Supplementary Information

On the use of the experimentally determined enzyme inhibition constant as a measure of absolute binding affinity

Fouad H. Darras and Yuan-Ping Pang

Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA

Correspondence should be addressed to pang@mayo.edu

Table of Contents

Chemicals	2
Inhibitor purity	2
General lab supplies	2
General lab tools and equipments for enzyme inhibition assay	3
Inhibitor solutions	4
The phosphate buffer for preparing Ellman assay reagents	4
DTNB solution	5
ATCh solutions	5
The phosphate buffer for preparing enzyme stock solution	5
Enzyme stock solution	6
The phosphate buffer for preparing enzyme solutions	6
Enzyme solutions	7
Specific enzyme activity and K _i determination	7
UV absorptions of inhibitor solutions that were prepared using glass or plastic vials	10
Table S1. ATCh hydrolysis rate, K_i , and specific enzyme activity	11
Table S2. UV Absorbance data of inhibitor solutions prepared using glass or plastic vials	18
Figure S1. Plots for K_i determination under different assay conditions	19
References	31

Chemicals. NaH₂PO₄, Na₂HPO₄, acetylthiocholine chloride (ATCh), and Triton X-100 were purchased from ACROS (Morris Plains, NJ). 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) and 9-amino-1,2,3,4-tetrahydroacridinium monohydrochloride (tacrine) were ordered from Sigma-Aldrich (St. Louis, MO). 1,7-N-heptylene-bis-9,9'-amino-1,2,3,4-tetrahydro-acridinium dihydrochloride [Bis(7)-tacrine] was synthesized according to a published scheme¹.

Inhibitor Purity. Tacrine: Anal. Calcd. for $C_{13}H_{17}ClN_2O$: C, 61.78; H, 6.78; N, 11.08. Found: C, 61.57; H, 7.20; N, 11.17. Bis(7)-tacrine: Anal. Calcd. for $C_{32}H_{44}Cl_2N_4O_2$: C, 65.41; H, 7.55; N, 9.53. Found: C, 65.81; H, 7.63; N, 9.34. Both elemental Analyses were performed at NuMega (San Diego, CA).

Enzymes. *Electrophorus electricus* acetylcholinesterase (*ee*AChE) was purchased from Sigma-Aldrich (St. Louis, MO; catalog # of C2888 with log #s of SLBNo954V and SLBS4398 and specific enzyme activity of ≥ 1000 U/mg; catalog # of 3389 with log # of SLBL3186V and specific enzyme activity of 200-1000 U/mg).

General lab supplies. The 1.5-mL or 2.0-mL microcentrifuge tubes were purchased from Fisher Scientific (Asheville, NC; catalog #s of 02-682-550 for 1.5-mL and 02-681-258 for 2.0-mL). The 7.4-mL general-purpose borosilicate glass vials were purchased from Fisher Scientific (Asheville, NC; catalog # of 03-339-22D). The 15-mL conical centrifuge tubes were purchased from Fisher Scientific (Asheville, NC; catalog # of 352095). The 0.2-mL MicroAmp® 8-tube strips were purchased from Applied Biosystems (Foster City, CA; catalog # of N8010580). The 100-mL and 250-mL reagent bottles were purchased from Fisher Scientific (Asheville, NC; product #s of S02286 for 100-mL and S02286A for 250-mL). The 16-mL dark-glass reagent bottles were purchased from Fisher Scientific (Asheville, NC; catalog # of 03-339-23D). Natural, non-sterile, low-retention, 0.1–10-µL pipet tips were

purchased from Fisher Scientific (Asheville, NC; catalog # of 02717-134). Natural, non-sterile 100– 300-µL and 100–1000-µL pipet tips were purchased from Molecular BioProducts (San Diego, CA; catalog # of 3580 and 3771, respectively). The non-sterile, flat bottom, clear, 96-well plates were purchased from Fisher Scientific (Asheville, NC; catalog # of 12565501). The 25-mL disposable MatrixTM Reagent Reservoirs were purchased from Fisher Scientific (Asheville, NC; catalog # of 14-387-071).

General lab tools and equipment for enzyme inhibition assay. Sodium phosphates, Ellman assay reagents, and inhibitors were weighed using either a three-digit analytical balance from Denver (Bohemia, NY; Model: RS232) or an analytic plus electronic balance from Ohaus (Florham Park, NJ; Model: AP250D). The Ellman assay reagent and inhibitor solutions were prepared using a 40mm octagonal magnetic stir bar with integral pivot ring from Fisher Scientific (Asheville, NC; catalog # of 14-513-56) and a stirrer from CORNING (Tewksbury, MA; Model: PC420) for stirring at a speed of 4–6 revolutions per minute at 26 ± 1 °C and transferred using an Eppendorf Reference series adjustable-volume 0.5-10-µL pipette from Eppendorf (Hauppauge, NY; catalog # of 022470051), a Finnpipette F1 1–10-μL 8-channel pipette from Fisher Scientific (Asheville, NC; catalog # of 03-339-22D), an Eppendorf Research 8-channel 30-300-µL pipette from Eppendorf (Hauppauge, NY; catalog # of 022452100), a 1000-µL Pipetman P1000 pipette from Gilson (Middleton, WI; catalog # of EF13988P), a 20–200-µL Eppendorf Research pipette from Eppendorf (Hauppauge, NY; catalog # ES-200), or an Eppendorf easypet electronic pipette filler from Eppendorf (Hauppauge, NY; catalog # of 4421 000.013), or a disposable Falcon[®] 25-mL serological pipette from CORNING (Tewksbury, MA; catalog #357525). The pH values of all sodium phosphate buffer solutions were determined using a pH meter from Fisher Scientific (Asheville, NC; Model: AP63). eeAChE activity or ATCh hydrolysis rate was determined using a SpectraMax Plus 384 Absorbance Microplate Reader with SoftMax Pro 4.7.1 from Molecular Devices (Sunnyvale, CA).

Inhibitor solutions. The 2.4 mM tacrine stock solution was freshly prepared by adding an appropriate amount of distilled water using a 1000-µL Pipetman P1000 pipette to a 2.0-mL microcentrifuge tube (or a 7.4-mL glass vial) with ~1.0 mg of tacrine. Subsequent two-fold and 10fold serial dilutions of the stock using distilled water yielded (1) a tacrine solution (1.8 mL for each enzyme inhibition assay) of $6.00 \ \mu$ M, $0.60 \ \mu$ M, or $0.06 \ \mu$ M in a 2.0-mL microcentrifuge tube or a 7.4-mL glass vial using a 20-200 µL Eppendorf Research pipette and a 1000-µL Pipetman P1000 pipette, and (2) a tacrine solution (3.6 mL for each adsorption study) of 30.0 µM, 20.0 µM, 15.0 µM, 10.0 µM, 7.5 µM, or 5.0 µM in two 2.0-mL microcentrifuge tubes or a 7.4-mL glass threaded vial using a 20–200-µL Eppendorf Research pipette and a 1000-µL Pipetman P1000 pipette. The 1.2 mM bis(7)-tacrine stock solution was freshly prepared by adding an appropriate amount of distilled water using a 1000-µL Pipetman P1000 pipette to a 2.0-mL microcentrifuge tube (or a 7.4-mL glass vial) with ~1.0 mg of bis(7)-tacrine. Subsequent two-fold and 10-fold serial dilutions of the stock using distilled water yielded (1) a bis(7)-tacrine solution (1.8 mL for each enzyme inhibition assay) of 600 nM, 60 nM, 6 nM, 600 pM, or 60 pM in a 2.0-mL microcentrifuge tube or a 7.4-mL glass vial using a 20–200 µL Eppendorf Research pipette and a 1000-µL Pipetman P1000 pipette, and (2) a bis(7)tacrine solution (3.6 mL for each adsorption study) of 30.0 μ M, 20.0 μ M, 15.0 μ M, 10.0 μ M, 7.5 μ M, or 5.0 µM in two 2.0-mL microcentrifuge tubes or a 7.4-mL general-purpose borosilicate glass threaded vial using a 20–200-µL Eppendorf Research pipette and a 1000-µL Pipetman P1000 pipette.

The phosphate buffer for preparing Ellman assay reagents². To make 250 mL of 50 mM sodium phosphate buffer pH 8.0 at 26 °C, 1.5 g of NaH₂PO₄ was added to ~230 mL distilled water in a 500-mL beaker. After stirring at 4–6 revolutions per minute for 10 minutes, the pH of the solution with a distilled-water-rinsed electrode immersed in the NaH₂PO₄ solution under stirring was adjusted at 26 °C from initially 4.5 to 8.0 by adding drop-wise 1N NaOH. The volume of the solution was then

brought up to 250 mL with distilled water. Note: The buffer solution must be used within 12 hours and discard the remaining of the buffer solution after 12 hours.

DTNB solution. To prepare 2.5 mM DTNB solution, 9.9 mg of DTNB was dissolved in 10 mL of the freshly prepared 50 mM sodium phosphate buffer pH 8.0 that was stored in a 16-mL dark-glass reagent bottle. The resulting solution was stored in a refrigerator at 4 °C for 2–3 hours before transferring 2.0 mL of the DTNB solution to a 25-mL disposable Matrix[™] Reagent Reservoir that was located in the vicinity of the Microplate Reader for measuring *ee*AChE activity. Note: Discard the remaining of the DTNB solution after each enzyme inhibition assay.

