
Figure S1: Admixture analysis using BAPS on antibiotic resistance-associated genes on data taken 

from Gladstone et al., 2015. Arrows represent statistically significant admixture events, with arrow 

directions defining origin and destination of admixed alleles, and numbers representing the fraction 

of alleles contributed from source to receiving serotype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure S2: Time series of two-antibiotic dynamics. (A) Exclusion of resistance (𝛾 = 1, 𝑅0
01 = 𝑅0

10 =

1.98). (B) Exclusion of sensitive type post-vaccination (𝛾 = 1, 𝑅0
01 = 2.006). (C) Coexistence post-

vaccination (𝛾 = 0.7, 𝑅0
10 = 1.996). For all panels 𝜓 = 0.9, and 𝑅0

𝑎 = 3, 𝑅0
𝑏 = 2 when not 

mentioned otherwise. 

 

 

  



Supplementary Information S1 

Model 
We will start by writing the model presented in the main text for one bi-allelic resistance gene and 

one bi-allelic serotypes locus. Then we will extend it to multiple serotypes and finally to multiple 

serotypes and multiple resistance genes. 

S1.a – Two-locus model 

Each strain genotype is defined by the tuple (𝑖, 𝑗), where 𝑖 determines serotype and 𝑗 the antibiotic 

resistance allele, respectively. Let 𝑖 ∈ (𝑎, 𝑏), 𝑗 ∈ (𝑠, 𝑟). We will denote by 𝑦𝑖𝑗the proportion of 

individuals currently infected by strain 𝑖, 𝑗; 𝑧𝑖  and 𝑍i will be the proportion of the population 

previously exposed to serotype 𝑖 and previously or currently exposed to serotype i, respectively; 𝑌𝑖,𝑗 

and 𝑉𝑖,𝑗  will refer to primary and secondary infections with strain 𝑖, 𝑗, respectively. 

For example, the proportion of individuals infected by susceptible bacteria of serotype 𝑎 is 𝑦𝑆; the 

proportion individuals previously exposed to serotype a is given by 𝑧𝑎. 

Let za be the frequency of individuals who have been infected with antigenic type 𝑎, and 𝑦𝑎𝑟 contain 

all individuals currently infected with 𝑎𝑟: 

𝑦𝑎𝑠 = 𝑌𝑎𝑠 + 𝑌𝑎𝑠𝑏𝑠  + 𝑉𝑎𝑠 

𝑦𝑎𝑟 = 𝑌𝑎𝑟  + 𝑌𝑎𝑟𝑏𝑟 + 𝑉𝑎𝑟 

The ODEs for the variables are given below. 

Resistant 𝑎 types: 

𝑑𝑌𝑎𝑟
𝑑𝑡

=  𝜆𝑎𝑟𝑌𝑠 − (𝜎 + 𝜆𝑏𝑟)𝑌𝑎𝑟 + 𝑌𝑎𝑠𝜎 ∗ 𝑝 

𝑑𝑌𝑎𝑟𝑏𝑟
𝑑𝑡

=  𝜆𝑎𝑟𝑌𝑏𝑟+𝜆𝑏𝑟𝑌𝑎𝑟 − 𝜎𝑌𝑎𝑟𝑏𝑟 + 𝑌𝑎𝑠𝑏𝑠𝜎 ∗ 𝑝 

𝑑𝑉𝑎𝑟
𝑑𝑡

=  𝜆𝑎r𝑍𝑏 − 𝜎𝑉𝑎𝑟 + 𝑉𝑎𝑠𝜎 ∗ 𝑝 

Where 𝜎 is the rate of infection clearance; 𝜇 is the host removal rate; 𝑝 is the probability of 

resistance acquisition; 𝜆𝑖,𝑗 is the force of infection, determined by 𝑦𝑖,𝑗𝛽𝑖,𝑗, and 𝛽𝑖,𝑗is the transmission 

rate of strain 𝑖, 𝑗. 

From the formulation above we have that 

 
𝑑𝑦𝑎𝑟

𝑑𝑡
=
𝑑𝑌𝑎𝑟

𝑑𝑡
+
𝑑𝑌𝑎𝑟𝑏𝑟

𝑑𝑡
+
𝑑𝑉𝑎𝑟

𝑑𝑡
= 𝜆𝑎𝑟𝑆 − 𝜆𝑏𝑟𝑌𝑎𝑟 − 𝜎𝑌𝑎𝑟 + 𝑌𝑎𝑠𝜎 ∗ 𝑝 + 𝜆𝑎𝑟𝑌𝑏𝑟   +𝜆𝑏𝑟𝑌𝑎𝑟 − 𝜎𝑌𝑎𝑟𝑏𝑟 +

𝑌𝑎𝑠𝑏𝑠𝜎 ∗ 𝑝 + 𝜆𝑎𝑟𝑍𝑏 − 𝜎 𝑉𝑎𝑟   + 𝑉𝑎𝑠𝜎 ∗ 𝑝 = 

𝜆𝑎𝑟(𝑆 + 𝑌𝑏𝑟 + 𝑍𝑏) − 𝜎 (𝑌𝑎𝑟 + 𝑌𝑎𝑟𝑏𝑟 + 𝑉𝑎𝑟⏟          
𝑦𝑎𝑟

) + 𝑝 (𝜎 (𝑌𝑎𝑠𝑏𝑠 + 𝑌𝑎𝑠 + 𝑉𝑎𝑠⏟          
𝑦𝑎𝑠

))   



