233, author = {Yoshinao Katsu and Kaori Oka and Michael E. Baker}, title = {Evolution of steroid specificity in human, chicken, alligator, frog and zebrafish mineralocorticoid receptors: Allosteric interactions affect steroid specificity}, elocation-id = {151233}, year = {2017}, doi = {10.1101/151233}, publisher = {Cold Spring Harbor Laboratory}, abstract = {We studied the response to aldosterone, 11-deoxycorticosterone, 11-deoxycortisol, cortisol, corticosterone, progesterone, 19-norprogesterone and spironolactone of human, chicken, alligator, frog and zebrafish full-length mineralocorticoid receptors (MRs) and truncated MRs, lacking the N-terminal domain (NTD) and DNA-binding domain (DBD), in which the hinge domain and ligand binding domain (LBD) were fused to a GAL4-DBD. Compared to full-length MRs, some vertebrate MRs required higher steroid concentrations to activate GAL4-DBD-MR-hinge/LBD constructs. For example, 11-deoxycortisol activated all full-length vertebrate MRs, but did not activate truncated terrestrial vertebrate MRs and was an agonist for truncated zebrafish MR. Progesterone, 19-norProgesterone and spironolactone did not activate full-length and truncated human, alligator and frog MRs. However, at 10 nM, these steroids activated full-length chicken and zebrafish MRs; at 100 nM, these steroids had little activity for truncated chicken MRs, while retaining activity for truncated zebrafish MRs, evidence that regulation of progestin activation of chicken MR resides in NTD/DBD and of zebrafish MR in hinge-LBD. Zebrafish and chicken MRs contain a serine corresponding to Ser810 in human MR, required for its antagonism by progesterone, suggesting novel regulation of progestin activation of chicken and zebrafish MRs. Progesterone may be a physiological activator of chicken and zebrafish MRs.}, URL = {https://www.biorxiv.org/content/early/2017/06/16/151233}, eprint = {https://www.biorxiv.org/content/early/2017/06/16/151233.full.pdf}, journal = {bioRxiv} }