ATCh solutions. To prepare a stock solution of 30 mM ATCh, 86.8 mg ATCh was dissolved in 10 mL of the freshly prepared 50 mM sodium phosphate buffer pH 8.0 that was stored in a 15-mL conical centrifuge tube. Two-fold serial dilutions using 50 mM sodium phosphate buffer pH 8.0 in five 15-mL conical centrifuge tubes led to five working solutions of ATCh (5 mL) at concentrations of 15.000, 7.500, 3.750, 1.875, and 0.938 mM ATCh. All five ATCh working solutions were stored in a refrigerator at 4 °C for 2–3 hours before transferring 150 µL for each of these solutions to five tubes of a 0.2-mL MicroAmp[®] 8-tube strip that was located in the vicinity of the Microplate Reader for measuring *ee*AChE activity. Note: Discard the remaining of the ATCh solution after each enzyme inhibition assay.

The phosphate buffer for preparing enzyme stock solution. A stock of 500 mL of 20 mM NaH₂PO₄ was prepared by dissolving 1.20 g of NaH₂PO₄ in 500 mL distilled water in a 500-mL beaker and stirring at 4–6 revolutions per minute for 10 minutes. Another stock of 500 mL of 20 mM Na₂HPO₄ was prepared by dissolving 1.42 g of Na₂HPO₄ in 500 mL distilled water in a 500-mL beaker and stirring at 4–6 revolutions per minute for 10 minutes. After mixing the NaH₂PO₄ stock with the Na₂HPO₄ stock in 4:6 ratio and stirring at 4–6 revolutions per minute for 10 minutes.

combined solution was adjust at 26 °C, using a distilled-water-rinsed electrode immersed while the solution was kept stirring, to pH 7.0 by drop-wise addition of the NaH_2PO_4 or Na_2HPO_4 stock solution. The resulting solution was then stored in a refrigerator at 4 °C for three hours before the enzyme solution preparation. Note: The buffer solution must be used within 12 hours and discard the remaining of the buffer solution after 12 hours.

Enzyme stock solution. To the glass vial received from Sigma-Aldrich that contained 0.5 mg (or a fraction of 1.0 mg) of *ee*AChE as a lyophilized powder, 1.0 mL (or an appropriate amount) of a freshly prepared 20 mM sodium phosphate buffer solution pH 7.0 was added. The vial was then kept in a refrigerator at 4 °C for 2–4 hours to ensure homogeneity. The resulting solution was then diluted with 3.0 mL of the 20 mM sodium phosphate buffer solution pH 7.0, mixed by gently withdrawing and expelling the solution five times using a 1000-µL Pipetman P1000 pipette. Then 4.0 mL of the mixed solution was transferred to a 250-mL or 100-mL reagent bottle containing an appropriate amount of the 20 mM sodium phosphate buffer solution pH 7.0 to make an *ee*AChE stock solution with a concentration of 0.625 µg/mL, 2.500 µg/mL, 5.000 µg/mL, 7.500 µg/mL, or 15.000 µg/mL. The enzyme solution was then mixed by gently withdrawing and expelling the solution was then mixed by gently withdrawing and expelling the solution steen mixed by gently withdrawing and expelling the solution 0.625μ g/mL, 2.500μ g/mL, 5.000μ g/mL, 7.500μ g/mL, or 15.000μ g/mL. The enzyme solution was then mixed by gently withdrawing and expelling the solution 20 times using a 1000-µL Pipetman P1000 pipette and kept in a refrigerator at 4 °C for 2–4 hours to ensure homogeneity. The enzyme solution was lastly distributed to 50 1.5-mL microcentrifuge tubes that were then stored in a refrigerator at 4 °C for at least three hours for subsequent enzyme kinetics studies that must be performed within 30 days.

The phosphate buffer for preparing enzyme solutions. To a 100-mL reagent bottle with 100 mL of 50 mM sodium phosphate buffer pH 8.0, 0.11 g of Triton X-100 was added. The resulting solution was stirred for 30 minutes before enzyme inhibition assay and kept stirring during the entire period of the assay. Note: Discard the remaining of the buffer solution after each enzyme inhibition assay.

Enzyme solutions. To a 25-mL disposable MatrixTM Reagent Reservoir that was located in the vicinity of the Microplate Reader for measuring *ee*AChE activity, 13.5 mL of 50 mM sodium phosphate buffer pH 8.0 with 0.1% (v/v) Triton X-100 was transferred using a 25-mL disposable pipette and an Eppendorf easypet electronic pipette filler. Then 250 µL of an *ee*AChE stock solution with an appropriate concentration (0.625 µg/mL, 2.500 µg/mL, 5.000 µg/mL, 7.500 µg/mL, or 15.000 µg/mL), which had been kept in a refrigerator at 4 °C for at least three hours, was added to the Reservoir using a 1000-µL Pipetman P1000 pipette. The resulting solution was mixed by gently withdrawing and expelling the solution 10 times using the P1000 pipette.

Specific enzyme activity and K_i determination. Briefly, to each of 40 wells in a flat-bottom, clear, 96-well plate was added at 26 °C sequentially 270 µL 50 mM sodium phosphate buffer (pH 8.0) with 0.1% (v/v) Triton X-100, 5 μL eeAChE solution (15.000, 7.5000, 5.000, 2.500, or 0.625 μg/mL), 5 μL of inhibitor solutions (for tacrine: 3.0μ M, 1.5μ M, and 0.6μ M for 0.625μ g/mL of eeAChE or 6.0μ M, 2.0 μM, and 1.5 μM for 15.000 μg/mL of eeAChE; for bis(7)-tacrine: 0.6 nM, 0.3 nM, and 0.15 nM for 0.625 µg/mL of eeAChE or 90 nM, 60 nM, and 30 nM for 15.000 µg/mL of eeAChE) or distilled water (for control and the specific enzyme activity determination), 10 µL 2.5 mM DTNB, and 10 µL ATCh solutions (15.000, 7.500, 3.750, 1.875, and 0.938 mM). The resulting solutions were left on the bench at 26 °C for equilibration for 2 minutes and then measured for ATCh hydrolysis rate (v) at a microplate reader temperature of 26 ± 2 °C. The specific enzyme activity (SEA) for eeAChE was calculated according to SEA = $(A \cdot V)/(\varepsilon \cdot L \cdot T \cdot W_{\rm F})$, where A was the UV absorption of the ATCh hydrolysis product (0.21–1.26 x 10⁻³ OD); V was the volume of the assay solution (300 μ L); ϵ was molar absorptivity at 405 nm (13.3 L•cm⁻¹•mol⁻¹)³; L was the length of the light path of the flat-bottom, clear, 96-well plate (0.75 cm); T was the time over which the hydrolysis product was generated (10 minutes); W_E was the weight of the enzyme (10.4 x 10⁻⁶-250 x 10⁻⁶ mg); 1U is defined as converting 1

 μ mol of substrate to its product in a minute⁴. K_i was obtained from $1/\nu$, 1/[ATCh], and [I] using Prism 4 with the Lineweaver-Burk plot⁵ (see details below).

For each new batch of eeAChE, UV absorbance of the assay solution was measured at 10-second intervals to determine whether v reached plateau over the 10-minute period (or determine whether $r^2 < 1.0$ for the curve of the absorbance over time) first using eeAChE at a stock concentration of 15 µg/mL and ATCh at a stock concentration of 15.000 mM. If a plateau was observed, the 15 µg/mL eeAChE solution was repeatedly diluted by two fold until v remained constant (or determine whether $r^2=1.0$ for the curve of the absorbance over time) and in the range of $30-80 \times 10^{-3}$ OD/min. Then, the UV absorbance was measured at 10-second intervals over the 10-minute period to determine whether v was in the range of 10-20 x 10⁻³ OD/min using a diluted eeAChE solution (15.000, 7.500, 5.000, 2.500, or 0.625 µg/mL) and five ATCh concentrations (15.000, 7.500, 3.750, 1.875, and 0.938 mM). Any ATCh concentration (typically the 0.938 mM concentration) that causes $v < 10 \times 10^{-3}$ OD/min was excluded. Consequently, v was determined using either five ATCh concentrations (15.000, 7.500, 3.750, 1.875, and 0.938 mM) or four ATCh concentrations (15.000, 7.500, 3.750, and 1.875 mM). Three inhibitor concentrations (initially 0.1, 1.0, and 10.0 times the estimated K_i concentration) were used to determine the percentage of enzyme inhibition. The three concentrations were modified repeatedly until the ATCh hydrolysis rates in the presence of the three modified inhibitor concentrations were reduced to ~20%, ~50%, and ~80% of the rate in the absence of an inhibitor, respectively.

