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Supplementary Text

Phenotypic model equations (KPL-IFF)

The ordinary-differential-equations (ODEs) corresponding to kinetic proofreading with limited signalling coupled
to incoherent feedforward (KPL-IFF, Figure 3d) are,

dL/dt = −konLR+ koff(C0 + C1 + C2)

dR/dt = −konLR+ koff(C0 + C1 + C2)

dC0/dt = konLR− (koff + kp)C0

dC1/dt = kpC0 − (koff + φkp)C1

dC2/dt = φkpC1 − koffC2

dY/dt = γy+(YT − Y )− γy−Y + λC1(YT − Y )

dP/dt = γp+(PT − P )− γp−P + δY (PT − P )− µC1P

where kon and koff are the TCR-pMHC kinetic rate constants, kp is the kinetic proofreading rate, φ is the lim-
ited signalling parameter, λ is the amplification parameter, µ is the inhibition parameter, and δ is the activation
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parameter. We solve the system in the steady-state to obtain the following,

Ĉ0 =

(
koff

koff + kp

)
ĈT

Ĉ1 =

(
koff

koff + kp

)(
kp

koff + φkp

)
ĈT

Ĉ2 =

(
φkp

koff + kp

)(
kp

koff + φkp

)
ĈT

Ŷ =
1 + λ̂Ĉ1

1 + λ̂Ĉ1 + γ̂y

P̂ =
1 + δ̂Ŷ

1 + δ̂Ŷ + γ̂p + µ̂Ĉ1

with

ĈT =
(
(LT /RT + 1 + koff/konRT )−

√
(LT /RT + 1 + koff/konRT )2 − 4LT /RT

)
/2

where we have used ‘hat’ quantities to represent nondimensionalized concentrations and parameters: ĈT =
CT /RT , Ĉ0 = C0/RT , Ĉ1 = C1/RT , Ĉ2 = C2/RT , Ŷ = Y/YT , P̂ = P/PT , λ̂ = λRT /γ

y
+, γ̂y = γy−/γ

y
+,

δ̂ = δYT /γ
p
+, γ̂p = γp−/γ

p
+ and µ̂ = µRT /γ

p
+.

The model calculations in Figure 3d were generated using kp = 0.01 s−1, φ = 0.1, γ̂p = γ̂y = 500, konRT = 1,
λ̂ = 10000, δ̂ = 5000, and µ̂ = 50000 with the indicated variation of LT /RT (x-axis) and a variation of koff from
10−4 to 102 s−1 (coloured lines). We provide a web applet that can be used to examine the predicted dose-response
from this phenotypic model for any parameter values (Applet S1).

Systematic analysis of phenotypic model network architectures

The key objective of the systematic analysis is to determine whether other models can also produce the key features
that the kinetic proofreading with limited signalling coupled to incoherent feedforward (KPL-IFF) model is able
to produce (Figure 3d, Table 1).

We performed two systematic analyses of phenotypic models: a simpler systematic analysis looking at 304 net-
works (Figure 4a) and a more complex analysis looking at 26,069 networks (Figure 4e). Given that the method-
ology is identical for both analyses and that the simpler analysis is nested within the more complex analysis,
this section will focus on describing the more complex analysis. The methodology extends previous efforts to
systematically study pre-defined network architectures that can produce specific phenotypes (1, 2).

Defining the set of network architectures. The set network architectures that we examine are defined based on the
possible reactions that we consider. Each network has a receptor that can undergo kinetic proofreading with 4
steps (C0, C1, C2, and C3) and 3 additional nodes (X , Y , and P ). We consider all possible networks that have 4
reaction arrows (either activating or inhibiting) between the receptor, X , Y , and P (Figure 4d). Note that every
network contains the 4 kinetic proofreading states. The total number of reaction arrows is 36 and therefore the total
number of networks is 58,905 (36 choose 4). Without loss of generality we identify P as the output and remove
all networks where there is no connection between any of the kinetic proofreading states and P (either directly
or indirectly), which reduces the number of networks to 26,069. We omit networks where X , Y , or P modulate
kinetic proofreading to maintain computational feasibility. Each network contains a total of 6 free parameters; 2
kinetic proofreading parameters (kp and φ) and 1 parameter for each of the 4 reaction arrows.
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A scale-free comparison measure. The large number of networks that are to be systematically examined means
that it is not feasible to manually identify (i.e. by eye) whether a specific proposed network can also produce the
output of the KPL-IFF network (Figure 3d). To automate identification we constructed a quantitative measure that
can compare the output of the KPL-IFF network to a specific proposed network.

