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Supplementary Methods and Results 

Detailed description of individual Samples 

A brief overview of the included samples can be found in Supplementary Table 1. 

iPSYCH, Denmark 

Since 1981 dried blood spot samples (Guthrie cards) from all newborn babies in Denmark have been 

stored in the Danish Newborn Screening Biobank (DNSB) at Statens Serum Institute (SSI). Samples 

from this nationwide biobank can be linked with the comprehensive Danish register system through 

the unique personal identification number (CPR-number), which is assigned to all live-born babies in 

Denmark. The CPR-number is stored in the Danish Civil Registration System (DCRS)1 and is used 

in all contacts with the public sector, including all hospital contacts. 

The iPSYCH-ADHD sample is a nationwide population based case-cohort sample selected from a 

baseline birth cohort comprising all singletons born in Denmark between May 1, 1981, and December 

31, 2005, who were residents in Denmark on their first birthday and who have a known mother (N = 

1,472,762). Cases were diagnosed by psychiatrists at psychiatric hospitals (in- or out-patient clinics) 

according to ICD10 (F90.0), identified using the Danish Psychiatric Central Research Register2 

(DPCRR). The DPCRR includes data on all people admitted to a psychiatric hospital for assessment, 

treatment, or both in Denmark since 1969 as well as people who attended psychiatric outpatient 

services since 1995. Diagnoses were given in 2013 or earlier for individuals at least 1 year old. 

Individuals with a diagnosis of moderate to severe mental retardation (ICD10 code F71-F79) were 

excluded. Controls were randomly selected from the same nationwide birth cohort and not diagnosed 

with ADHD (F90.0) or moderate-severe mental retardation (F71-F79). 

DNA was extracted from dried blood spot samples and whole genome amplified in triplicates as 

described previously3,4. Genotyping was performed at the Broad Institute of Harvard and MIT 
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(Cambridge, MA, USA) using Illumina’s Beadarrays (PsychChip; Illumina, CA, San Diego, USA) 

according to the manufacturer’s protocols. Genotypes were a result of merging callsets from three 

different calling algorithms (GenCall, Birdseed and Zcall). GenCall5 and Birdseed6 was used to call 

genotypes with minor allele frequency (MAF) > 0.01 and zCall7 was used to call genotypes with 

MAF < 0.01. The merging was done after pre-QC on individual call sets. 

Processing of DNA, genotyping and genotype calling as well as imputing of genotypes of the 

iPSYCH-ADHD sample were carried out as a part of the genotyping of the full iPSYCH sample, 

which in total consists of around 79,492 individuals, including around 54,249 cases diagnosed with 

at least one of six mental disorders (schizophrenia, bipolar disorder, depression, ADHD, anorexia or 

autism spectrum disorder) and 26,248 randomly selected population controls (25,243 did not have 

any of the six psychiatric disorders investigated in iPSYCH). For the study of ADHD individuals 

with an ADHD diagnosis were exclude among the controls (N = 413). The data processing was done 

in 23 waves of approximately 3,500 individuals each. In order to control for potential batch effects 

we included “wave” as a covariate in the regression models of all downstream analyses when relevant. 

Following genotyping all data processing, quality control, and downstream analyses were performed 

at secured servers in Denmark at the GenomeDK high performance-computing cluster 

(http://genome.au.dk). Overview of number samples in the iPSYCH study in the various steps, from 

identification in the registers to high quality genotypes included in the meta-analysis, can be found in 

Supplementary Figure 1. 