Under the assay conditions described above (temperature at 26 °C, pH of 8.0, ionic strength of 50 mM sodium phosphate buffer, and ATCh concentration of 15.000 mM), the ATCh hydrolysis rates in the absence of *ee*AChE of two identical Ellman assay solutions (two duplicates) were found to be 0.375 x 10⁻³ OD/min and 0.243 x 10⁻³ OD/min, whereas the corresponding ones in the presence of *ee*AChE were 32.872 x 10⁻³ OD/min and 31.633 x 10⁻³ OD/min. Therefore, as described below the

ATCh hydrolysis rate in the absence of *ee*AChE were not measured because of its insignificant contribution to the ATCh hydrolysis rate in the presence of *ee*AChE.

Step 1: 5 µL of distilled water was added to all wells of Columns 2-3 and Rows 2-6 of a flat-bottom, clear, 96-well plate using a Finnpipette F1 1-10-µL 8-channel pipette. Step 2: 5 µL of the low inhibitor concentration was added well by well to all wells of Columns 4-5 and Rows 2-6 using an Eppendorf Reference series adjustable-volume 0.5-10 µL pipette. Step 3: 5 µL of the median inhibitor concentration was added well by well to all wells of Columns 6-7 and Rows 2-6 using the 0.5-10 µL pipette. Step 4: 5 µL of the high inhibitor concentration was added well by well to all wells of Columns 8-9 and Rows 2-6 using the 0.5-10 µL pipette. Step 5: 275 µL of an enzyme solution (0.625 µg/mL, 2.500 µg/mL, 5.000 µg/mL, 7.500 µg/mL, or 15.000 µg/mL) was added column by column starting from Column 2 to all wells of Columns 2-9 and Rows 2-6 using an Eppendorf Research 8-channel 30-300-µL pipette (it took ~3 seconds to complete the enzyme addition to each column). Step 6: A timer was set to count the incubation time of the Column-2 wells upon adding the enzyme solution. Step 7: The solutions in each row were stirred in circle 6 times, starting from Row 2 to Row 9, using a Finnpipette F1 1–10-µL 8-channel pipette with the same set of Fisherbrand low-retention pipette tips. Step 8: When the timer reached 4 minutes, 10 µL of DTNB was added column by column starting from Column 2 to all wells of Columns 2-9 and Rows 2-6 using a Finnpipette F1 1–10-µL 8-channel pipette with the same set of Fisherbrand low-retention pipette tips (it took ~3 seconds to complete the DTNB addition to each column). Step 9: When the timer reached 5 minutes, 10 µL of five ATCh solutions (15.000 mM to Row 2, ... and 0.938 mM to Row 6) were added column by column starting from Column 2 to all wells of Columns 2-9 and Rows 2-6 using a Finnpipette F1 1–10-µL 8-channel pipette with a new set of Fisherbrand low-retention pipette tips for each row (it took ~10 seconds to complete the ATCh addition and mixing of each column). Upon addition of ATCh, all solutions of each column were mixed by withdrawing and expelling the

solutions 5 times using the same set of pipette tips as those for adding ATCh followed by stirring the solution in circle 5 times using the same set of pipette tips. Step 10: The timer was reset to count the reaction time of the first column wells upon adding ATCh to the last column cells. Step 11: When the timer reached 2 minutes, the plate of solutions was placed in a microplate reader. The ATCh hydrolysis rates of the plate were determined by measuring the UV absorbance in optical density (OD) of an assay solution at 405 nm at 10-second intervals over a period of 10 minutes at plate reader temperature of 26 ± 2 °C using (1) autocalibration, (2) no automix, (3) no blanking, and (4) the basic kinetic assay protocol available in the SoftMax Pro 4.7.1 program. An average of two ATCh hydrolysis rates of duplicated assay solutions was used for K_i calculation. Each K_i listed in Tables 1 and 2 was an average of five independent and consecutively performed K_i determinations using freshly prepared solutions of enzyme, inhibitor, and Ellman assay reagents.

UV absorptions of inhibitor solutions that were prepared using glass or plastic vials. To a single quartz cuvette that was washed with distilled water and dried by blowing N₂ gas, 3.0 mL of a tacrine or bis(7)-tacrine solution of 30.0 μ M, 20.0 μ M, 15.0 μ M, 10.0 μ M, 7.5 μ M, or 5.0 μ M was added using a 1000- μ L Pipetman P1000 pipette. The cuvette with the highest tacrine or bis(7)-tacrine concentration that was prepared using two 2.0-mL microcentrifuge tubes was first placed in the SpectraMax Plus 384 Absorbance Microplate Reader to scan for λ_{max} in the range of 190–400 nm. The λ_{max} s for tacrine and bis(7)-tacrine were found to be 242 nm and 244 nm, respectively. The UV absorption of an inhibitor solution that was prepared using two 2.0-mL microcentrifuge tube or a 7.4-mL glass vial was then determined by the observed absorbance of an inhibitor solution with or without 0.4% (v/v) Polysorbate 20 subtracted by the observed absorbance of distilled water with 0.4% (v/v) Polysorbate 20 r distilled water without 0.4% (v/v) P

Table S1. ATCh hydrolysis rate (v), inhibition constant (K_i), and specific enzyme activity (SEA) for tacrine (THA) and bis(7)-tacrine (B7T) against *Electrophorus electricus* acetylcholinesterase (*ee*AChE).

			Tac	rine in pla	stic vial wit	h 10.4 pg e	eAChE			
					Experimer	nt 1				
[ATCh]				v (mO	D/min)				$K_{\rm i}$	SEA
(mM)	o nM o	of THA	10 nM (of THA	25 nM	of THA	50 nM	of THA	(nM)	(U/mg)
15.00	34.174	36.900	25.261	25.253	15.859	17.029	10.665	8.667	8.46 nM	342.0
7.50	33.280	32.234	21.628	19.588	12.910	12.231	8.107	8.304		
3.75	26.781	22.933	15.407	14.499	8.696	8.613	5.804	6.125		
1.88	18.805	16.850	10.436	9.880	5.815	5.375	3.536	3.061		
0.94	11.220	10.811	6.628	5.877	3.368	3.318	1.790	2.275		
					Experimer	ıt 2				
[ATCh]				v (mO	D/min)				Ki	SEA
(mM)	o nM c	of THA	10 nM (of THA	25 nM	of THA	50 nM	of THA	(nM)	(U/mg)
15.00	35.679	38.069	25.103	26.987	15.360	19.001	11.975	14.698	12.42	354.9
7.50	36.293	31.537	21.496	19.610	13.989	14.347	9.033	9.794		
3.75	27.704	25.956	16.914	15.826	11.427	10.134	7.012	6.993		
1.88	19.078	18.265	11.620	11.304	7.299	6.624	4.257	4.469		
0.94	11.728	11.811	7.212	6.812	4.409	4.182	2.531	2.819		
					Experimen	ıt 3			1	
[ATCh]			I	<i>v</i> (mO	D/min)	A	1		Ki	SEA
(mM)	o nM o	ot THA	10 nM (ot THA	25 nM	ot THA	50 nM	of THA	(nM)	(U/mg)
15.00	31.680	34.521	23.879	22.506	16.709	16.874	11.207	11.012	12.90	318.6
7.50	31.650	30.283	17.375	18.727	13.114	11.488	8.131	7.867		
3.75	26.684	24.739	15.722	15.330	9.191	9.362	5.764	6.920		
1.88	18.434	17.286	10.811	10.233	6.126	6.045	4.029	3.937		
0.94	11.962	10.181	6.783	6.529	3.979	3.518	2.384	2.633		
					Experimen	it 4				-
[ATCh]				v (mO	D/min)				$K_{ m i}$	SEA
(mM)	o nM c	of THA	10 nM (of THA	25 nM	of THA	50 nM	of THA	(nM)	(U/mg)
15.00	38.326	35.205	22.415	23.356	15.157	13.232	9.948	9.089	8.93 nM	353.8
7.50	35.941	33.166	20.243	18.479	11.496	10.112	6.650	6.675		
3.75	29.594	27.291	16.256	14.332	8.614	7.692	4.428	4.838		
1.88	20.012	19.041	11.713	10.012	5.839	5.279	3.291	3.276		
0.94	12.635	12.191	7.409	6.929	3.772	3.432	2.256	2.255		
					Experimer	ıt 5				
[ATCh]				v (mO	D/min)				$K_{ m i}$	SEA
(mM)	o nM o	of THA	10 nM 0	of THA	25 nM	of THA	50 nM	of THA	(nM)	(U/mg)
15.00	36.835	33.803	22.989	19.017	14.723	14.400	8.440	12.151	12.32	339.9
7.50	36.740	30.337	22.409	18.839	11.741	13.504	6.830	8.818		
3.75	28.203	26.592	14.794	14.675	9.267	8.807	5.706	5.551		
1.88	18.805	18.299	10.437	9.325	5.531	5.817	3.698	3.433		
0.94	11.873	11.275	6.574	6.097	4.515	4.098	2.386	2.409		
			Tac	rine in pla	stic vial wit	h 41.7 pg e	eAChE			
					Experimer	ıtı				
[ATCh]				v (mO	D/min)				$K_{ m i}$	SEA
(mM)	o nM o	ot THA	10 nM (ot THA	12.5 nM	of THA	25 nM	ot THA	(nM)	(U/mg)
15.00	126.328	126.145	112.203	104.781	82.016	85.872	67.134	67.690	13.47	303.7
7.50	112.459	107.673	85.795	80.536	71.672	62.947	53.996	53.746		
3.75	67.271	67.992	47.698	51.831	44.626	39.330	35.064	36.478		
1.88	43.416	45.105	29.271	27.898	23.385	23.426	17.045	17.600		
	-				Experimer	ıt 2				
[ATCh]		-	r	v (mO	D/min)	-		-	$K_{\rm i}$	SEA
(mM)	o nM d	of THA	10 nM (of THA	12.5 nM	of THA	25 nM	of THA	(nM)	(U/mg)
15.00	96.323	97.120	51.656	49.279	43.457	45.131	37.716	33.494	15.3	232.7
7.50	80.372	80.603	44.711	40.868	37.275	32.324	32.103	30.394		
3.75	58.174	58.255	32.904	34.624	32.409	31.431	25.478	25.949		
1.88	30.689	37.785	19.083	19.050	16.104	16.769	12.859	12.369		
					Experimen	ıt 3				
[ATCh]		-	r	v (mO	D/min)	-		-	Ki	SEA
(mM)	o nM o	of THA	10 nM (of THA	12.5 nM	of THA	25 nM	of THA	(nM)	(U/mg)
15.00	94.613	84.734	67.364	63.211	54.668	55.663	43.900	42.055	14.54	215.8
7.50	74.025	73.543	57.983	54.464	47.302	48.202	35.462	33.446		
3.75	47.499	47.829	40.028	38.386	34.190	36.438	27.973	28.169		