First, we define four elementary numbers for any dose-response curve (Figure S4a): the value of P at the lowest
concentration (W1), the maximum value of P (W2), the value of P at the largest concentration (W3), and the
concentration of ligand producing half-maximal response (EC50). In cases where two values of EC50 are possible
the lower value is used (i.e. to the left of the peak in a bell-shaped dose-response).

Second, we define four metrics that capture the key qualitative features of the KPL-IFF output,

F1 = W1/W2

F2 = (W3/W2)/(W
∗
3 /W

∗
2 )

F3 = W2/W
∗
2

F4 = EC50/EC
∗
50

where the superscript ∗ refers to the values for an index ligand, which we take to be the highest affinity ligand.
These four metrics can be calculated for each ligand and plotted as a function of the ligand koff value for the KPL-
IFF network (Figure S4b-g). The first measure (F1) ensures that the dose-response curve exhibits an increase. The
second measure (F2) ensures that a bell-shaped dose-response is observed. The third measure (F3) ensures that
the peak height is similar for high affinity ligands but decreases for low affinity ligands. The fourth measure (F4)
ensures that ligands of intermediate affinity are first to increase as a function of dose. The normalisation to an index
ligand means that these measures are largely independent of the absolute values of L (dose) and P (response). Note
that these measures rely on fold-changes and therefore are independent of the absolute scale of the response (value
of P ).

Lastly, we define a single measure that can compare the similarity between F1, F2, F3, and F4 (across a wide range
of koff values) for any specific network and the the KPL-IFF network,

SSR =
N∑
i=1

(F i1 − F̂ i1)
2 + (F i2 − F̂ i2)

2 + (F i3 − F̂ i3)
2 + (F i4 − F̂ i4)

2 (1)

where the index i represents each ligand (i = 1 to i = N ligands with N = 12 in our example). The values of F
with a hat represent those for the KPL-IFF network whereas the non-hat values are for the specific network being
tested.

In summary, the output of any proposed network are the values of P as a function of ligand concentrations for 12
ligands with different values of koff. This output is used to calculate F1, F2, F3, and F4 for each ligand which can
then be used to compute SSR. Proposed networks with small SSR values are more likely to be compatible with the
output of the KPL-IFF network and therefore the key features.

Workflow. The workflow for the systematic analysis is shown in Figure S4h. The first step is to select one of
the 26,069 networks to analyse. The next two steps aim to determine the values of the 6 model parameters that
produce the smallest value of the SSR for the selected network. First, the method performs 1 million evaluations of
the network where the 6 model parameters for each evaluation are randomly sampled (uniform distribution in log-
space) and the SSR for each evaluation is determined. Second, the values of the 6 parameters for the 15 network
evaluations that produced the smallest values of SSR (from the 1 million that were sampled) are then used as initial
conditions for a non-linear optimisation algorithm (fminsearch in Matlab) that uses a modified simplex method to
further minimize the SSR. Finally, the 6 parameter values that produced the smallest SSR (among the 15 optimised
parameter values) are recorded along with the associated SSR for the network. The procedure is repeated for all
26,069 networks.
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Given that the analysis relies on two steps that have a stochastic element (random parameter sampling and further
optimisation) we repeated the analysis 3 times for both the simpler and complex analysis but found no difference
to the results (see below) suggesting that the search algorithm had sufficient coverage of parameter space.