The study was approved by the Danish Data Protection Agency and the Scientific Ethics Committee 

in Denmark. 
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Samples from the Psychiatric Genomics Consortium (PGC) 

Parent-offspring trio samples 

CHOP, USA 

The CHOP (Children’s Hospital of Philadelphia) ADHD trio sample (2,064 trios) were recruited from 

pediatric and behavioral health clinics in the Philadelphia area8 and included children aged 6–18 years 

from families of European with an ADHD diagnosis following the K-SADS (Schedule for Affective 

Disorders and Schizophrenia for School-Age Children; Epidemiologic Version) interview. Exclusion 

criteria were prematurity (<36 weeks), intellectual disability, major medical and neurological 

disorders, pervasive developmental disorder, psychoses and major mood disorders. Participants were 

assayed on the Illumina Infinium II HumanHap550 BeadChip (Illumina, San Diego, CA, USA) as 

previously described. The study was approved by The Children's Hospital of Philadelphia 

Institutional Review Board. 

IMAGE-I, Europe 

The IMAGE-I (International Multisite ADHD Genetics Project) trio samples9,10 were collected using 

a common protocol with centralized training and reliability testing of raters and centralized data 

management. Family members were Caucasians of European origin from countries in and around 

Europe including Belgium, Germany, Ireland, the Netherlands, Spain, Switzerland, and the United 

Kingdom, and Israel. At the IMAGE sites, parents of children were interviewed with the Parental 

Account of Childhood Symptom (PACS), a semi-structured, standardized, investigator-based 

interview developed as an instrument to provide an objective measure of child behavior. Both parents 

and teachers completed the respective versions of the Conners ADHD rating scales and the Strengths 

and Difficulties Questionnaire (SDQ). Exclusion criteria were autism, epilepsy, IQ<70, brain 

disorders and any genetic or medical disorder associated with externalizing behaviors that might 
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mimic ADHD. Genotyping was conducted at Perlegen Sciences using their 600K genotyping 

platform, comprising approximately 600,000 tagging SNPs designed to be in high linkage 

disequilibrium with untyped SNPs for the three HapMap populations. The study was approved by the 

Institutional Review Board (IRB) or Ethical Committee at each site. 

PUWMa, USA 

The PUWMa (Pfizer-funded study from the University of California, Los Angeles (UCLA), 

Washington University, and Massachusetts General Hospital (MGH)) trio samples11 were collected 

independently at those three sites using similar but slightly different methods.  

309 families were recruited from clinics at MGH with children aged 6-17 years. Psychiatric 

assessments were made with the K-SADS-E. Exclusion criteria were major sensorimotor handicaps 

(deafness, blindness), psychosis/schizophrenia, autism, inadequate command of the English 

language, or a Full Scale IQ<80.  

At Washington University, 272 families were selected from a population-representative sample 

identified through birth records of the state of Missouri, for a genetic epidemiologic study of the 

prevalence and heritability of ADHD. The original sample included 812 complete male and female 

twin pairs and six individual twins aged 7 to 19 years at the time of interview, identified from the 

Missouri Family Registry from 1996 to 2002. Families were invited into the study if at least one child 

exhibited three or more inattentive symptoms on a brief screening interview. Parents reported on their 

children and themselves, and the youths on themselves, using the Missouri Assessment of Genetics 

Interview for Children (MAGIC), a semi-structured psychiatric interview. DSM-IV diagnoses of 

ADHD were based upon parental reports (most of the time, maternal). Exclusion criteria were 

parent/guardian reported intellectual disability or if the parent/guardian and twins could not speak 

English.  
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At UCLA, 156 subjects were drawn from 540 children and adolescents aged 5 to 18 years and 519 of 

their parents ascertained from 370 families with ADHD-affected sibling pairs. Children and 

adolescents were assessed using the K-SADS-PL (Present and Lifetime version). Adult parents were 

assessed using the SADS-LA-IV (Lifetime version), supplemented with the K-SADS Behavioral 

Disorders module for diagnosis of ADHD and disruptive behavior disorders. Direct interviews were 

supplemented with parent and teacher versions of the Swanson, Nolan, and Pelham, version IV 

(SNAP-IV) rating scale, as well as a parent-completed Childhood Behavior Checklist (CBCL) and 

Teacher Report Form (TRF). Exclusion criteria were neurological disorder, head injury resulting in 

concussion, lifetime diagnoses of schizophrenia or autism, or estimated Full Scale IQ<70.  For all 

sites DNA was extracted from blood at each participating institution and Genizon BioSciences Inc. 

conducted genotyping with funding from Pfizer Inc. Genomic DNA samples from MGH and WASH-

U were genotyped using the Illumina Human1M BeadChip (N = 1,057,265 SNPs), whereas the 

UCLA samples were genotyped using the Illumina Human 1M-Duo array (N = 1,151,846 SNPs). The 

study was approved by the subcommittee for human subjects of each site.  