1.88	30.191	32.948	21.643	20.490	18.675	19.297	12.070	13.736			
					Experimen	it 4			T	-	
[ATCh]		CETT I		v (mO	D/min)	6 TEX 1 1		C TEX L	Ki	SEA	
(mM)	o nM o	of THA	10 nM (of THA	12.5 nM	of THA	25 nM	of THA	(nM)	(U/mg)	
15.00	85.145	88.917	66.132	64.117	48.951	49.861	43.905	42.555	14.94	209.4	
7.50	70.976	68.905	55.633	54.282	49.636	47.944	35.777	31.424			
3.75	43.724	44.279	36.931	37.672	34.744	33.527	24.883	21.959			
1.00	20.023	23.950	10.045	18.444	10.740 E	15.250	9.470	10.395		L	
[ATCL]				» (mO	Experimen D/min)	11 5			V	SEA	
(mM)	o nM (STHA	10 pM	V (IIIO)	D/IIIII)	of THA	25 nM	of THA	(nM)	(U/mg)	
15.00	71 627	65 127	10 1111	47.682	41 827	40.1825	25 117	21.062	14.87	(0/mg)	
7.50		- 6 607	40.456	47.002	24.682	26.827	33·15/ 25 1185	31.002	14.07	104.5	
/.50	26.178	50.007	40.450	43.002	34.002	30.02/	25.1105	25.0025			
3.75	30.170	35.3445	15 7045	15 0025	2/.05/5	20.1035	21.01/5	0.6175			
1.00	23.1/0	~4 ·3435	<u>15./945</u> Tao	13.9923	13.999	h 82 2 pg 6	9.050	9.01/5		L	
Experiment 1											
[ATCh]				v (mO	D/min)				K.	SEA	
(mM)	o nM (of THA	12 5 nM	of THA	25 o nM	of THA	ro o nM	of THA	(nM)	(U/mg)	
15.00	02 616	87.100	67.211	65.740	5.0 mm	57 102	20.011	41.000	21.10 pM	1081	
7.50	92.010	84.078	60 412		55.039 45.226	45 586	39.013	22.022	31.19 1111	100.1	
/·20 2 75	62 608	50.247	42 78-	42.045	42.540	42.200 22.282	24.220	24 582			
1.88	42.462	<u> </u>	45.705	20.125	22.780	22 168	16 270	16 750			
1.00	42.403	40.709	30.224	29.125	Experimer	22.100	10.2/0	10./59		L	
[ATCh]				v (mO	D/min)	11.2			K	SEA	
(mM)	o nM (of THA	12 5 nM	of THA	25 o nM	of THA	ro o nM	of THA	(nM)	(U/mg)	
15.00	117 282	108.620	84.220	82 522	25.0 mm	r8 r62	30.0 111	42 716	21.21 nM	(0,g)	
7.50	11/.203	101.242	71 712	71 812	59·/49	50.502	28 621	26 780	31.21 1111	135.9	
7.50	85 122	66.8-6	61 500	78.181	53.005	50.045	30.031	30.709			
1.88	50.206	60.030	44.061	42.154	22.409	22.105	29.030	29.402			
1.00	59.300	00.132	44.001	43.154	52.121 Evperimer	32.195	23.007	23.005		<u>. </u>	
[ATCb]				» (mO	D/min)				K	SEA	
(mM)	o nM (FTHA	12 5 pM	of THA	D/mm	of THA	ro o nM	[of THA	(nM)	(U/mg)	
15.00	116 124	110 042	00.258	01154	25.0 1101	71.020	50.0 110	50.782	21 4 nM	(0,115)	
7.50	107.186	105.268	84.050	78.655	62 214	77.706	20.127	41 570	31.4 11.11	141.5	
2.75	80.265	70.282	62,000	60.782	46 552	<u>5/./00</u>	39.12/	21.278			
1.88	56 675	52 762	42.007	42 452	22 570	21.457	29.915	22.870			
1.00	,0.07)	<u>)</u> ;/02	+=:90/	((דינד	Experimen)/ ///////////////////////////////////	221104			·	
[ATCh]				v (mO	D/min)	* 1			K	SEA	
(mM)	o nM c	of THA	12 5 nM	of THA	25.0 nM of THA 50.0 nM of TH			of THA	(nM)	(U/mg)	
15.00	06.685	80.041	75.807	72.261	61.062	61.101	46.476	48.888	28.11 nM	112.2	
7.50	86.004	84.450	61.180	62.428	42.652	48.514	20.470	20.500			
2.75	62.170	60.482	42.282	45.452	26.050	20.762	24.862	20.504			
1.88	42.747	42.100	32.025	21.617	27.208	24.828	10.102	20.264			
	D1/T/	1 - 7 -	<u></u>	J	Experimer	it 5		т	I		
[ATCh]				v (mO	D/min)	.)			K:	SEA	
(mM)	o nM d	of THA	12.5 nM	of THA	25.0 nM	of THA	50.0 nM	f of THA	(nM)	(U/mg)	
15.00	107.437	91.984	72.311	71.418	57.033	54.014	39.443	38.944	29.66 nM	120.0	
7.50	93.065	83.547	62.612	59.724	47.043	43.859	32.100	32.580	,		
3.75	66.045	63.627	45.445	45.244	34.759	34.958	24.355	24.152			
1.88	46.617	45.212	31.859	31.946	24.748	24.462	17.108	17.268			
	1 /		Ta	crine in gla	ss vial with	1 82.2 pg ee	AChE	,			
				0	Experimer	1t 1					
[ATCh]				v (mOl	D/min)				Ki	SEA	
(mM)	o nM d	of THA	12.5 nM	of THA	25.0 nM	of THA	50.0 nM	l of THA	(nM)	(U/mg)	
15.00	112.471	109.176	104.028	104.608	95.644	104.271	88.453	91.411	38.34 nM	133.3	
7.50	124.437	116.819	105.279	108.668	92.646	93.805	78.058	81.122			
3.75	88.878	89.444	75.691	78.446	68.874	67.656	56.996	57.342			
1.88	71.059	71.059	59.631	61.082	52.727	52.402	41.187	42.279			
	/				Experimen	it 2	/		-		
[ATCh]				v (mO	D/min)				K _i	SEA	
(mM)	o nM d	of THA	12.5 nM	of THÀ	25.0 nM	of THA	50.0 nM	f of THA	(nM)	(U/mg)	
15.00	89.770	70.787	64.628	62.845	56.718	55.148	41.938	46.501	36.22 nM	96.6	
7.50	82.644	79.399	69.603	79.330	68.149	68.342	50.868	48.621			
3.75	50.808	54.250	48.361	53.602	46.584	46.813	37.231	33.737			
1.88	49.435	46.546	34.415	39.288	34.336	33.223	23.654	23.368			
					Experimen	it 🤊					