Results. The output of the analysis is a list of the 26,069 networks (or the 304 networks for the simpler analysis)
ordered from the smallest to the largest SSR. We summarise this output in Movie S2 (or Movie S1 for the simpler
analysis) where each 1 second frame corresponds to a network architecture evaluated with the 6 optimised param-
eter values. By examining the movies we find that 274 of the 26,069 networks in the complex analysis (or 1 of the
304 networks in the simpler analysis) are compatible with the key features as they are able to reproduce the output
of the KPL-IFF network. Importantly, all 274 compatible networks contained the same underlying KPL-IFF mech-
anism. In many cases these more complex networks were reduced to the same KPL-IFF model shown in Figure 3d
(e.g. networks 2, 4, 7 to 21, etc) whilst in other cases the incoherent feedforward exhibited indirect inhibition (e.g.
networks 1, 3, 5, 6, etc) but operated in a parameter regime where inhibition saturated after activation.

Mathematical model. The systematic analysis relies on evaluating many network architectures. To do this, we have
implemented a single general mathematical model that can be reduced to all 26,069 networks by setting appropriate
reactions to zero.

The ordinary-differential-equations (ODEs) corresponding to the most general mathematical model are,

dL/dt = −konLR+ koffCT

dR/dt = −konLR+ koffCT

dC0/dt = konLR− (koff + kp)C0

dCi/dt = kpCi−1 − (kp + koff)Ci 1 ≤ i < N − 1

dCN/dt = kpCN−1 − (koff + φkp)CN

dCN+1/dt = φkpCN − koffCN+1

dX/dt = γx+(XT −X)− γx−X

+(~λx · ~C)(XT −X)− (~µx · ~C)X
+(ηy+Y + ηp+P )(XT −X)− (ηy−Y + ηp−P )X

dY/dt = γy+(YT − Y )− γy−Y

+(~λy · ~C)(YT − Y )− (~µy · ~C)Y
+(βx+X + βp+P )(YT − Y )− (βx−X + βp−P )Y

dP/dt = γp+(PT − P )− γp−P

+(~λp · ~C)(PT − P )− (~µp · ~C)P
+(δx+X + δy+Y )(PT − P )− (δx−X + δy−Y )P

where CT =
N+1∑
i=0

Ci and ~λx · ~C is the vector dot product between the parameter vector (~λx = [λx0 , λ
x
1 , ...λ

x
N+1])

and the vector of complexes (~C = [C0, C1, ..., CN−1, CN , CN+1]). We solve the ODE system in the steady-state
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to obtain,

C0 = α0(1− α)CT

C1 = α1(1− α)CT
...

CN−1 = α(N−1)(1− α)CT

CN = αN
(

koff

koff + φkp

)
CT

CN+1 = αN
(

φkp

koff + φkp

)
CT

where

CT
RT

=

LT
RT

+ 1 +
koff

konRT
−

√(
LT
RT

+ 1 +
koff

konRT

)2

− 4
LT
RT

 /2,

α =
kp

koff + kp
,

and the equations for X , Y , and P simplify to,

0 = (1−X)− γxmX + (~λxm · ~C)(1−X)− (~µx
m · ~C)X + (αy

+mY + αp
+mP )(1−X)− (ηy−mY + ηp−mP )X

0 = (1− Y )− γymY + (~λym · ~C)(1− Y )− (~µy
m · ~C)Y + (βx

+mX + βp
+mP )(1− Y )− (βx

−mX + βp
−mP )Y

0 = (1− P )− γpmP + (~λpm · ~C)(1− P )− (~µp
m · ~C)P + (δx+mX + δy+mY )(1− P )− (δx−mX + δy−mY )P

where we have nondimensionalized concentrations (R byRT , Ci byRT ,X byXT , Y by YT , and P by PT ) but re-
tained original notation for clarity. The subscriptm indicates that the parameter has been modified as a result of the
nondimensionalization process: γxm = γx−/γ