= 𝜆𝑎𝑟(𝑆 + 𝑌𝑏𝑟 + 𝑍𝑏) − 𝜎𝑦𝑎𝑟 + 𝑝 𝜎𝑦𝑎𝑠 

Using the equations from Watkins et al. we get that 

  𝑆 + 𝑌𝑏𝑟 + 𝑍𝑏 = 1 − 𝑧𝑎 − 𝑌𝑏𝑠 = 1 − 𝑧𝑎 − 𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟)) 

and thus  

𝑑𝑦𝑎𝑟
𝑑𝑡

= 𝜆𝑎𝑟 (1 − 𝑧𝑎 − 𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) − 𝜎𝑦𝑎𝑟 + 𝑝 𝜎𝑦𝑎𝑠 

 

For the susceptible types we get: 

𝑑𝑌𝑎𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑆 − (𝜎 + 𝜆𝑏𝑠)𝑌𝑎𝑠 

𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑌𝑏𝑠+𝜆𝑏𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑠 

𝑑𝑉𝑎𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑍𝑏 − 𝜎𝑉𝑎𝑠 

Which yields 

𝑑𝑦𝑎𝑠
𝑑𝑡

=
𝑑𝑌𝑎𝑠
𝑑𝑡

+
𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

+
𝑑𝑉𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠𝑆 − (𝜎 + 𝜆𝑏𝑠)𝑌𝑎𝑠 + 𝜆𝑎𝑠𝑌𝑏𝑠+𝜆𝑏𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑠 + 𝜆𝑎𝑠Z𝑏 − 𝜎𝑉𝑎𝑠  

= 𝜆𝑎𝑠 (𝑆 + 𝑌𝑏𝑠 + 𝑍𝑏⏟        
1−𝑧𝑎−𝑌𝑏𝑟

) − 𝜎 (𝑌𝑎𝑠 + 𝑌𝑎𝑠𝑏𝑠 + 𝑉𝑎𝑠⏟          
𝑦𝑎𝑠

) 

 

Again, using the equations from Watkins et al. we get that 

 

𝑆 + 𝑌𝑏𝑠 + 𝑍𝑏 = 1 − 𝑧𝑎 − 𝑌𝑏𝑟 = 1 − 𝑧𝑎 − 𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠)) 

And thus 

𝑑𝑦𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑧𝑎 − 𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))) −  𝜎𝑦𝑎𝑠 

 

For the fraction of individuals who have been infected with 𝑎: 

𝑑𝑧𝑎
𝑑𝑡

= 𝜆𝑎𝑠(1 − 𝑧𝑎 − 𝑌𝑏𝑟) + 𝜆𝑎𝑟(1 − 𝑧𝑎 − 𝑌𝑏𝑠) −  𝜇𝑧𝑎 

And again using the equations from Watkins et al. we get that 



𝑑𝑧𝑎
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑧𝑎 − 𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))) + 𝜆𝑎𝑟 (1 − 𝑧𝑎 − 𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) −  𝜇𝑧𝑎 

We can introduce 0 ≤ 𝛾 ≤ 1 as the serotype specific immunity, where 𝛾 = 1 indicates complete 

immunity from infection with serotypes an individual was previously infected with (as in the 

previously shown equations) and 𝛾 = 0 stands for no such immunity. 

We introduce the parameter 0 ≤ 𝜓𝑠 ≤ 1 to represent the probability that an individual carrying a 

susceptible strain of pneumococci will suppress co-infection by a resistant strain, due to the fitness 

cost of antibiotic resistance. Analogously, represent the probability that a host carrying a resistant 

strain will suppress infection by any strain not resistant to the same antibiotic by  0 ≤ 𝜓𝑟 ≤ 1. This 

parameter is nullified in the main text, but remained in the analysis for the sake of generality. When 

we add 𝜓𝑠 and 𝜓𝑟 the equations take the following form: 

𝑑𝑌𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠𝑆 − (𝜎 + 𝜆𝑏𝑠 + (1 − 𝜓𝑠)𝜆𝑏𝑟)𝑌𝑎𝑠 

𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

= 𝜆𝑎𝑠𝑌𝑏𝑠+𝜆𝑏𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑠 

𝑑𝑌𝑎𝑠𝑏𝑟
𝑑𝑡

= 𝜓𝑟𝜆𝑎𝑠𝑌𝑏𝑟+(1 − 𝜓𝑠)𝜆𝑏𝑟𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑟 

𝑑𝑉𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠𝑍𝑏 − 𝜎𝑉𝑎𝑠 

𝑑𝑦𝑎𝑠
𝑑𝑡

=
𝑑𝑌𝑎𝑠
𝑑𝑡

+
𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

+
𝑑𝑉𝑎𝑠
𝑑𝑡

+
𝑑𝑌𝑎𝑠𝑏𝑟
𝑑𝑡

= 𝜆𝑎𝑠𝑆 − (𝜎 + 𝜆𝑏𝑠 + (1 − 𝜓𝑠)𝜆𝑏𝑟)𝑌𝑎𝑠 + 𝜆𝑎𝑠𝑌𝑏𝑠+𝜆𝑏𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑠 + 𝜆𝑎𝑠𝑍𝑏 − 𝜎𝑉𝑎𝑠
+ 𝜓𝑟𝜆𝑎𝑠𝑌𝑏𝑟 + (1 − 𝜓𝑠)λ𝑏𝑟𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑟 = 

𝜆𝑎𝑠 (𝑆 + 𝑌𝑏𝑠 + 𝑍𝑏⏟        
1−𝑧𝑎−𝑌𝑏𝑟

) − 𝜎 (𝑌𝑎𝑠 + 𝑌𝑎𝑠𝑏𝑠 + 𝑌𝑎𝑠𝑏𝑟 + 𝑉𝑎𝑠⏟                
𝑦𝑎𝑠

) + (1 − 𝜓𝑟)𝜆𝑎𝑠𝑌𝑏𝑟

= 𝜆𝑎𝑠 (1 − 𝑧𝑎 − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))) − 𝜎𝑦𝑎𝑠 

 

 

Adding the serotype specific immunity term yields: 

𝑑𝑦𝑎𝑟
𝑑𝑡

= 𝜆𝑎𝑟 (1 − 𝑦𝑎𝑟 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) − 𝜓𝑠𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) − 𝜎𝑦𝑎𝑟 + 𝑝𝜎𝑦𝑎𝑠 

 

𝑑𝑦𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑦𝑎𝑠 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))) − 𝜎𝑦𝑎𝑠 

 



𝑑𝑧𝑎
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑦𝑎𝑠 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠)))

+ 𝜆𝑎𝑟 (1 − 𝑦𝑎𝑟 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) − 𝜓𝑠𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) − 𝜇𝑧𝑎 

 

S1.b – General number of serotype alleles 

For three serotype alleles we will have: 

𝑑𝑌𝑎𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑆 − (𝜎 + 𝜆𝑏𝑠 + 𝜆𝑐𝑠)𝑌𝑎𝑠 

𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑌𝑏𝑠+𝜆𝑏𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑏𝑠 

𝑑𝑌𝑎𝑠𝑐𝑠
𝑑𝑡

=  𝜆𝑎𝑠𝑌𝑐𝑠+𝜆𝑐𝑠𝑌𝑎𝑠 − 𝜎𝑌𝑎𝑠𝑐𝑠 

𝑑𝑉𝑎𝑠
𝑏

𝑑𝑡
=  𝜆𝑎𝑠𝑍𝑏 − 𝜎𝑉𝑎𝑠

𝑏  

𝑑𝑉𝑎𝑠
𝑐

𝑑𝑡
=  𝜆𝑎𝑠𝑍𝑐 − 𝜎𝑉𝑎𝑠

𝑐  

𝑑𝑉𝑎𝑠
𝑏𝑐

𝑑𝑡
=  𝜆𝑎𝑠𝑍𝑏𝑐 − 𝜎𝑉𝑎𝑠

𝑏𝑐 

𝑑𝑦𝑎𝑠
𝑑𝑡

=
𝑑𝑌𝑎𝑠
𝑑𝑡

+
𝑑𝑌𝑎𝑠𝑏𝑠
𝑑𝑡

+
𝑑𝑌𝑎𝑠𝑐𝑠
𝑑𝑡

+
𝑑𝑉𝑎𝑠

𝑏

𝑑𝑡
+
𝑑𝑉𝑎𝑠

𝑐

𝑑𝑡
+
𝑑𝑉𝑎𝑠

𝑏𝑐

𝑑𝑡
= ⋯

= 𝜆𝑎𝑠 (𝑆 + 𝑌𝑏𝑠 + 𝑌𝑐𝑠 + 𝑍𝑏 + 𝑍𝑐 + 𝑍𝑏𝑐⏟                  
1−𝑧𝑎−𝑌𝑏𝑟−𝑌𝑐𝑟

)

− 𝜎𝑠 (𝑌𝑎𝑠 + 𝑌𝑎𝑠𝑏𝑠 + 𝑌𝑎𝑠𝑐𝑠 + 𝑉𝑎𝑠
𝑏 + 𝑉𝑎𝑠

𝑐 + 𝑉𝑎𝑠
𝑏𝑐⏟                        

𝑦𝑎𝑠

) 