	[ATCh]				v (mO	D/min)				Ki	SEA
$\begin{split} \hline 15 co. 0.02,273 & 0.85,344 & 0.23,354 & 0.42,35 & 0.75,97 & 75,659 & 65,324 & 0.45,90 & 4.25,85 & 1.35,97 & 75,963 & 35,957 & 4.25,86 & 1.35,97 & 0.55,97 & 4.25,86 & 1.35,97 & 0.55,97 & 4.25,86 & 1.35,97 & 0.55,97 & 4.25,86 & 1.35,97 & 0.55,97 & 4.25,97 & 1.35,97 & 0.55,97 & 4.25,97 & 1.35,97 & 0.55$	(mM)	o nM o	of THA	12.5 nM	of THÀ	25.0 nM	of THA	50.0 nM	of THA	(nM)	(U/mg)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15.00	109.273	108.514	93.352	91.403	82.079	78.659	63.312	61.502	42.88 nM	131.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.50	96.075	106.552	84.560	85.681	73.517	72.952	53.027	48.802		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.75	69.512	78.260	61.157	59.509	50.644	52.083	38.855	36.161		
	1.88	50.062	55.470	43.129	43.373	37.914	38.007	26.176	27.622		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/	<i>>></i> 1/	12 /	17717	Experimer	nt 4	,	,		
$ \begin{array}{ $	[ATCh]				v (mO	D/min)				K:	SEA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(mM)	o nM o	of THA	12.5 nM	of THA	25.0 nM	of THA	50.0 nM	of THA	(nM)	(U/mg)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15.00	00.742	00.742	02.107	03.344	83.440	81.433	64.110	66.003	32.00 nM	120.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.50	84 275	84 275	77 607	76.076	64 041	62 508	48.480	52,277	<u>j</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.75	60.256	60.256	50.224	48.025	45 215	44 705	22 855	25 822		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.88	40.240	40.240	25.324	24.157	20.111	21.282	22,440	33.623		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.00	49.549	49.549	55:252	54.157	Experimer	51.202		~3.344		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATCh]				» (mO	D/min)				K	SFA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mM)	o pM (-fTHΔ	12 5 pM	of THA	D/mm	of THA	50 0 pM	of THA	(nM)	(U/mg)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(11111)	0 11101 0		12.5 1111		25.0 110		50.0 111	6 . 6 . 9	(IIIVI)	(0/111g)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.00	112.249	100.939	95.599	105.530	90.135	90.470	74.572	04.018	27.07 IIIVI	120.2
3.75 bit 3.40 b7.13 b7.03 b7.33 b7.44 b7.35 b7.44 b7.35 b7.44 b7.35 b7.44 b7.35 b7.44 b7.35	7.50	114.370	90.131	67.209	91.114	06.060	75.571	54.202	45.407		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.75	84.340	67.113	60.035	53.497	42.937	44.401	29.728	28.738		
$\begin{tabular}{ c c c c c c c } \hline large transformed by the large of the large transformed by the large decision of the large deci$	1.88	43.506	43.506	38.074	33.301	27.646	26.743	19.633	18.496		
				Taci	rine in plas	stic vial wit	h 125.0 pg e	eeAChE			
$ \begin{array}{ $,	Experimen	nt 1				
$\begin{array}{ $	[ATCh]		Creat		v (mO	D/min)				Ki	SEA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(mM)	o nM o	ot THA	16.67 nN	1 of THA	33.33 nN	1 of THA	66.67 nN	1 of THA	(nM)	(U/mg)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.00	62.804	47.128	41.149	43.312	39.302	39.617	31.254	29.366	42.12 nM	44.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.50	44.964	35.936	34.335	37.962	34.011	33.211	21.908	22.125		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.75	28.530	27.805	22.210	22.883	19.876	19.552	13.293	14.722		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.88	24.532	22.404	18.303	18.693	16.058	15.923	10.168	11.586		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				•	•	Experimer	nt 2	•	•		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATCh]				v (mO	D/min)				Ki	SEA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mM)	o nM d	of THA	16.67 nN	1 of THA	33.33 nN	1 of THA	66.67 nN	1 of THA	(nM)	(U/mg)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.00	36.770	30.636	26.243	32.066	26,563	26.818	16.806	18.273	44.10 nM	27.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.50	34.847	35.850	22.014	28.107	21.524	21.285	15.008	15.264		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.75	25 620	26 112	16 205	18 204	11.678	10.425	0.622	0.822		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.88	12 812	14 828	10.007	11,000	7 657	0.722	6 254	6 121		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Functiment 2										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATCh]				v (mO	D/min)				K.	SFA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mM)	o nM (of THA	16.67 nM	1 of THA	22.22 n	1 of THA	66.67 nN	I of THA	(nM)	(U/mg)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.00	40.874	46 207	10.07 m	26.806	33.33 111	25 652	22.262	20.067	(1111) 46.42 pM	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.00	49.074	26.042	32.130	30.000	2/.31/	25.053	10.456	18.058	40.42 1111	30.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/.50	26.661	30.943	29.35/	30.104	24.911	20.302	19.450	10.050		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.75	20.001	34.521	19.110	21.922	1/.311	1/.504	13.533	14.204		
$ \begin{array}{ c $	1.00	10.431	19.410	13.064	11.020	10.109 E	10.322	7.507	0.030		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATTO]]	-			(0	Experimer	11 4			TZ.	OF A
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[AICh]	M	CTUA		$\frac{v (mO)}{1 + (TTUA)}$	D/min)				K_i	SEA (U/mg)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(111111)	0 11/1 0	DETHA	10.07 niv	I OF I HA	33.33 niv	1 OF I HA	00.07 nN	1 of 1 HA		(O/mg)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.00	72.250	74.932	51.030	51.709	41.897	43.794	30.225	40.037	44.40 nivi	59.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.50	51.839	55.217	35.301	39.133	30.585	33.840	33.259	29.778		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3.75	40.694	40.504	27.981	29.784	20.177	28.239	22.309	22.338	<u> </u>	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1.88	33.493	31.747	21.255	20.174	18.022	18.013	15.801	14.312		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lumet -	-			/ ~	Experimen	nt 5				677. I
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATCh]		CITER /		v (mO	D/min)	6 (m); ·		6 (m)		SEA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(mM)	o nM o	of THA	16.67 nN	1 of THA	33.33 nN	1 of THA	66.67 nN	1 of THA	(nM)	(U/mg)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.00	83.027	72.257	52.591	55.459	45.430	42.637	39.483	39.972	46.20 nM	62.3
3.75 42.208 45.359 31.989 32.116 28.645 29.249 23.684 27.288 1.88 34.873 34.156 22.436 20.325 18.666 19.932 15.784 15.708 Image: constraint of the state of the stat	7.50	52.913	54.894	34.151	32.598	33.75 ⁸	29.520	27.721	28.352		
1.88 34.873 34.156 22.436 20.325 18.666 19.932 15.784 15.708 Tacrine in plastic vial with 250.0 pg eeAChE Experiment 1 [ATCh] v (mOD/min) Ki SEA (mM) 0 nM of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg) 15.00 70.503 77.549 74.195 59.114 42.685 43.240 37.128 42.021 65.94 nM 29.7 7.50 45.766 45.549 39.603 39.680 25.491 24.116 23.531 20.931 20.97 3.75 23.723 29.695 20.315 16.834 13.078 13.392 8.924 13.019 20.91 Experiment 2 (ATCh] v (mOD/min) Ki SEA (MTCh] 0 o nM of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	3.75	42.208	45.359	31.989	32.116	28.645	29.249	23.684	27.288		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1.88	34.873	34.156	22.436	20.325	18.666	19.932	15.784	15.708		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Tacı	ine in plas	tic vial wit	h 250.0 pg	eeAChE			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Experimer	nt 1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[ATCh]				v (mO	D/min)				Ki	SEA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mM)	o nM o	of THA	25 nM	of THA	50 nM	of THA	100 nM	of THA	(nM)	(U/mg)
7.50 45.766 45.549 39.603 39.680 25.491 24.116 23.531 20.931 3.75 23.723 29.695 20.315 16.834 13.078 13.392 8.924 13.019 1.88 15.241 17.935 11.673 12.084 8.637 7.899 6.145 7.434 Experiment 2 [ATCh] v (mOD/min) K _i SEA (nM) SEA (nM) On M of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	15.00	70.503	77.549	74.195	59.114	42.685	43.240	37.128	42.021	65.94 nM	29.7
3.75 23.723 29.695 20.315 16.834 13.078 13.392 8.924 13.019 1.88 15.241 17.935 11.673 12.084 8.637 7.899 6.145 7.434 Experiment 2 [ATCh] v (mOD/min) K _i SEA (nM) SEA (nM) On M of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	7.50	45.766	45.549	39.603	39.680	25.491	24.116	23.531	20.931		
1.88 15.241 17.935 11.673 12.084 8.637 7.899 6.145 7.434 Experiment 2 [ATCh] v (mOD/min) Ki SEA (mM) o nM of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	3.75	23.723	29.695	20.315	16.834	13.078	13.392	8.924	13.019		
Experiment 2 [ATCh] v (mOD/min) K _i SEA (mM) 0 nM of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	1.88	15.241	17.935	11.673	12.084	8.637	7.899	6.145	7.434		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Experimen	1t 2				
(mM) o nM of THA 25 nM of THA 50 nM of THA 100 nM of THA (nM) (U/mg)	[ATCh]				v (mO	D/min)				Ki	SEA
	(mM)	o nM o	of THA	25 nM	of THA	50 nM	of THA	100 nM	of THA	(nM)	(U/mg)