x
+, γym = γy−/γ

y
+, γpm = γp−/γ

p
+, ~λxm = ~λxRT /γ

x
+, ~λym = ~λyRT /γ

y
+,

~λpm = ~λpRT /γ
p
+, ~µxm = ~µxRT /γ

x
+, ~µym = ~µyRT /γ

y
+, ~µpm = ~µpRT /γ

p
+, ηy+m = ηy+YT /γ

x
+, ηp+m = ηp+PT /γ

x
+,

ηy−m = ηy−YT /γ
x
+, ηp−m = ηp−PT /γ

x
+, βx+m = βx+XT /γ

y
+, βp+m = βp+PT /γ

y
+, βx−m = βx−XT /γ

y
+, βp−m =

βp−PT /γ
y
+, δx+m = δx+XT /γ

p
+, δy+m = δy+YT /γ

p
+, δx−m = δx−XT /γ

p
+, and δy−m = δy−YT /γ

p
+.

In the case of the more complex analysis (4 nodes, 4 reaction arrows) the number of kinetic proofreading steps was
4 (N = 3). The ratio of background inhibition to background activation of X , Y , and P were fixed at 500 so that
without any ligand the concentrations of X , Y , and P were near zero (γxm = γym = γpm = 500). The remaining
parameters were set to 0 with the exception of kp, φ, and 4 other parameters that defined the network architecture.
The same procedure was carried out for the simpler analysis (3 nodes, 3 reaction arrows) except that the number
of kinetic proofreading steps was 3 (N = 2) and all reactions to and from X were set to zero.

The mathematical model was numerically solved using fzero in Matlab (Mathworks, MA), which allowed the code
to be translated to C++ by the Matlab Coder toolbox. We found that the solution converged rapidly when using 0
as the initial guess.

KPL-IFF model parameters compatible with phenotypic features

To determine the set of parameters in the KPL-IFF model (λ, δ, µ, kp, φ) compatible with the key features we
utilised Approximate Bayesian Computations with Sequential Monte Carlo (ABC-SMC) (3, 4). We used the SSR
(described above) as the summary statistic and terminated the algorithm when > 10, 000 particles were found with
SSR < 1. Distributions of the 5 parameters along with their pairwise correlations are shown in Figure S6.
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Negative feedback cannot produce a bell-shaped dose-response

The systematic analysis described in the previous section (see also main text and Fig. 4) has revealed that negative
feedback, although well known to produce oscillations in time, cannot produce a bell-shaped dose-response in
the steady-state. In this section we provide further evidence for this numerical result by providing an intuitive
explanation together with an analytical proof.

First, consider a two component negative feedback (Figure S5a) whereby P activates Y and Y in turn inhibits P. As
the activator of P increases (C1 in this example), P will increase. In order to decrease P (to produce a bell-shaped
dose-response) Y needs to inhibit P more strongly at larger values of P . But a larger value of active Y (needed
for stronger inhibition of P ) requires larger value of active P . Therefore, P and Y are subjected to two conflicting
requirements which cannot be satisfied simultaneously. It follows that a bell-shaped dose-response for P cannot
be achieved in the steady-state.

In what follows we provide a mathematical proof that a bell-shaped dose-response cannot be produced with neg-
ative feedback in the steady-state. To do this, we derive an implicit expression for P and show that the first
derivative cannot be zero for any positive reaction rate constants. The non-linear coupled system of ODEs for the
two component negative feedback can be written as follows,

dŶ
dt

=
ηP+

1+
(
ρ̂

P̂

)n + γY+ −

[
ηP+

1+
(
ρ̂

P̂

)n + γY+ + γY−

]
Ŷ (2)

dP̂
dt

= (λĈ1 + γP+)(1− P̂ )− β̂Y− Ŷ P̂ − γP− P̂ (3)

where Ŷ and P̂ are non-dimensional (Ŷ = Y/YT , P̂ = P/PT ) with ρ̂ = ρ/PT , and β̂Y− = βY−YT . Note that all
reactions considered in the main text are based on non-saturating mass action but in this analysis we have included
a more general saturating inhibition, which can be reduced to mass action in the limit of large ρ̂ with n = 1. In the
steady-state we find,