Toronto, Canada 

The Canadian ADHD trio sample12 was drawn from an outpatient clinic in an urban pediatric hospital 

and included children aged 6-16 years who were referred for attention, learning and/or behavioral 

problems. ADHD diagnostic data was obtained from parents and teachers in semi-structured clinical 

interviews including the Parent Interview for Child Symptoms (PICS) and the Teacher Telephone 

Interview (TTI). Exclusion criteria were an IQ<80 on both the verbal and the performance subscales 

of the Wechsler Intelligence Scale for Children (WISC).  Samples were genotyped on the Affymetrix 

Genome-Wide Human SNP Array 6.0 with standard protocols as provided by the manufacturer. The 

study was approved by the Research Ethics Board of the Hospital for Sick Children, Toronto. 
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Case-control samples 

Barcelona, Spain 

The Barcelona sample13 comprised 607 ADHD cases. All patients were adults of Caucasian origin, 

recruited and evaluated at the Hospital Universitari Vall d’Hebron located in Barcelona (Spain). 

ADHD diagnostic criteria was assessed using the Structured Clinical Interview for DSM-IV and the 

Conner’s Adult ADHD Diagnostic Interview for DSM-IV (CAADID). Impairment was measured 

with the Clinical Global Impression (CGI), included in the CAADID Part II, and the Sheehan 

Disability Inventory (SDI). Exclusion criteria were IQ<70, schizophrenia or other psychotic 

disorders, ADHD symptoms due to mood, anxiety, dissociative or personality disorders, adoption, 

sexual or physical abuse, birth weight <1.5 kg, and other neurological or systemic disorders that might 

explain ADHD symptoms. The control sample consisted of 584 unrelated blood donors frequency-

matched for gender with the ADHD cases and screened to exclude those with lifetime ADHD 

symptoms or diagnosis.  

Both cases and controls were genotyped on the Illumina HumanOmni1-Quad BeadChip platform. 

The study was approved by the relevant ethics committee. 

Beijing, China 

The Beijing, China sample14 comprised 1,040 ADHD cases aged between 6-16 years of Han Chinese 

decent. Cases were recruited from the Child and Adolescent Psychiatric Outpatient Department of 

the Sixth Hospital, Peking University. Clinical diagnoses from a senior child and adolescent 

psychiatrist were confirmed using the Chinese version of the Clinical Diagnostic Interview Scale. 

Exclusion criteria were those with major neurological disorders (e.g. epilepsy), schizophrenia, 

pervasive development disorder, and IQ<70. The 963 control individuals were students from local 

elementary schools, healthy blood donors from the Blood Center of the First Hospital, Peking 

University, and healthy volunteers from the institute of Han Chinese decent, screened using the 
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ADHD Rating Scale-IV (ADHD RS-IV) to exclude ADHD. Additional exclusion criteria were major 

psychiatric disorders, family history of psychosis, severe physical diseases, and substance abuse.  

Both cases and controls were genotyped using the Affymetrix6.0 array at CapitalBio Ltd., Beijing, 

using the standard Affymetrix protocol.  

The study was approved by the Institutional Review Board of the Peking University Health Science 

Center.  