						r	r	r		
15.00	36.770	30.636	26.243	32.066	26.563	26.818	16.896	18.273	66.14 nM	13.5
7.50	34.847	35.850	22.014	28.107	21.524	21.285	15.008	15.264		
3.75	25.630	26.113	16.305	18.394	11.678	10.435	9.632	9.823		
1.88	13.812	14.838	10.097	11.909	7.657	9.733	6.254	6.121		
					Experimen	ıt 3				
[ATCh]				v (mOl	D/min)				Ki	SEA
(mM)	o nM o	of THA	25 nM (of THA	50 nM	of THA	100 nM	of THA	(nM)	(U/mg)
15.00	77.077	68.433	57.570	54.857	49.325	49.350	42.128	42.021	71.30 nM	20.2
7.50	68.437	70.801	48.460	44.274	31.894	36.733	23.531	24.931	, ,	
3.75	26.819	31.812	25.907	25.351	18.148	18.358	15.924	13.019		
1.88	25.432	25.665	18.458	17.002	13.335	15.608	11.145	10.434		
	- 717	, , ,		//	Experimen	ut⊿	12	121		
[ATCh]				v (mO	D/min)	·· T			K.	SEA
(mM)	o nM (of THA	25 nM (of THA	50 nM	of THA	100 nM	of THA	(nM)	(U/mg)
15.00	76.080	75 220	40.001	64.601	56.008	48 012	42.720	44.258	68.22 nM	305
7.50	65.989	61.110	49.991	47.886	41.706	26.170	45.720	21.487	00.52 11.11	30.3
2.75	-8.060	55.010	43.135	47.000	25.064	30.1/0	30.745	18 - 68	-	
3.75	50.000	55.019	34.591	33.079	25.004	25.002	20.9/1	10.500		
1.00	22.0/3	22.9/0	15.504	15.2/2	12.911 E-m ori-m or	12.101	9.411	9.9/9	_	
[ATC] 1					Experiment D/min)				V	CE A
$(\mathbf{m}\mathbf{M})$	M	CTUA	M	V (mO)	D/min)	. CTELLA		CTUA	$(\mathbf{n}\mathbf{M})$	SEA (U/mg)
(111111)	0 11111 0		25 111/1 0		50 1111		100 1111	OLIHA		(O/ling)
15.00	77.059	75.303	50.798	03.080	54.774	47.420	42.040	43.053	89.90 nivi	30.0
7.50	50.900	49.470	39.214	41.698	37.861	33.800	22.599	22.121		
3.75	28.678	20.482	24.677	24.634	22.860	21.001	15.368	15.166		
1.88	16.205	15.152	10.778	10.805	10.760	9.773	7.038	7.188		
1.25										
			Bis(7)	-tacrine in	glass vial v	vith 10.4 pg	g eeAChE			
					Experimen	nt 1				
[ATCh]				<i>v</i> (mO	D/min)				K_{i}	SEA
(mM)	o nM e	of B7T	0.83 nM	l of B ₇ T	1.67 nM	l of B7T	3.3 nM	of B7T	(nM)	(U/mg)
15.00	24.415	25.740	21.561	21.257	18.569	17.222	14.663	15.335	3.16 nM	344.8
7.50	19.934	19.405	15.374	15.913	13.039	12.920	10.495	10.850		
3.75	13.743	14.189	11.657	11.311	9.445	9.530	7.646	7.964		
1.88	9.740	9.150	7.467	7.805	6.258	6.361	4.797	4.171		
1.25	7.727	7.650	6.096	6.205	5.346	4.991	4.208	3.983		
		• • •	•		Experimen	it 2				
[ATCh]				v (mO	D/min)				Ki	SEA
(mM)	o nM e	of B7T	0.83 nM	of B ₇ T	1.67 nM	f of B7T	3.3 nM	of B7T	(nM)	(U/mg)
15.00	24.170	21.920	18.541	18.840	15.941	15.250	13.126	13.074	3.66 nM	316.8
7.50	18.926	17.794	13.004	14.217	12.346	11.358	9.555	9.682		
3.75	13.189	12.250	10.028	9.430	8.458	7.435	6.511	6.471		
1.88	7.101	7.747	6.505	6.431	5.646	4.760	3.922	4.132		
1.25	5.989	6.003	5.081	5.124	4.312	3.691	3.292	3.229		
	,,,,				Experimen	it 3			.1	
[ATCh]				v (mO	D/min)				K.	SEA
(mM)	o nM o	of B7T	0.83 nM	of B7T	1.67 nM	of B7T	2.2 nM	of B7T	(nM)	(U/mg)
15.00	27.832	25.684	20.251	20.823	18.136	17.605	15.037	14.427	3.35 nM	367.9
7.50	21.820	20.282	16.731	16.655	12.670	14.240	11.066	11.518	5.57	2-1-7
2.75	14.262	12.187	10.825	10.188	8.055	0.470	8.012	8.060	1 1	
1.88	10,752	10,242	7,024	7,728	6,167	6.442	5,424	5,102	1	
1.25	8.462	8.158	6.200	6.207	5.110	4.801	4.484	4.072	1 1	
	(*)				Experimen	1 1 2 7 -	I I ["T	1.*/-	4	
[ATCh]				v (mO	D/min)				K.	SEA
(mM)	o nM i	of B7T	0.82 nM	of B ₇ T	1.67 nM	of B7T	2 2 nM	of B7T	(nM)	(U/mg)
15.00	22.226	21 770	17.265	17.680	14.061	16 206	12 584	12 280	2.87 nM	303 5
7 50	15.060	17 561	0 562	12 586	11.000	10.200	0.140	10.064	2.0/ 1111	2°4·2
2 75	12 464	11 276	9.204	0 580	7 602	7 750	6.816	6.820	+	
1.88	0.007	8 = 76	7.2 44 6.282	6 =	F E07	1.12A	4 570	4 601	+	
1.00	7.210	6.806	E 017	= 086	2.277/	2.740	7.2/0 2 = 66	2 228	┨────┤	
1.45	/.219	0.090) ^{.01} /	2.000	Experimen	4·304	3.200	5.520	<u> </u>	
Larchi V V V										
$(\mathbf{m}\mathbf{M})$	$\frac{V(IIIUD/IIIII)}{M}$									(U/mg)
15.00	24 608	24.400	20.03 111	10 776	16 01	15 5 40	3.3 1111	12 522	200 pM	228 2
15.00	18 == 8	18 720	15 585	19.550	10.910	12.708	13.004	13.522	3.00 1111	350.2
/.50	10.550	10./29	11 81-	17.045	8 or 9	12./90	10.100	68.6	┨────┤	
3.75	- 8.8	14.0/9			0.9/0	9.003	/.129	0.040	┨────┤	1
1.00	/.010	10.090	/.491	/.21/	5.993	5.930	4.344	4.545	 	
1.25	0.407	7.120	5.430	5.307	4.420	4.300	3.411	3.309	1	