Now extending the equations from Watkins et al., we will use the approximation 

 1 − 𝑧𝑎 − 𝑌𝑏𝑠 − 𝑌𝑐𝑠 ≈ 1 − 𝑧𝑎 − 𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 − (𝑧𝑐 − 𝑦𝑐𝑠) )  − 𝑦𝑐𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 −

(𝑧𝑏 − 𝑦𝑏𝑠))      

𝑑𝑦𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠(1 − 𝑧𝑎 − 𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 − (𝑧𝑐 − 𝑦𝑐𝑠) )  

− 𝑦𝑐𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 − (𝑧𝑏 − 𝑦𝑏𝑠)) ) −  𝜎𝑦𝑎𝑠 

If we want to add 𝛾 and 𝜓 we will have 

𝑑𝑦𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠(1 − 𝑦𝑎𝑠 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 − (𝑧𝑐 − 𝑦𝑐𝑠) )

− 𝜓𝑟𝑦𝑐𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))(1 − (𝑧𝑏 − y𝑏𝑠)) ) −  𝜎𝑦𝑎𝑠 

And eventually for any number of alleles: 



𝑑𝑦𝑖𝑠
𝑑𝑡

= 𝜆𝑖𝑠 (1 − 𝑦𝑖𝑠 − 𝛾𝜓(𝑧𝑖 − 𝑦𝑖𝑠) − 𝜓𝑟∑𝑦𝑗𝑟
𝑗≠𝑖

(∏(1 − (𝑧𝑘 − 𝑦𝑘𝑠)) 

𝑘≠𝑗

 ) ) −  𝜎𝑦𝑖𝑠 

S1.b – General number of resistance loci 

Let us assume that there are 𝒩 binary resistance loci and hence 2𝒩 resistance profiles. We can 

denote 𝑦𝑎𝑗, 0 ≤ 𝑗 ≤ 2
𝒩 , as each of the resistance types, where 𝑗 is the resistance types' index. We 

assume that any resistance type can be switched to any other resistance type and weigh the 

probability of this transition as we will.  

For two resistance loci we observe equations for the double-resistant type 

𝑑𝑌𝑎𝑟𝑟
𝑑𝑡

=  𝜆𝑎𝑟𝑟𝑆 − (𝜎 + 𝜆𝑏𝑟𝑟)𝑌𝑎𝑟𝑟 + 𝑌𝑎𝑠𝑠𝜎𝑝 + 𝑌𝑎𝑟𝑠𝜎𝑝 + 𝑌𝑎𝑠𝑟𝜎𝑝 

𝑑𝑌𝑎𝑟𝑟𝑏𝑟𝑟
𝑑𝑡

=  𝜆𝑎𝑟𝑟𝑌𝑏𝑟𝑟+𝜆𝑏𝑟𝑟𝑌𝑎𝑟𝑟 − 𝜎𝑌𝑎𝑟𝑏𝑟 + (𝑌𝑎𝑠𝑠𝑏𝑠𝑠𝜎𝑝 + 𝑌𝑎𝑟𝑠𝑏𝑟𝑠𝜎𝑝 + 𝑌𝑎𝑠𝑟𝑏𝑠𝑟𝜎𝑝) 

𝑑𝑉𝑎𝑟𝑟
𝑑𝑡

=  𝜆𝑎𝑟𝑟𝑍𝑏 − 𝜎𝑉𝑎𝑟𝑟 + (𝑉𝑎𝑠𝑠𝜎𝑝 + 𝑉𝑎𝑟𝑠𝜎𝑝 + 𝑉𝑎𝑠𝑟𝜎𝑝) 

𝑑𝑦𝑎𝑟𝑟
𝑑𝑡

=
𝑑𝑌𝑎𝑟𝑟
𝑑𝑡

+
𝑑𝑌𝑎𝑟𝑟𝑏𝑟𝑟
𝑑𝑡

+
𝑑𝑉𝑎𝑟𝑟
𝑑𝑡

 

The only difference for the resistant types when multiple loci are considered is the resistance 

acquisition term: 

𝜎𝑝(𝑌𝑎𝑠𝑠 + 𝑌𝑎𝑟𝑠 + 𝑌𝑎s𝑟 + 𝑌𝑎𝑠𝑠𝑏𝑠𝑠 + 𝑌𝑎𝑟𝑠𝑏𝑟𝑠 + 𝑌𝑎𝑠𝑟𝑏𝑠𝑟 + 𝑉𝑎𝑠𝑠 + 𝑉𝑎𝑟𝑠 + 𝑉𝑎𝑠𝑟⏟                                            
𝑦𝑎∙−𝑦𝑎𝑟𝑟

) 

Where we denote 𝑦𝑎∙ as the sum of resistance types with serotype 𝑎.  