Bergen, Norway 

The Bergen, Norway sample15 consisted of 300 adults with ADHD. Patients recruited through a 

Norwegian national medical registry, as well as by psychologists and psychiatrists working at out-

patient clinics. Information regarding ADHD was obtained following systematic assessment of 

ADHD diagnostic criteria, developmental history, physical examination, evaluation of comorbidity, 

and, where possible, information from collateral informants. All gathered information was then sent 

to one of the expert committees for a definitive diagnostic assessment. There were no formal 

exclusion criteria. The 205 controls were recruited through the Medical Birth Registry of Norway 

above the age of 18 years with no known intellectual disability. Cases and controls were genotyped 

using the Human OmniExpress-12v1-1_B (Illumina, San Diego, CA, USA) platform. Genotyping 

was performed according to the standard Illumina protocol at Decode facility (Reykjavik, Iceland). 

The study was approved by the Norwegian Regional Medical Research Ethics Committee West (IRB 

#3 FWA00009490, IRB00001872). 

 

Cardiff, UK 

The Cardiff sample16 consisted of 727 Caucasian children aged 5-18 years old from Cardiff, Wales 

(N=510); St. Andrews, Scotland (N=35); and Dublin, Ireland (N=182). All children were recruited 

from community clinics and were assessed for ADHD using the Child and Adolescent Psychiatric 
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Assessment (CAPA) Parent Version, a semi-structured research diagnostic interview, to assess 

psychiatric diagnoses. Pervasiveness of ADHD symptoms (in school) was assessed using the Child 

ADHD Teacher Telephone Interview or the Conners Teacher Questionnaire. Exclusion criteria were 

intellectual disability (IQ <70), a major medical or neurological condition (e.g. epilepsy), autistic 

spectrum disorder, Tourette’s syndrome, bipolar disorder, or known chromosomal abnormality. 

Control participants were obtained from the Wellcome Trust Case Control Consortium–Phase 2. They 

comprised 3,000 individuals born in the United Kingdom during 1 week in 1958 (the 1958 British 

Birth Cohort) and 3,000 individuals from the U.K. Blood Services collection (N=5,081 passed QC). 

The comparison subjects were not screened for psychiatric disorders. ADHD case subjects were 

genotyped on the Illumina (San Diego) Human660W-Quad BeadChip according to the 

manufacturer's instructions. Comparison subjects were genotyped by Wellcome Trust Case Control 

Consortium–Phase2 using the Illumina Human 1.2M BeadChip.  The study was approved by the local 

research ethics committees at each site.  

Germany 

The German sample17 comprised 495 patients with ADHD (aged 6–18 years) recruited and 

phenotypically characterized in six psychiatric outpatient units for children and adolescents (Aachen, 

Cologne, Essen, Marburg, Regensburg, and Wurzburg). ADHD was assessed using the K-SADS-PL 

and a German teacher rating scale for ADHD (FBB-HKS). Exclusion criteria were IQ 75, potentially 

confounding psychiatric diagnoses such as schizophrenia, any pervasive developmental disorder, 

Tourette's disorder, and primary mood or anxiety disorder, neurological disorders such as epilepsy, a 

history of any acquired brain damage or evidence of the fetal alcohol syndrome, very preterm birth 

and/or (f) maternal reports of severe prenatal, perinatal or postnatal complications. The 1,300 adult 

controls were drawn from three population based epidemiological studies: (a) the Heinz Nixdorf 

Recall (Risk Factors, Evaluation of Coronary Calcification, and Lifestyle) study 3, (b) PopGen, (c) 



	 12	

KORA (Cooperative Health Research in the Region of Augsburg. Ethnicity was assigned to patients 

and controls according to self-reported ancestry (all German). The genome-wide genotyping was 

performed on HumanHap550v3 (Illumina; controls) and Human660W-Quadv1 BeadArrays 

(Illumina; cases). The study was approved by the ethics committees of all participating hospitals. 

IMAGE-II, Europe & USA 

The IMAGE-II ADHD case samples18 included some samples from the original IMAGE project (see 

IMAGE-I details above) along with samples provided by colleagues at other sites (Cardiff; St. 

Andrews, Dublin; MGH; Germany; and the Netherlands), using similar but not identical methods. 