			Bis(7)-	tacrine in j	olastic vial	with 10.4 p	g eeAChE				
	1				Experimer	nt 1					
[ATCh]		(D	-	v (mO	D/min)	(1) 77	-	(1)	Ki	SEA	
(mM)	орМ с	of B7T	1.25 pM	of B ₇ T	2.5pM	of B ₇ T	5.0 pM	of B7T	(pM)	(U/mg)	
15.00	35.773	35.174	26.509	26.203	20.275	20.111	13.586	13.557	2.53 pM	341.4	
10.00	36.203	37.939	22.867	22.542	18.065	18.350	11.643	11.631			
7.50	30.091	32.957	19.820	19.612	14.944	14.765	10.279	10.565	-		
3.75	21.575	23.518	14.254	14.819	10.791	10.211	7.020	8.076			
1.88	14.704	15.888	7.776	9.818	0.578 Evenorimer	0.211	7.020	8.076			
[ATCL]				» (mO)	D/min)	11.2			V	SEA	
(mM)	opM (of B-T	1 25 pM	of B ₇ T	2 mM	of B-T	r o pM	of B7T	$(\mathbf{p}\mathbf{M})$	(U/mg)	
15.00	28 545	26.072	25 166	22 004	17 428	17.071	5.0 pm	16 052	2 87 pM	262.4	
10.00	25 754	22 711	23.100	20.121	17.420	16.758	12.506	12 404	2.0/ pivi	303.4	
7.50	27.002	27 242	18 527	16 804	12 242	14 250	10.042	11 457			
2.75	22 057	22.188	12.050	11.161	0.570	0.744	7 054	5 881			
1.88	15.035	14.820	8.840	0.165	6.570	5.023	5.805	5.058			
	-).~))		010 17		Experimen	1t 3)).*)*			
[ATCh] v (mOD/min) K_i SEA											
(mM)	opM o	of B7T	1.25 pM	of B7T	2.5pM	of B7T	5.0 pM	of B7T	(pM)	(U/mg)	
15.00	38.821	34.716	15.386	13.301	11.611	15.312	11.345	11.905	2.39 pM	353.9	
10.00	25.871	34.326	18.969	11.993	10.007	12.772	9.290	9.250		////	
7.50	29.426	29.218	12.257	10.383	8.366	11.150	8.285	8.232			
3.75	22.756	21.306	10.171	10.820	7.950	8.595	6.446	6.721			
1.88	15.596	14.933	7.355	6.115	4.962	5.879	4.116	4.502			
					Experimen	it 4					
[ATCh]				v (mOl	D/min)	•			Ki	SEA	
(mM)	opM o	of B7T	1.25 pM	of B7T	2.5pM	of B7T	5.0 pM	of B7T	(pM)	(U/mg)	
15.00	32.365	30.642	23.639	23.940	14.630	12.760	11.688	11.539	4.39 pM	303.2	
10.00	29.379	28.257	20.156	18.162	12.760	12.954	11.823	9.335			
7.50	26.697	25.433	18.142	18.189	12.998	12.912	9.765	10.396			
3.75	12.083	12.646	11.343	12.271	9.256	9.285	6.741	6.611			
1.88	13.276	12.868	8.663	9.894	6.326	6.585	5.102	5.379			
					Experimen	ıt 5					
[ATCh]			-	v (mOl	D/min)				$K_{ m i}$	SEA	
(mM)	opM o	of B7T	1.25 pM	of B7T	2.5pM	of B7T	5.0 pM	of B7T	(pM)	(U/mg)	
15.00	36.689	36.147	28.995	25.920	20.649	15.863	11.313	11.775	2.52 pM	350.5	
10.00	33.208	32.235	22.339	23.028	15.461	13.155	9.300	9.310			
7.50	30.106	29.680	21.429	21.011	13.021	12.243	8.199	8.333			
3.75	20.849	20.229	14.625	14.953	9.434	9.510	6.664	6.598			
1.88	13.786	13.552	9.764	9.195	6.472	6.713	4.310	4.351			
			B18(7)-	tacrine in	plastic vial	with 41.7 p	g eeAChE				
[ATC]]					Experimen	it 1			V	CE A	
(mM)	opMa	FB-T	25 o pM	v (IIIO)	5/11111)	of B-T	100 pM	of B=T	$(\mathbf{n}\mathbf{M})$	(U/mg)	
15.00		110 410	25.0 PM	102 600	84 747	87.002	- 100 pM			254 5	
7.00	78 508	78.616	78.074	76.040	60.170	61.520	24802	10.520	//·35 P™	-54·/	
/·>0 2 75	70.500 F6 F80	5.010	70.9/4 50.607	46 700	28.647	21.020	22 128	24.750	+		
1.88	26 560	22 /81	25 080	21 662	18 502	15 082	12.220	<u>**†*/29</u> 11.664			
1.00	-0.900	-2'4'		-1.005	Experimer	1 2					
[ATCh]				v (mO	D/min)				K.	SEA	
(mM)	opM o	of B7T	25.0 DM	of B7T	50.0 DN	I of B7T	100 DM	of B7T	(pM)	(U/mg)	
15.00	112.870	112.048	87.422	100.587	99.448	92.107	47.152	49.586	82.88 pM	271.8	
7.50	85.021	77.867	57.794	70.665	73.657	40.802	27.680	34.240	I I I I I I I I I I I I I I I I I I I	1	
3.75	52.164	50.122	30.010	44.301	43.884	34.458	18.962	18.650			
1.88	24.992	25.301	21.104	22.752	21.349	15.364	11.695	11.524			
	//				Experimen	it 3			i		
[ATCh]				v (mO	D/min)	/			Ki	SEA	
(mM)	opM o	of B7T	25.0 pM	of B ₇ T	50.0 pN	I of B7T	100 pM	of B7T	(pM)	(U/mg)	
15.00	104.313	104.419	86.737	91.983	75.391	62.832	64.868	52.591	84.71 pM	251.1	
7.50	75.575	76.725	61.018	56.723	59.057	64.987	43.546	38.168		,	
3.75	47.758	48.123	40.950	33.521	39.328	37.618	24.155	26.779			
1.88	27.117	24.040	22.338	21.921	19.301	20.776	12.353	13.418			
					Experimen	ıt 4					
[ATCh]				v (mOl	D/min)				$K_{ m i}$	SEA	
(mM)	opM o	of B ₇ T	25.0 pM	of B ₇ T	50.0 pN	l of B ₇ T	100 pM	of B ₇ T	(pM)	(U/mg)	
		08 070	08 0 17	05 745	72.685	82 710	22 722	24.467	82.07 pM	228.8	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
v (mOD/min) (mM) opM of B7T 25.0 pM of B7T 50.0 pM of B7T 100 pM of B7T 15.00 100.043 100.700 102.778 106.192 94.724 75.927 38.370 45.911 7.50 100.959 94.172 95.219 83.940 65.644 63.585 38.392 37.933	<u>i </u>									
V (mOD/min) (mM) opM of B7T 25.0 pM of B7T 50.0 pM of B7T 100 pM of B7T 15.00 100.043 100.700 102.778 106.192 94.724 75.927 38.370 45.911 7.50 100.959 94.172 95.219 83.940 65.644 63.585 38.392 37.933	77	05.4								
(mM) opM of B7T 25.0 pM of B7T 50.0 pM of B7T 100 pM of B7T 15.00 100.043 100.700 102.778 106.192 94.724 75.927 38.370 45.911 7.50 100.959 94.172 95.219 83.940 65.644 63.585 38.392 37.933	K_{i}	SEA								
15.00 100.043 100.700 102.778 106.192 94.724 75.927 38.370 45.911 7.50 100.959 94.172 95.219 83.940 65.644 63.585 38.392 37.933	(pM)	(U/mg)								
7.50 100.959 94.172 95.219 83.940 65.644 63.585 38.392 37.933	76.58 pM	241.5								
3.75 70.647 71.073 68.880 63.633 45.021 43.603 27.812 21.408										
1.88 20.246 20.242 26.800 26.702 21.852 21.248 17.886 17.168										
$\mathbf{P}_{i,j}$	<u> </u>									
Dis(/)-tachine in plastic via with 125.0 pg eeAChil										
	17	OT A								
$\begin{bmatrix} A1Ch \end{bmatrix} \qquad $	K_i	SEA								
(mM) opM of B71 0.25 nM of B71 0.5 nM of B71 1.0 nM of B71	(pM)	(U/mg)								
<u>15.00</u> 65.721 63.231 58.462 55.816 43.211 39.639 26.331 25.843	545.4 pM	51.7								
7.50 57.109 53.983 43.025 42.062 28.708 32.097 18.979 20.656										
3.75 42.793 31.909 28.183 28.050 20.436 23.590 13.975 14.899										
1.88 27.127 23.520 18.704 20.401 15.800 13.036 0.645 0.128										
Experiment 2										
	V	CEA								
(arXi) V(mOD/mm)	(\mathbf{n}_i)	(LI/mmm)								
(IIIM) opM of B71 0.25 nM of B71 0.5 nM of B71 1.0 nM of B71	(pivi)	(U/ilig)								
15.00 55.607 54.076 47.936 49.056 39.087 36.624 25.636 18.996	441.4 pM	44.0								
7.50 50.182 44.461 38.614 36.904 25.540 26.499 16.974 15.840										
3.75 28.288 30.757 25.605 26.270 16.360 14.064 12.966 13.863										
1.88 22.476 22.982 19.554 19.064 12.000 15.126 7.201 0.222										
Experiment 2	ıI									
IATCh1 v(mOD/min)	V	SEA								
[ATGH] $V(InDD)$ $V(InDD)$	$(\mathbf{n}\mathbf{M})$	(U/mg)								
(11101) opiN of B71 0.25 n/N of B71 0.5 n/N of B71 1.0 n/N of B71 $(1.0 n/N of B71)$	(pivi)	(U/ilig)								
<u>15.00</u> <u>63.203</u> <u>53.775</u> <u>46.564</u> <u>46.123</u> <u>44.387</u> <u>42.346</u> <u>29.180</u> <u>28.006</u>	411.1 pM	46.9								
7.50 49.174 45.032 32.154 33.815 32.620 32.877 16.107 16.832										
3.75 24.448 28.835 21.539 23.679 17.951 17.478 12.966 13.863										
1.88 22.827 22.847 17.538 16.665 15.283 14.189 7.201 9.323										
Experiment A										
[ATCh] $y (mOD/min)$	K	SEA								
(MM) and $(R-T)$ or M of $R-T$ or M of $R-T$ or M of $R-T$	$(\mathbf{p}\mathbf{M})$	(U/mg)								
(11111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) $($		(O/mg)								
15.00 53.391 58.507 43.049 40.428 41.040 40.071 23.741 22.090	445.6 pM	44.9								
7.50 43.881 44.880 34.635 34.846 30.262 30.509 19.173 18.868										
3.75 24.448 28.835 19.232 21.229 19.799 18.477 14.950 14.939										
1.88 22.827 17.847 16.715 15.060 11.207 12.681 6.891 7.652										
Experiment 5										
[ATCh] v (mOD/min)	K:	SEA								
(mM) opM of B7T o 25 pM of B7T o 5 pM of B7T to pM of B7T	(pM)	(U/mg)								
	(P)	20.8								
4/.200 $4/.200$ $4/.000$ $4/.000$ $4/.003$ $2/.003$ $2/.009$ 20.041	439. / Pivi	39.0								
/.50 41.303 39.500 30.530 30.005 20.743 20.149 19.004 21.529										
3.75 30.471 27.812 25.868 23.132 10.302 17.101 15.266 12.725										
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768										
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768 Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE										
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768 Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE Experiment 1										
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768 Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE Experiment 1 (MOD/min)	Ki	SEA								
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768 Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE Experiment 1 (mOD/min) (mOD/min) 0.5 nM of B7T 1.5 nM of B7T	K_{i} (pM)	SEA (U/mg)								
1.88 22.474 23.469 19.586 19.780 13.324 13.996 11.974 7.768 Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE Experiment 1 [ATCh] v (mOD/min) (mM) opM of B7T 0.5 nM of B7T 1.0 nM of B7T 1.5 nM of B7T 15.00 50.356 28.800 41.264 21.244 28.601 20.500 10.242	K _i (pM)	SEA (U/mg)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K _i (pM) 591.6 pM	SEA (U/mg) 23.4								
v v	K _i (pM) 591.6 pM	SEA (U/mg) 23.4								
v v	K _i (pM) 591.6 pM	SEA (U/mg) 23.4								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM	SEA (U/mg) 23.4								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM	SEA (U/mg) 23.4								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM	SEA (U/mg) 23.4 SEA								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM)	SEA (U/mg) 23.4 SEA (U/mg)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM 	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0 SEA								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM K _i (pM) 624.2 pM K _i (pM)	SEA (U/mg) 23.4 SEA (U/mg) 32.0 SEA (U/mg)								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	K _i (pM) 591.6 pM (pM) 624.2 pM K _i (pM) 701.5 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0 SEA (U/mg) 29.1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K _i (pM) 591.6 pM (pM) 624.2 pM K _i (pM) 701.5 pM	SEA (U/mg) 23.4 SEA (U/mg) 32.0 SEA (U/mg) 29.1								