Now, we can weigh the probability of transitioning to any resistance type (including retaining the 

same type) while keeping the sum of resistance acquisition in the system constant.  

Proof:  

Assume we assign probabilities of resistance acquisition from type 𝑗 to all types 𝑞 such that 

∑ 𝜔𝑗
𝑞

0≤𝑞≤2𝒩 = 1. The sum of resistance acquisition terms for all 𝑖 serotypes is 



∑ 𝑝𝜎( ∑ 𝑦𝑖𝑞
0≤𝑞≠𝑗≤2𝒩

𝜔𝑞
𝑗
)

0≤𝑗≤2𝒩

= 𝑝𝜎( ∑ ( ∑ 𝑦𝑖𝑗
0≤𝑞≠𝑗≤2𝒩

𝜔𝑗
𝑞
)

0≤𝑗≤2𝒩

 )

= 𝑝𝜎( ∑ 𝑦𝑖𝑗 ( ∑ 𝜔𝑗
𝑞

0≤𝑞≠𝑗≤2𝒩

)

0≤𝑗≤2𝒩

 ) = 𝑝𝜎( ∑ 𝑦𝑖𝑗
0≤𝑗≤2𝒩

 ) 

Therefore, weighing the probability of acquiring different resistance profiles does not change the 

overall resistance acquisition rate. Note that we can also set ∑ 𝜔𝑘
𝑞

0≤𝑞≤2𝒩 = 0 for any 𝑘 (e.g. for an 

all-resistant strain), and then the equations still remain correct if we remove the contribution of 

strain 𝑘 the initial summation. 

Finally, the general form of multiple serotypes and multiple binary resistance loci will be: 

𝑑𝑦𝑖𝑗

𝑑𝑡
= 𝜆𝑖𝑗 (1 − 𝑦𝑖𝑗 − 𝛾𝜓(𝑧𝑖 − 𝑦𝑖𝑗) − 𝜓𝑟∑∑𝑦𝑙𝑘

𝑘≠𝑗

(
𝜓𝑠
𝜓𝑟
)
𝐼𝑘=𝑠

∏(1− (𝑧ℎ − ∑ 𝑦ℎ𝑚
𝑚≠𝑘

)) 

ℎ≠𝑙𝑙≠𝑖

)− 𝜎𝑗𝑦𝑖𝑗

+ 𝑝𝑗𝜎𝑗 (∑ 𝑦𝑖𝑞
∀𝑞≠𝑗

𝜔𝑞
𝑗
) 

𝑑𝑧𝑖
𝑑𝑡
=∑𝜆𝑖𝑞 (1 − 𝑦𝑖𝑞 − 𝛾𝜓(𝑧𝑖 − 𝑦𝑖𝑞) − 𝜓𝑟∑∑𝑦𝑙𝑘 (

𝜓𝑠
𝜓𝑟
)
𝐼𝑘=𝑠

𝑘≠𝑞

∏(1− (𝑧ℎ − ∑ 𝑦ℎ𝑚
𝑚≠𝑘

)) 

ℎ≠𝑙𝑙≠𝑖

)

∀𝑞

−  𝜇𝑧𝑖 

 
Where 𝐼𝑘=𝑠 is the indicator function defined by 

𝐼𝑘=𝑠 {
1       𝑖𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑙𝑒 𝑡𝑦𝑝𝑒

0                 𝑒𝑙𝑠𝑒 
 

and the term (
𝜓𝑠

𝜓𝑟
)
𝐼𝑘=𝑠

 determines whether we will change the current multiplication by the 

incompatibility factor 𝜓𝑟  to 𝜓𝑠.  
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Supplementary Information S2 
 

We analyse the scenario of a two serotypes and one antibiotic resistance locus. For convenience, 

resistant strains are marked by 𝑟, while susceptible strains are marked by 𝑠.  

For the simple case of two bi-allelic loci we can obtain the equilibrium values by solving the following 

system of differential equations when all derivatives are constrained to zero: 

(E.s1) 

𝑑𝑦𝑎𝑟
𝑑𝑡

= 𝜆𝑎𝑟 (1 − 𝑦𝑎𝑟 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) − 𝜓𝑠𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) − 𝜎𝑦𝑎𝑟 

𝑑𝑦𝑎𝑠
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑦𝑎𝑠 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠))) − 𝜎𝑦𝑎𝑠 

𝑑𝑦𝑏𝑟
𝑑𝑡

= 𝜆𝑏𝑟 (1 − 𝑦𝑏𝑟 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑟) − 𝜓𝑠𝑦𝑎𝑠(1 − (𝑧𝑏 − 𝑦𝑏𝑟))) − 𝜎𝑦𝑏𝑟  

𝑑𝑦𝑏𝑠
𝑑𝑡

= 𝜆𝑏𝑠 (1 − 𝑦𝑏𝑠 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑠) − 𝜓𝑟𝑦𝑎𝑟(1 − (𝑧𝑏 − 𝑦𝑏𝑠))) − 𝜎𝑦𝑏𝑠 