Ŷ =
(λĈ1 + γP+)(

1
P̂
− 1)− γP−

β̂Y−

which, we substitute into the steady-state of equation (2) to obtain,

f = 1−

1 + γY−
ηP+

1+
(
ρ̂

P̂

)n + γY+


[
κ( 1

P̂
− 1)− γP−

β̂Y−

]
= 0 (4)

where κ = λĈ1 + γP+ contains the input from Ĉ1. To determine if P can exhibit a bell-shaped dose-response as
a function of Ĉ1 we determine the value of the parameters where the first derivative of P is zero. To do this, we
differentiate P with respect to κ,

df
dκ

= −


−nγY−ηP+

(
ρ̂

P̂

)n
dP̂
dκ

P̂

(
ηP+

1+
(
ρ̂

P̂

)n + γY+

)2 [
1 +

(
ρ̂

P̂

)]2

[
κ( 1

P̂
− 1)− γP−

β̂Y−

]

−

1 + γY−
ηP+

1+
(
ρ̂

P̂

)n + γY+


[

1

β̂Y−

(
P̂ − κdP̂

dκ

P̂ 2
− 1

)]
= 0 (5)
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At dP̂
dκ = 0, equation (5) reduces to

−

1 + γY−
ηP+

1+
(
ρ̂

P̂

)n + γY+


[

1

β̂Y−

(
1

P̂
− 1

)]
= 0

which can be satisfied when

1 +
γY−

ηP+

1+
(
ρ̂

P̂

)n + γY+

= 0 (6)

and/or when

1

β̂Y−

(
1

P̂
− 1

)
= 0 (7)

Given that all reaction rate constants and concentrations must be positive it is clear that there are no values of P̂
and reaction rate constants that satisfy equation (6). We do find that equation (7) can be satisfied when P̂ = 1 (i.e.
P̂ is maximally active) but at this value of P̂ we find that the equation for f ,

f = 1 +
γP−

β̂Y−

1 + γY−
ηP+

1+ρ̂n + γY+

 = 0

which, as above, can never be realised because all reaction rates must be equal or greater than zero. Therefore, we
conclude that a simple negative feedback motif cannot explain the observed optimum in the dose-response curve.

We have also performed this analysis on a 3 node network with non-saturating mass action (Figure S 5d-f). As
before, C1 activates P which in this network indirectly activates the inhibitor X by the activation of Y . In this
architecture we observe oscillations in time (Figure S5e) but a bell-shaped dose-response in the steady state was
not possible (Figure S5f). In what follows we show that this model is a special case of the model presented above
and in this way we show that it cannot produce bell-shaped dose-response curves.

The system of ODEs for this model are,

dX̂
dt

= η̂Y+ Ŷ (1− X̂) + γX+ (1− X̂)− γX− X̂ (8)

dP̂
dt

= (λĈ1 + γP+)(1− P̂ )− γP− P̂ − β̂X− X̂P̂ (9)

dŶ
dt

= (δ̂P+P̂ + γY+ )(1− Ŷ )− γY− Ŷ (10)

where X̂ = X
XT

, P̂ = P
PT

, Ŷ = Y
YT

, η̂Y+ = ηY+YT , β̂X− = βX−XT and δ̂P+ = δP+PT . In the steady-state we find,

X̂ =
(λĈ1+γP+ )( 1

P̂
−1)−γP−

β̂X−

Ŷ = 1

1+
γY−

ˆ
δP+ P̂+γY+

,
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which can be substituted into the steady-state expression for dX̂
dt to obtain an implicit equation for P̂ in terms of

the parameters of the system,

g = 1−

1 +
γX−

η̂Y+

1+
γY−

ˆ
δP+ P̂+γY+

+ γX+


κ
(

1
P̂
− 1
)
− γP−

β̂X−

 = 0 (11)

where again, κ = λĈ1 + γP+ . When n = 1 the equation for f (derived above) is identical to the equation of g
with the exception of a constant. Given that the conclusions above are independent of n it follows that we can
conclude that this 3 node network with negative feedback cannot exhibit bell-shaped dose-response curves in the
steady-state. This is consistent with results from the systematic network analysis that did not find any negative
feedback networks compatible with the phenotypic features.