Samples from Dublin and MGH followed the procedures described above for Cardiff and PUWMa, 

respectively. Case collection for the German and Dutch sites are described below. 

In Germany, 351 participants were recruited in order of clinical referral in the outpatient clinics in 

Wurzburg, Hamburg and Trier. Families were of German, Caucasian ancestry. All children were 

assessed by full semi-structured interview (Kiddie-Sads-PL-German Version or Kinder-DIPS) and 

parent and teacher ADHD DSM-IV based rating scales to ensure pervasiveness of symptoms. 

Exclusion criteria were IQ<80, comorbid autistic disorders or somatic disorders (hyperthyroidism, 

epilepsy, neurological diseases, severe head trauma etc.), primary affective disorders, Tourette’s 

syndrome, psychotic disorders or other severe primary psychiatric disorders, and birth weight <2000 

grams.  

At the Dutch site, assessment data are available for 112 subjects aged 3-18 years with DSM-IV 

ADHD. Most of the sample was collected as part of a sib pair genome-wide linkage study in ADHD19. 

Subjects were assessed using the DSM-IV version of the Diagnostic Interview Schedule for Children 

(DISC-P) with both parents, supplemented by Conners Questionnaires (old versions), the CBCL and 

TRF. Exclusion criteria were autism, epilepsy, IQ <70, brain disorder, and any genetic or medical 

disorder associated with externalizing behaviors that might mimic ADHD. 
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Control samples (1,755 population controls of European ancestry) were assembled from an IRB 

approved genome-wide association study (GWAS) of myocardial infarction20. Controls were 

collected from multiple sites in the US and Europe, including Seattle, Washington; Boston, 

Massachusetts; Gerona, Spain; Malmo, Sweden; and the United Kingdom. Sampling procedures for 

each cohort have been described previously20. Control participants from the Wellcome Trust Case 

Control Consortium overlapping with the Cardiff, UK sample (described above) were removed. 

Cases were genotyped using the Affymetrix 5.0 array at the State University of New York Upstate 

Medical University, Syracuse using the standard protocol issued by Affymetrix. Controls were 

genotyped using the Affymetrix 6.0 array. The study was approved by the Institutional Review Board 

(IRB) or Ethical Committee at each site. 

Yale-Penn, USA 

The Yale-Penn sample consists of small nuclear families and unrelated individuals (2020 individuals 

in 850 families and 6951 unrelated individuals), collected to study the genetics of substance 

dependence21-23. The case-control subjects were recruited from 2000 to 2013 from substance abuse 

treatment centers and through advertisements at the University of Connecticut Health Center, Yale 

University School of Medicine, the Medical University of South Carolina, the University of 

Pennsylvania, and McLean Hospital. The participants were identified through a family-based and a 

case-control protocol. Families were ascertained from treatment centers and advertisements that 

recruited affected sibling pairs (ASPs) meeting Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition (DSM-IV) criteria for cocaine or opioid dependence. Other family members 

of the ASPs were recruited when available, regardless of affection status and unaffected family 

members were included within the control subjects. 

For this study, 182 individuals with ADHD and 1315 unrelated controls of European ancestry were 

included. Unrelated individuals with ADHD and controls were selected from the family-based 
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protocol, with a focus on maximizing the number of ADHD cases retained for the analysis. DSM-IV 

diagnoses of ADHD case status, as well as other major psychiatric traits, were derived from the Semi-

Structured Assessment for Drug Dependence and Alcoholism for all participants. Exclusion criteria 

were a clinical diagnosis of a major psychotic illness (for example, schizophrenia or schizoaffective 

disorder). 

The sample was genotyped using one of two genotyping arrays: (1) the Illumina HumanOmni1-Quad 

v1.0 microarray containing 988,306 autosomal SNPs (Yale- Penn.1: performed at the Center for 

Inherited Disease Research (CIDR) and the Yale Center for Genome Analysis), (2) the Illumina 

Infinium Human Core Exome microarray (Yale-Penn.2 and Yale-Penn.3: performed at the Yale 

Center for Genome Analysis). The study was approved by the relevant institutional review boards. 

