# Supplementary material

# Supplementary Table S1.

Biometric and metabolic parameters of mice fed a chow diet.

| Parameter                 | Genotype | Mean ± SEM     | р     |
|---------------------------|----------|----------------|-------|
| Body weight               | WT       | 23.63 ± 0.6    | 0 122 |
| (grams)                   | S196A    | 21.70 ± 0.75   | 0.132 |
| % Liver weight            | WT       | 4.69 ± 0.25    | 0.241 |
| (Liver g/Body g)          | S196A    | 4.41 ± 0.07    | 0.241 |
| Plasma glucose            | WT       | 5.35 ± 0.10    | 0.268 |
| (mmol/L)                  | S196A    | 4.63 ± 0.22    | 0.200 |
| Plasma insulin            | WT       | 0.34 ± 0.05    | 0 102 |
| (ng/ mL)                  | S196A    | 0.87 ± 0.24    | 0.105 |
| Hepatic triglycerides     | WT       | 51.95 ± 5.06   | 0.116 |
| (μg / mg protein)         | S196A    | 37.63 ± 4.50   | 0.110 |
| Hepatic total cholesterol | WT       | 98.96 ± 10.48  | 0.688 |
| (μg / mg protein)         | S196A    | 104.43 ± 4 .05 | 0.000 |

### Supplementary Table S2.

| Parameter        | Genotype | Mean ± SEM    | p-value  |
|------------------|----------|---------------|----------|
| Body weight      | WT       | 21.36 ± 0 .41 | 0.012    |
| (grams)          | S196A    | 19.89 ± 0.35  | 0.012    |
| % Liver weight   | WT       | 9.30 ± 0.17   | 3 06E 12 |
| (Liver g/Body g) | S196A    | 6.41 ± 0.18   | 3.00E-12 |
| Plasma glucose   | WT       | 4.49 ± 0.30   | 0.762    |
| (mmol/L)         | S196A    | 4.61 ± 0.24   | 0.702    |
| Plasma insulin   | WT       | 0.60 ± 0.10   | 0.408    |
| (ng/ mL)         | S196A    | 0.87 ± 0.33   | 0.490    |

Biometric and metabolic parameters of mice fed a high fat and high cholesterol diet.

#### **Supplementary Figure S1**



A) Alignment of the murine LXRα and LXRβ showing differences in S196 phosphorylation motifs.

**B)** LXR $\alpha$  phosphorylation at Ser198 and total LXR $\alpha$  levels in human liver lysates (n=2) by immunoblotting.

**C)** WT and S196A genomic and protein sequence alignment of the murine LXR $\alpha$  depicting the single-site mutation at S196A.

**D**) Targeting construct containing the loxP and FRT sites, the predicted homologous recombinant alleles and the resulting WT and LXR $\alpha$  knock-in locus incorporating the mutated sequence. Diagram also shows oligos used for genotyping and product size.

E) Gel electrophoresis of DNA amplified products using the corresponding primers.

**F)** Plasma non-esterified fatty acids (NEFAs) and triglycerides (TGs) levels from WT and S196A mice on HFHC diet (n=5-6). Data are means ± SEM.

**G)** Hepatic gene expression of lipid droplet proteins from WT or S196A mice (n=6). Results shown normalized to cyclophilin and relative to WT set as 1.

Data represents means  $\pm$  SEM. \* p < 0.05 or \*\* p < 0.005 relative to WT determined by Student's t-test.

### Supplementary Figure S2.

0

Lxrb

Ppara

Ppard

Fxr



4

**A)** Hepatic cell apoptosis assessed *in situ* by Direct DNA Fragmentation (TUNEL) Assay (n=6) (*Right*). Representative images of TUNEL-stained liver sections from WT and S196A mice at 200x magnification (*Left*).

**B)** Hepatic lipid peroxidation shown as MDA levels in WT and S196A livers (n=6) normalised to protein levels in tissue homogenates.

**C)** Quantification of F4/80-positively stained areas in liver sections of WT and S196A mice (n=4) at 200x magnification. Dots represent average of three independent areas per animal.

**D,F)** Hepatic and **E)** Small intestine gene expression from WT or S196A mice fed a HFHC diet for 6 weeks (n=6). Results shown normalized to cyclophilin levels and relative to WT.

Data represents means  $\pm$  SEM. \* p < 0.05 or \*\* p < 0.005 relative to WT determined by Student's t-test.

#### Supplementary Figure S3.



A) Principal Component (PC) Analysis plot showing RNAseq samples analysed by diet and genotype.

**B)** Number of genes differentially expressed between chow and HFHC-fed livers by RNAseq (n=3).

**C)** qPCR validation of top downregulated genes on experimentally-independent HFHC-fed WT and S196A livers (n=6). Results shown normalized to cyclophilin and relative to WT.

**D)** Fold-change of hepatic RNAseq gene counts of top upregulated genes comparing genotypes by diet (n=3). Shown are p values of genes differentially expressed on a chow diet.

**E)** Fold-change of hepatic RNA-Seq gene counts for Ces family members comparing genotypes by diet (n=3). Shown are p values of genes differentially expressed on a HFHC diet.

**F)** Total spectral counts obtained from immunoprecipitates of wild type LXRα (LXRα), phosphomutant (S198A) and not expressing LXR (VO) cells identified by mass spectroscopy.

G-I) RNA Pol II and pSer2-Pol II occupancy at Ces1f, Cyp2c69 TSS and Srebp1c TSS in livers of WT and S196A mice fed a HFHC (n=3-6).

Data represents mean  $\pm$  SEM. \* p < 0.05 relative to WT determined by Student's t-test