 

𝑑𝑧𝑎
𝑑𝑡

= 𝜆𝑎𝑠 (1 − 𝑦𝑎𝑠 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) − 𝜓𝑟𝑦𝑏𝑟(1 − (𝑧𝑎 − 𝑦𝑎𝑠)))

+ 𝜆𝑎𝑟 (1 − 𝑦𝑎𝑟 − 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) − 𝜓𝑠𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) − 𝜇𝑧𝑎 

 

𝑑𝑧𝑏
𝑑𝑡

= 𝜆𝑏𝑠 (1 − 𝑦𝑏𝑠 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑠) − 𝜓𝑟𝑦𝑎𝑟(1 − (z𝑏 − 𝑦𝑏𝑠)))

+ 𝜆𝑏𝑟 (1 − 𝑦𝑏𝑟 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑟) − 𝜓𝑠𝑦𝑎𝑠(1 − (𝑧𝑏 − 𝑦𝑏𝑟))) − 𝜇𝑧𝑏 

Let us define 𝛼𝑖𝑗 ≔ (1 − 𝑦𝑖𝑗 − 𝛾(𝑧𝑖 − 𝑦𝑘𝑙) − 𝜓𝑟𝑦𝑘𝑙 (1 − (𝑧𝑖 − 𝑦𝑖𝑗))) , 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑙. 

 At equilibrium 𝜎𝑦𝑖𝑗 = 𝜆𝑖𝑗(𝛼𝑖𝑗) and also 𝜇𝑧𝑖 = 𝜆𝑖𝑠(𝛼𝑖𝑠) + 𝜆𝑖𝑟(𝛼𝑖𝑟).  

Therefore 

(E.s2) 𝒛𝒊 =
𝝈

𝝁
(𝒚𝒊𝒓 + 𝒚𝒊𝒔) 

Assumption (I): for simplicity, we take 𝜓𝑟 = 0. 

Also, we define 
𝛽𝑖𝑠

𝜎
= 𝑅0

𝑠 and 
𝛽𝑖𝑟

𝜎
= 𝑅0

𝑟. 

S2.a – Post-vaccination dynamics 

Under this scenario 𝑦𝑎𝑠 = y𝑎𝑟 ≈ 0, so the values of 𝜓 are irrelevant.  

Therefore (relying on assumption (I)) we are reduced to two linear equations when finding the 

equilibrium values: 

(E.s3) 



𝛽𝑏𝑟𝑦𝑏𝑟(1 − 𝑦𝑏𝑟 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑟)) − 𝜎𝑦𝑏𝑟 = 0 

𝛽𝑏𝑠𝑦𝑏𝑠(1 − 𝑦𝑏𝑠 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑠)) − 𝜎𝑦𝑏𝑠 = 0 

 

If 𝛾 = 1 (E.s3) reduces to  

𝑦𝑏𝑟(1 − 𝑧𝑏) =
1

𝑅0
𝑦𝑏𝑟  

𝑦𝑏𝑠(1 − 𝑧𝑏) =
1

𝑅0
𝑟 𝑦𝑏𝑠 

And either 𝑦𝑏𝑟 = 𝑦𝑏𝑠 for 𝑅0
𝑠 = 𝑅0

𝑟 or one of the two strains competitively excludes the other. 

Furthermore, since no interaction occurs between the strains, the strain with the higher 

reproductive number will be dominant. 

In the case where 𝑦𝑏𝑟 ≠ 0, 𝑦𝑏𝑠 ≠ 0 and 𝛾 ≠ 1, we have 

(E.s4) 

(1 − 𝑦𝑏𝑟 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑟)) =
𝜎

𝛽𝑏𝑟
 

(1 − 𝑦𝑏𝑠 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑠)) =
𝜎

𝛽b𝑠
 

Summing  (E.s4) yields 

  

2 − (𝑦𝑏𝑠 + 𝑦𝑏𝑟)(1 − 𝛾) + 𝛾𝑧𝑏 =
1

𝑅0
𝑠 +

1

𝑅0
𝑟 and therefore (using (E.s2)) 

(E.s5) 𝑧𝑏 =
(1−

1

2
(
1

𝑅0
𝑠+

1

𝑅0
𝑟))

𝜇

2𝜎
(1−𝛾)+𝛾

 

We observe that (E.s5) can help us derive a lower bound on 𝛾 values, as we have to keep 𝑧𝑏 < 1. 