Predicted T cell activation by co-presentation of pMHC ligands in the KPL-IFF model

The KPL-IFF model was extended to include an additional pMHC by first calculating the fraction of TCR bound
to each ligand at steady-state using the following set of coupled ODEs,

dL1/dt = −k1onL
1R+ k1offC

1

dL2/dt = −k2onL
2R+ k2offC

2

dR/dt = −k1onL
1R+ k1offC

1 − k2onL
2R+ k2offC

2

dC1/dt = k1onL
1R− k1offC

1

dC2/dt = k2onL
2R− k2offC

2

where C1 and C2 are the concentration of TCR bound to the first and second pMHC ligands. These ODEs were
integrated to the steady-state to determine C1 and C2, which were used to calculate P as follows,

Ĉ1
1 =

(
k1off

k1off + kp

)(
kp

k1off + φkp

)
Ĉ1

Ĉ2
1 =

(
k2off

k2off + kp

)(
kp

k2off + φkp

)
Ĉ2

Ŷ =
1 + λ̂(Ĉ1

1 + Ĉ2
1 )

1 + λ̂(Ĉ1
1 + Ĉ2

1 ) + γ̂y

P̂ =
1 + δ̂Ŷ

1 + δ̂Ŷ + γ̂p + µ̂(Ĉ1
1 + Ĉ2

1 )

where superscripts indicate ligand identity (1 or 2). Parameter values are identical to those used to generate Figure
3d with the ligand concentration and kinetic parameters as indicated in Figure 5.
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Model of kinetic proofreading with limited signalling followed by TCR internalisation

The following ODEs were used to model kinetic proofreading with limited signalling with constitutive and induced
TCR internalisation,

dL/dt = −konLR+ koff(C0 + C1 + C2) + β(C0 + C1 + C2)

dR/dt = −konLR+ koff(C0 + C1) + α− βR

dC0/dt = konLR− (koff + kp + β)C0

dC1/dt = kpC0 − (koff + φkp + β)C1

dC2/dt = φkpC1 − (koff + β)C2

where α and β are the constitutive receptor recycling rates. In this model, it is assumed that C2 represents a
state where the receptor is tagged for induced internalisation so that immediately upon pMHC unbinding it is
internalised (i.e. koffC2 does not appear in the equation for R). The model is integrated to the steady-state using
the Matlab (Mathworks, MA) function ode23s with the parameters indicated in Figure S8.
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Supplementary Movies

Movie S1. Systematic analysis of 304 network architectures (Figure 4a). Each 1 second frame shows the network
architecture (left) and the network output (right). The network architecture displays the 3 receptor states (C0, C1,
and C2) together with Y and P where green arrows indicate activation and red arrows indicate inhibition (mag-
nitudes of inhibition arrows are in italics). The network output displays P (y-axis) over the ligand concentration
(x-axis) for ligands with decreasing koff (blue to red). Networks appear in ascending order of the SSR with net-
works that are better able to produce the phenotypic features appearing first. See Supplementary Information for
computational details.

Movie S2. Systematic analysis of 26,069 network architectures (Figure 4e). Movie generated as described (see
Movie S1) except that one additional receptor state and one additional node were included (see main text and
Figure 4e for details). This movie can be found at this link: https://dx.doi.org/10.6084/m9.figshare.3491792.v1

Supplementary Applet

Applet S1. A Javascript applet that can be used to examine how the 5 model parameters (kp, φ, µ, λ, and δ)
modulate the predicted dose-response for ligands of varying affinities for the KPL-IFF model (Figure 3d). Default
parameter values in the applet are the same as those used to generate Fig. 3d. This applet can be found at this link:
https://dx.doi.org/10.6084/m9.figshare.3491807.v1