1.88	20.697	20.941	17.173	16.494	13.356	13.588	8.617	8.471		
					Experimen	nt 4				
[ATCh]				v (mO	D/min)				K _i	SEA
(mM)	opM o	of B7T	0.5 nM	of B7T	1.0 nM of B7T		1.5 nM of B7T		(pM)	(U/mg)
15.00	51.731	45.302	36.026	39.138	34.133	31.114	29.528	27.178	989.0 pM	19.5
7.50	38.887	37.291	27.281	27.777	23.675	16.575	22.125	19.439		
3.75	24.315	24.025	18.610	18.492	15.320	15.417	11.145	11.118		
1.88	15.070	16.331	12.341	12.533	10.039	9.493	8.328	8.438		
					Experimen	nt 5				
[ATCh]				v (mO	D/min)				K _i	SEA
(mM)	opM o	of B7T	0.5 nM	of B7T	1.0 nM	of B7T	1.5 nM	of B7T	(pM)	(U/mg)
15.00	61.400	61.028	48.224	48.531	37.041	32.436	23.231	22.383	764.3 pM	24.6
7.50	40.257	40.984	35.235	33.565	19.538	18.890	15.634	15.068		
3.75	23.815	22.042	16.711	16.037	15.271	14.422	10.170	12.894		
1.88	14.424	15.936	11.470	12.211	7.559	8.884	7.553	5.654		

Bis(7)-tacrine solution that was prepared using plastic vials											
[B7T]		Abs	orbance at λ 244	. nm (mC	DD)						
(μM)	Exp. 1	Exp. 2	Exp. 3		Mean	SEM	Ν				
30.0	1.499	1.52	1.559		1.526	0.018	3.00				
20.0	0.997	1.018	1.033		1.016	0.010	3.00				
15.0	0.736	0.757	0.775		0.756	0.011	3.00				
10.0	0.503	0.496	0.522		0.507	0.008	3.00				
7.5	0.378	0.372	0.398		0.383	0.008	3.00				
5.0	0.259	0.24	0.252		0.250	0.006	3.00				
Bis(7)-tacrine solution that was prepared using glass vials											
$[B_7T]$	Absorbance at λ 244 nm (mOD)										
(μM)	Exp. 1	Exp. 2	Exp. 3		Mean	SEM	Ν				
30.0	1.34	1.274	1.245		1.286	0.028	3.00				
20.0	0.899	0.877	0.853		0.876	0.013	3.00				
15.0	0.628	0.589	0.61		0.609	0.011	3.00				
10.0	0.406	0.403	0.362		0.390	0.014	3.00				
7.5	0.276	0.259	0.265		0.267	0.005	3.00				
5.0	0.179	0.171	0.173		0.174	0.002	3.00				
Bis(7)-ta	erine solution t	hat was prepare	ed using glass vi	ials in pr	esence of o	0.4% P20					
$[B_7T]$		Abse	orbance at λ 244	nm (mC	DD)						
(μM)	Exp. 1	Exp. 2	Exp. 3		Mean	SEM	Ν				
30.0	1.419	1.356	1.443		1.406	0.026	3.00				
20.0	0.912	0.913	0.927		0.917	0.005	3.00				
15.0	0.688	0.672	0.709		0.690	0.011	3.00				
10.0	0.451	0.445	0.443		0.446	0.002	3.00				
7.5	0.331	0.324	0.337		0.331	0.004	3.00				
5.0	0.216	0.203	0.21		0.210	0.004	3.00				

Table S2A. Absorbance data of bis(7)-tacrine solutions with or without 0.4% Polysorbate 20 that were prepared using glass or plastic vials.

Table S2B. Absorbance data of tacrine solutions were prepared using glass or plastic vials.

	Tacrine solution that was prepared using plastic vials											
[THA]	Absorbance at λ 242 nm (mOD)											
(μM)	Exp. 1	Exp. 2	Exp. 3		Mean	SEM	Ν					
30.0	1.141	1.111	1.07		1.107	0.021	3.00					
20.0	0.734	0.744	0.721		0.733	0.007	3.00					
15.0	0.566	0.557	°.547		0.557	0.005	3.00					
10.0	0.378	0.372	0.365		0.372	0.004	3.00					
7.5	0.275	0.278	0.275		0.276	0.001	3.00					
5.0	0.185	0.186	0.183		0.185	0.001	3.00					
Tacrine solution that was prepared using glass vials												
[THA]		Abs	orbance at λ 242	nm (mC	DD)							
(μM)	Exp. 1	Exp. 2	Exp. 3		Mean	SEM	Ν					
30.0	1.104	1.072	1.094		1.090	0.009	3.00					
20.0	0.753	0.722	0.717		0.731	0.011	3.00					
15.0	0.556	0.542	0.54		0.546	0.005	3.00					
10.0	0.376	0.369	0.362		0.369	0.004	3.00					
7.5	0.277	0.276	0.297		0.283	0.007	3.00					
5.0	0.186	0.189	0.186		0.187	0.001	3.00					

Figure S1. Plots for K_i determination under different assay conditions. Left: reciprocal hydrolysis rate (1/v in second per optical density) was plotted against reciprocal substrate concentration (1/[ATCh] in 1/mM) in the absence and presence of an inhibitor at varying concentration; right: the slope of the double reciprocal plot was plotted against inhibitor concentration ([I] μ M or nM or pM). K_i was obtained from the negative x intercept of the slope replot.

Figure S1A. Tacrine in plastic vial with 10.4 pg eeAChE.

 $r^2 = 1.000$ $K_i = 8.46$ nM

50 60

 $r^2 = 1.000$ $K_i = 12.42$ nM

 $r^2 = 0.992$ $K_i = 12.90$ nM

50 60

r² = 0.994 K_i= 8.93 nM

*r*² = 0.998 *K*_i = 12.32 nM

40 50 60

50 60

40

40

40 50 60

40

Figure S1B. Tacrine in plastic vial with 41.7 pg eeAChE.

Figure S1C. Tacrine in plastic vial with 83.3 pg eeAChE.

Figure S1D. Tacrine in glass vial with 83.3 pg eeAChE.

Figure S1E. Tacrine in plastic vial with 125.0 pg eeAChE.

Figure S1F. Tacrine in plastic vial with 250.0 pg eeAChE.

Figure S1G. Bis(7)-tacrine in glass vial with 10.4 pg eeAChE.

Figure S1H. Bis(7)-tacrine in plastic vial with 10.4 pg eeAChE.

Figure S1I. Bis(7)-tacrine in plastic vial with 41.7 pg eeAChE.

Figure S1J. Bis(7)-tacrine in plastic vial with 125.0 pg eeAChE.

Figure S1K. Bis(7)-tacrine in plastic vial with 250.0 pg eeAChE.

References

- 1 Pang, Y.-P., Quiram, P., Jelacic, T., Hong, F. & Brimijoin, S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: steps toward novel drugs for treating Alzheimer's disease. J. Biol. Chem. 271, 23646–23649 (1996).
- 2 Ellman, G. L., Courtney, K. D., Andres, V. J. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem. Pharmacol.* 7, 88-95 (1961).
- 3 Eyer, P. *et al.* Molar absorption coefficients for the reduced Ellman reagent: Reassessment. *Anal. Biochem.* **312**, 224–227 (2003).
- 4 Tipton, K. F. in *Enzyme assays:* A *practical approach* (eds R. Eisenthal & M.J. Danson) 19 (Oxford University Press, 2002).
- 5 Lineweaver, H. & Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658-666 (1934).