 

Replication samples 

23andMe, self-reported ADHD diagnoses 

The 23andMe sample consists of individuals who sent saliva samples (using the Oragene kit) to the 

genetic testing company 23andMe, Inc and agreed to take part in research and answered questions 

about their ADHD history as part of a longer survey. All participants provided informed consent and 

answered surveys online according to 23andMe’s human subjects protocol, which was reviewed and 

approved by Ethical & Independent Review Services, an AAHRPP-accredited institutional review 

board. As part of the “Your Medical History” survey, they were asked: "Have you ever been 

diagnosed by a doctor with any of the following psychiatric conditions: Attention deficit disorder 

(ADD) or Attention deficit hyperactivity disorder (ADHD)?”. The response options were: “Yes”, 

“No”, “I don't know”. A second question asked independently as a “Research Snippet” was: "Have 

you ever been diagnosed with attention deficit disorder (ADD) or attention deficit hyperactive 

disorder (ADHD)?" with the response options: “Yes”, “No”, “I'm not sure”. Individuals who gave a 
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positive response to these questions were classed as ADHD cases and controls were those who gave 

a negative response to these questions. Individuals with discordant responses were excluded.  

Research participants were genotyped either on the Illumina HumanHap550k (13,030 controls, 840 

cases) or HumanOmniExpress (57,363 controls, 5,017 cases) genotyping platforms by 23andMe. 

GWAS and imputation were performed separately for data generated by the two platforms. Within 

each platform, batches of 8,000-9,000 participants were imputed. Results were filtered for average 

and minimum imputation r2 to exclude SNPs that showed batch effects. Covariates included in the 

GWAS were age, sex and the first four principal components to account for population stratification.  

For the current study, the GWAS summary statistics were then aligned to the genotyped samples. The 

23andMe summary statistics were verified to be consistent with genome build hg19. They were then 

matched to the genotype data based on rsid, chromosome and base pair position. For SNPs, reported 

alleles were required to match the genotype data without a strand flip. For indels and multiallelic 

variants, alleles reported by 23andMe were evaluated heuristically for consistency with the genotype 

data and the alleles were matched accordingly (e.g. “I” or “D” alleles reported by 23andMe for indels 

were matched to the corresponding sequence of alleles for the insertion or deletion included in the 

genotype data). After alignment, the 23andMe GWAS results for the two platforms were combined 

in an inverse standard error-weighted meta-analysis to create a single 23andMe results set for use in 

the replication analyses. In total, 11,198,253 variants were matched from the 23andMe meta-analysis 

for inclusion in replication analyses. 

 

EAGLE, ADHD symptom scores 

The EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium includes population-based 

birth cohorts from Europe, Australia, and the United States 

(http://www.wikigenes.org/e/art/e/348.html). The consortium focuses on a wide range of phenotypes 
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in childhood including traits related to cognition and behaviour e.g. aggression24, astma allergy and 

atopy25 and postnatal growth26. In the study of ADHD symptoms, nine EAGLE cohorts where 

included with available ADHD symptom scores in childhood (age at measurement <13 years). An 

overview of the nine cohorts included in the EAGLE meta-analysis is provided in Middeldorp et al.27.  

In order to assess ADHD symptoms different instruments were used across cohorts, including the 

Attention Problems scale of the Child Behavior Checklist (CBCL) and the Teacher Report Form 

(TRF), the Hyperactivity scale of the Strengths and Difficulties Questionnaire (SDQ), and the DSM-

IV ADHD items as, for example, included in the Conners Rating Scale. For the meta-analysis, one 

phenotype was selected from each cohort. Based on the phenotype that was most available, school-

age ratings were chosen over preschool-age ratings, parent ratings over teacher ratings, and the 

measurement instrument with the largest information density was preferred over the other 

instruments27.  