Supplementary Table

pMHC Peptide koff (s
-1) SEM kon (M

-1s-1) SEM KD (M) SEM

9V SLLMWITQV 8.26E-05 1.03E-06 1.17E+06 2.80E+04 7.07E-11 2.57E-12

4A SLLAWITQV 1.54E-03 1.77E-05 1.41E+06 1.15E+05 1.09E-09 1.01E-10

5Y SLLMYITQV 1.67E-03 1.18E-04 1.26E+06 3.14E+05 1.33E-09 4.26E-10

8S SLLMWITSV 1.33E-02 2.29E-03 1.03E+06 2.72E+05 1.29E-08 5.64E-09

6T SLLMWTTQV 7.14E-02 1.43E-02 8.64E+05 2.70E+05 8.27E-08 3.58E-08

5F SLLMFITQV 1.01E-01 7.08E-03 1.09E+06 2.03E+05 9.31E-08 2.39E-08

8K SLLMWITKV 8.33E-02 6.46E-03 4.10E+05 2.98E+04 2.03E-07 3.05E-08

5P SLLMPITQV 9.80E-01 7.76E-02 2.02E+06 2.39E+05 4.85E-07 9.59E-08

4A8K SLLAWITKV 1.95E+00 5.31E-02 1.10E+06 1.34E+05 1.78E-06 2.65E-07

4A5A SLLAAITQV 5.64E+00 5.62E-01 2.52E+05 5.47E+04 2.24E-05 7.10E-06

4A5P8K SLLAPITKV >1.0E-04

Table S1: Measured binding properties for the c58c61 TCR for the indicated peptide in complex with HLA-
A*02:01 (pMHC ligand). Results are averages of at least 3 measurements.
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Supplementary Figures

A
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pMHC - 4A

pMHC - 8K

pMHC - 5P

[TCR] (nM)