Assuming that 𝑅0
𝑟 ≥ 𝑅0 and that   

𝜇

2𝜎
≪ 𝛾  we get that  

(E.s6) 𝛾 > (1 −
1

𝑅0
𝑟) 

We can also subtract equation (E.s4) to get  

1 − 𝑦𝑏𝑟 − 𝛾(𝑧𝑏 − 𝑦𝑏𝑟) − 1 + 𝑦𝑏𝑠 + 𝛾(𝑧𝑏 − 𝑦𝑏𝑠) =
1

𝑅0
𝑟 −

1

𝑅0
𝑠 

−𝛾(𝑦𝑏𝑠 − 𝑦𝑏𝑟) + 𝑦𝑏𝑠 − 𝑦𝑏𝑟 =
1

𝑅0
𝑟 −

1

𝑅0
𝑠 

(1 − 𝛾)(𝑦𝑏𝑠 − 𝑦𝑏𝑟) =
1

𝑅0
𝑟 −

1

𝑅0
𝑠 

𝑦𝑏𝑠 − 𝑦𝑏𝑟 =
1

1 − 𝛾
(
1

𝑅0
𝑟 −

1

𝑅0
𝑠) 



Therefore, if a polymorphic equilibrium exists, it will satisfy  𝑦𝑏𝑠 > 𝑦𝑏𝑟 ⇔ 𝑅0
𝑠 > 𝑅0

𝑟  and the 

discrepancy between the strain frequencies increases with 𝛾 (note the similarity of the result to 

results obtained in Gupta et al. 1994). We can see that high values of 𝛾 relative to 
1

𝑅0
𝑟 −

1

𝑅0
𝑠 preclude a 

polymorphic equilibrium, and specifically 𝛾 = 1 is precluded, as explained above. Finally, if 𝑅0
𝑟 = 𝑅0

𝑠 

we get that any equilibrium value is possible, and the system is therefore only neutrally stable for 

any equilibrium values, which have to satisfy 
𝜎

𝜇
(𝑦𝑖𝑟 + 𝑦𝑖𝑠) =

𝜇

𝜎
(1 −

1

𝑅0
𝑠). 

 

S2.b – Pre-vaccination dynamics 

Assumption (I): we will assume 𝛽𝑎𝑠 = 𝛽𝑏𝑠 and 𝛽𝑎𝑟 = 𝛽𝑏𝑟 (so we can vary the transmission of 

resistant relative to susceptible strains, but keep the transmission between serotypes constant for 

simplicity). This yields that pre-vaccination, we have that 𝑦𝑖𝑟 = 𝑦𝑗𝑟, 𝑦𝑖𝑠 = 𝑦𝑗𝑠. 

 

Now we again examine the equilibrium equations. For ar we have 

𝑦𝑎𝑟 + 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) + 𝜓𝑦𝑏𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟)) = 1 −
1

𝑅0
𝑟 

Using assumption (I) we can replace the b types with a types and get  

𝑦𝑎𝑟 + 𝛾(𝑧𝑎 − 𝑦𝑎𝑟) + 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟)) = 1 −
1

𝑅0
𝑟 

For as we have  

𝑦𝑎𝑠 + 𝛾(𝑧𝑎 − 𝑦𝑎𝑠) = 1 −
1

𝑅0
𝑠 

Subtracting the two equations yields 

(𝑦𝑎𝑠 − 𝑦𝑎𝑟)(1 − 𝛾) − 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟)) =
1

𝑅0
𝑟 −

1

𝑅0
𝑠 

When 𝛾 < 1 we have that  

𝑦𝑎𝑠 − 𝑦𝑎𝑟 =
1

1 − 𝛾
((
1

𝑅0
𝑟 −

1

𝑅0
𝑠) + 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) 

So the factors determining the sign of 𝑦𝑎𝑠 − 𝑦𝑎𝑟 are  

(
1

𝑅0
𝑟 −

1

𝑅0
𝑠) + 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟)) 

As expected, if 𝑅0
𝑟 ≤ 𝑅0 then 𝑦𝑎𝑟 < 𝑦𝑎𝑠. However, if 𝑅0

𝑟 > 𝑅0
𝑠 and 𝜓 > 0 then equilibria where 

either one of the resistant strains has higher frequency than the other are possible. In the scenario 

where R0
𝑟 > 𝑅0, we know that 𝑦𝑎𝑟 would be the dominating strain post-vaccine (with the difference 

between the strains given by 𝑦𝑎𝑠 − 𝑦𝑎𝑟 =
1

1−𝛾
(
1

𝑅0
𝑟 −

1

𝑅0
𝑠)), so let us find parameter ranges where it is 

being suppressed to lower frequency pre-vaccine. We can start by finding the parameter ranges 

where the two strains are at equal frequency: 



𝑦𝑎𝑠 − 𝑦𝑎𝑟 = 0 ⇒
1

1 − 𝛾
((
1

𝑅0
𝑟 −

1

𝑅0
𝑠) + 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) = 0 

Using the equal frequency, we can estimate  𝑧𝑎 ≈
1

𝛾
(1 −

1

2
(
1

𝑅0
𝑠 +

1

𝑅0
𝑟))and use (1) to have that   

𝑦𝑎𝑟 = 𝑦𝑎𝑠 =
1

2

𝜇

𝜎𝛾
(1 −

1

2
(
1

𝑅0
𝑠 +

1

𝑅0
𝑟))     . Plugging this into our equation we get: 