Figure S1: Representative surface plasmon resonance (SPR) measurements of TCR-pMHC interactions (Table S1).
All experiments are performed by injecting recombinant c58c61 TCR over immobilised recombinant pMHC (see
Materials & Methods). The precise protocol for determining the kinetic rate constants (kon and koff) was dependent
upon the affinity regime of the TCR-pMHC interaction. a-b) In the case of TCR-pMHC interaction with small koff,
a single concentration of TCR is injected over the surface. The value of koff is determined from the dissociation
curve (right) which is used to fit the association curve (middle) with exponential rate of kon[TCR]+koff. c-d) In
the case of TCR-pMHC interactions with a larger koff, multiple concentrations of the TCR were injected over the
surface. The value of koff was determined from the dissociation curve and the value of kon was either determined
from fitting the association curves (as in c) or by first determining the KD (kon = koff/KD, as in d). When kinetics
were too rapid to be resolved we only report the value of KD. See Materials & Methods for a detailed protocol and
mathematical analysis of the data.
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Figure S2: a) Expression of the c58c61 TCR on primary CD8+ T cells and Jurkat T cells using the biotinylated
high affinity pMHC (9V) with R-PE-conjugated streptavidin (red line) or only R-PE-conjugated streptavidin as a
staining control (grey line). The Jurkat T cells were sorted following transduction. b,c) Functional assays (top)
together with pMHC immobilisation controls (bottom) for b) primary CD8+ T cells and c) Jurkat T cells with a
larger number of higher affinity ligands. Functional assays were corrected for differences in pMHC immobilisation
(see Materials & Methods). d) The transcriptional activity of NFAT in Jurkat T cells was determined at 16 hours
for the indicated pMHC ligands revealing qualitatively similar behaviour to IL-8. This reporter of T cell activation
was not used routinely because of the poor signal-to-noise ratio of the assay. e) Activation assays with primary
T cells were performed as described in the main text for the indicated pMHC except that brefeldin A was added
to block cytokine secretion for the last 2 hours of the assay (reducing the amount of supernatant cytokine in the
cell population assay, left column) at which point intracellular cytokine levels were determined by flow cytometery
(right column). The supernatant concentration of cytokine (cell population assay) compares favorably with the
mean intensity of cytokine in the positive population (single cell assay). All data are representative of at least 3
independent experiments.
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Figure S3: The concentration of TCR-pMHC complexes that regulate the activation of P for the phenotypic model
calculations in Figure 3. The concentration of a) C0 in the occupancy model, b) C0 in the occupancy coupled to
incoherent feedforward model, c) C1 in the kinetic proofreading coupled to incoherent feedforward model, and d)
C1 in the KPL-IFF model. The the maximum concentration of signalling competent TCR-pMHC complexes for
the occupancy models (a,b) is independent of the TCR-pMHC off-rate (koff) whereas for the kinetic proofreading
models (c,d) the maximum concentration of signalling competent TCR-pMHC complexes is dependent on the
off-rate.
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Figure S4: Quantitative metrics for comparing signalling network outputs. a) Schematic of a bell-shaped dose-
response showing the definition of W1, W2, W3, and EC50. b) Schematic of the network architecture of the
KPL-IFF phenotypic model where green arrows indicate activation and red arrows indicate inhibition with the
magnitude of the arrow indicated (compare to Figure 3d). d) Output of the KPL-IFF phenotypic model shown in B
with 12 pMHC ligands whose koff varies from 10−4 (red) to 10 (blue). d-g) The values of the metrics F1, F2, F3,
and F4 as a function of koff for the output in panel c. h) Workflow of the systematic network search algorithm.
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Figure S5: Negative feedback can produce oscillations in time but not bell-shaped dose-response curves in the
steady-state. a) A two node negative feedback, whereby P activates its inhibitor Y (see Figure 4d) can b) produce
oscillations in P over time but c) not bell-shaped dose-response in the steady-state. d) A three node negative
feedback, where P activates Y which in turn activates X that is able to inhibit P can (as for the two component
negative feedback) e) produce damped oscillations in P over time but f) not bell-shaped dose-response in the
steady-state. See Supplementary Information for calculation details.
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Figure S6: KPL-IFF model parameters compatible with phenotypic features. The probability density of the in-
dicated parameter is shown along the diagonal along with pairwise correlations in the off-diagonals with yellow
indicating a high frequency of occurence (scale bar indicates number of occurrences). Vertical dashed lines in the
probability densities indicate the default parameter used in Figure 3d. We find a broad range of parameter values
compatible with phenotypic features but with certain relationships amongst them. For example, we find that µ > δ
but both parameters can vary more than 1000-fold provided this relationship is maintained. See Supplementary
Information for calculation details.
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Figure S7: Possible relationships between the phenotypic model modules and known T cell signalling components.
a) Kinetic proofreading can be realised by the sequential phosphorylation of the T cell receptor ITAMs and/or the
recruitment of Lck associated coreceptors (5) (not shown) followed by the recruitment and subsequent activation
of ZAP-70 (6) . b) Limited signalling of the T cell receptor may occur as a result of ubiquintination (7) and/or the
receptor entering membrane environments that are incompatible with signalling (8). c) Incoherent feedforward in
the signalling cascade initiated by the T cell receptor may occur between LAT and Ras (9). Phosphorylated LAT
provides docking sites for Grb2 which recruits the guanine nucleotide exchange factor (GEF) SOS that promotes
the formation of the active form of Ras (RasGTP) that promotes downstream signalling. However, phosphorylated
LAT also provides docking sites for DOK1/DOK2 which recruits the GTPase activating protein (GAP) RasGAP
that promotes the formation of RasGDP and hence reduces the active form of Ras. Although not depicted in the
schematic, incoherent feedforward may also arise from the TCR signalosome because it is able to associate with
both a tyrosine kinase (ZAP-70) and a tyrosine phosphatase (SHP-1) (10).
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Figure S8: Internalisation of TCR following signalling does not produce bell-shaped dose-responses in the steady-
state. a) Schematic of internalisation model that includes kinetic proofreading with limited signalling followed
by TCR internalisation (from state C2) with basal recycling of receptor at the cell surface. b) Concentration of
signalling TCR and c) total surface TCR over ligand concentrations for different ligand affinities at steady-state.
Parameters: kp = 0.01 s−1, φ = 0.1, α = 0.01 µm−2s−1, β = 0.001 s−1 with a variation of koff from 10−4 to 102

s−1 (coloured lines).
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