1

1 − 𝛾
((
1

𝑅0
𝑟 −

1

𝑅0
𝑠) + 𝜓𝑦𝑎𝑠(1 − (𝑧𝑎 − 𝑦𝑎𝑟))) = 

1

1 − 𝛾

(

 
 
(
1

𝑅0
𝑟 −

1

𝑅0
𝑠) +

𝜓

2

𝜇

𝜎𝛾
(1 −

1

2
(
1

𝑅0
𝑠 +

1

R0
𝑟))(1 − (

1

𝛾
(1 −

2

𝑅0
𝑠
+ 𝑅0

𝑟
) −

1

2

𝜇

𝜎𝛾
(1 −

1

2
(
1

𝑅0
𝑠 +

1

𝑅0
𝑟))))

)

 
 
  

 

And comparing this to zero (with 𝛾 ≠ 1) we have the conditions 

(E.s5) 𝜓 =

2𝛾𝜎

𝜇
(
1

𝑅0
𝑠−

1

𝑅0
𝑟)

(1−
1

2
(
1

𝑅0
𝑠+

1

𝑅0
𝑟))(1−(

1

𝛾
(1−

1

2
(
1

𝑅0
𝑠+

1

𝑅0
𝑟))−

1

2

𝜇

𝜎𝛾
(1−

1

2
(
1

R0
s+

1

R0
r))))

 

 

So if the right-hand expression is larger than ψ, then yar > yas. Since the difference between 

reproductive numbers allowing for suppression of yr pre-vaccination is not very large, and μ ≪ σγ 

we can approximate (E.s5) to have a more comprehensible sense of the relationship between 𝑅0
𝑟 

and 𝜓: 

(E.s6) 𝜓 ≈

2𝛾𝜎

𝜇
(
1

𝑅0
𝑠−

1

𝑅0
𝑟)

(1−
1

𝑅0
𝑠)(1−(

1

𝛾
(1−

1

𝑅0
𝑠)))

 

 

We derive this curve is with respect to γ: 

𝜕

(

  
 

2𝛾𝜎
𝜇 (

1
𝑅0
𝑠 −

1
𝑅0
𝑟)

(1 −
1
𝑅0
𝑠)(1 − (

1
𝛾 (1 −

1
𝑅0
𝑠)))

)

  
 

𝜕𝛾
=

2𝜎
𝜇 (

1
𝑅0
𝑠 −

1
𝑅0
𝑟)

(1 −
1
𝑅0
𝑠) (1 − (

1
𝛾 (1 −

1
𝑅0
𝑠)))

𝛾

(𝛾 − 2(1 −
1
𝑅0
𝑠))

(𝛾 − (1 −
1
𝑅0
𝑠))

2  

And the expression is always negative when 𝛾 < 2 (1 −
1

𝑅0
𝑠). For any 𝑅0

𝑠 ≥ 2 the derivative is always 

negative(as 𝛾 ≤ 1) implying that higher γ values allow for increased ranges of 𝑅0
𝑟 under which 𝑦𝑎𝑠 >

𝑦𝑎𝑟 pre-vaccination, because yas supresses co-infection by yar and reduces its frequency. For 1 <



𝑅0
𝑠 < 2 the derivative switches sign at γ = 2 (1 −

1

𝑅0
𝑠) and increasing γ over this threshold actually 

decreases the range of R0
r  where 𝑦𝑎𝑠 > 𝑦𝑎𝑟. We note that under low 𝛾 values there is little 

competitive exclusion, so resistance surge could occur outside this parameter range (as seen in the 

main text in Figure. 2). 

Our solution assumes γ ≠ 1, as this will completely preclude co-existence of both strains and rather 

create competitive exclusion. However, our solution with γ = 1 is continuous with respect to 

predicting the switch of 𝑠𝑖𝑔𝑛(𝑦𝑎𝑠 − 𝑦𝑎𝑟) as can be seen when comparing it to numerical simulations 

below. 

Below we plot the parameter ranges where susceptible and resistant strain outcompete each other 

pre-vaccination. We plot the inhibition of co-infection by the susceptible strain (ψ) against the basic 

reproductive number of the resistant strain (R0
r ), where the basic reproductive number of the 

susceptible strain is held at R0 = 2. Yellow regions are the parameter range where ys > yr pre 

vaccination, whereas blue regions mark the opposite. Red line is the approximation to the range 

where 𝑦𝑠 = 𝑦𝑟, given by (E.s6). We plot two strain specific immunity values (γ). Note that 

throughout this parameter space the resistant strain will be the dominant one post vaccination, due 

to it’s superior reproductive number, and completely excluding 𝑦𝑠 when γ = 1. 
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