Each of the included cohorts went through their own optimal pre-imputation QC and imputation was 

done using the March 2012 release of the Genomes Project (phase 1)28. Detailed description of QC, 

imputation and the analysis procedures for the different cohorts can be found in Middeldorp et al.27.  

Association analyses were done using linear regression and relevant principal components and 

subsequently meta-analysed using METAL29. Summary statistics from the meta-analysis of 

N=17,666 individuals were provided for inclusion in the current study. 

 

For the current study, summary statistics from the EAGLE meta-analysis were aligned to the 

genotyped ADHD samples based on rsid and chromosome and base pair location. SNP alleles were 

required to be concordant without a strand flip. No indels were included from the EAGLE meta-

analysis. After alignment, 5,837,346 SNPs from the EAGLE meta-analysis were available for 

replication analyses.   
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Bioinformatic pipeline for quality control and association analyses 

Quality control, imputation and primary association analyses were done using the bioinformatic 

pipeline “Ricopili”, which has been developed by the Psychiatric Genomics Consortium (PGC) 

Statistical Analysis Group30. The pipeline generates high quality imputed data and performs GWAS 

and meta-analysis of large genetic data sets. In order to avoid potential study and “wave” effects the 

eleven PGC samples were processed separately and the iPSYCH sample was processed in 23 separate 

batches referred to as waves (see sample description above) unless otherwise is stated. 

 

Pre-imputation quality control 

Subjects and SNPs were included in the analyses based on the following quality control parameters: 

SNP call rate > 0.95 (before sample removal), subject call rate > 0.98 (> 0.95 for the iPSYCH 

samples), autosomal heterozygosity deviation (| Fhet | < 0.2), SNP call rate > 0.98 (after sample 

removal), difference in SNP missingness between cases and controls < 0.02, and SNP Hardy-

Weinberg equilibrium (HWE) (P > 10−6 in controls or P > 10−10 in cases).  

 

Genotype imputation 

In order to obtain information about non-genotyped markers, we used the pre-phasing software 

SHAPEIT31 to estimate haplotypes and subsequently IMPUTE232 for imputing genotypes. Imputing 

was done in chunks of 3 Mb using default parameters. The imputation reference data consisted of 

2,504 phased haplotypes from the 1000 Genomes Project, phase 3 (1KGP3)33,34 data (October 2014, 

81,706,022 variants, release 20130502). Trio imputation was done with a case-pseudocontrol setup, 
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where a pseudocontrol was defined to each affected offspring using the non-transmitted alleles from 

the two parents (estimated based on the haplotypes of the parents).  

 

Relatedness and population stratification 

Relatedness and population stratification were evaluated using a set of high quality markers 

(genotyped autosomal markers with minor allele frequency (MAF) > 0.05, HWE p > 1x 10-4 and SNP 

call rate > 0.98), which were pruned for linkage disequilibrium (LD) resulting in a set of ~30,000 

pruned markers (markers located in long range LD regions defined by Price et al.35 were excluded). 

This was done separately for each of the PGC samples and on a merged set of genotypes from the 23 

iPSYCH waves. In order to identify related individuals an identity by state analysis were performed 

using PLINK v1.936,37, and one individual was excluded in pairs of subjects with ! > 0.2 (cases 

preferred kept over controls). 

In order to identify genetic outliers a principal component analysis (PCA) was performed using 

smartPCA incorporated in the software Eigensoft38, and the same set of pruned autosomal markers 

as described above.  For the iPSYCH sample a genetic homogenous sample was defined based on a 

subsample of individuals being Danes for three generations. This subsample was defined using 

register information about birth country of the individuals, their parents and grandparents, which was 

required to be Denmark in order to be included in the subsample. The subsample of Danes was used 

in order to define the center of an ellipsoid based on the mean values of principal component (PC) 1 

and PC2. Subsequently PC1 and PC2 for all individuals in the iPSYCH sample were used to define 

a genetic homogenous population by excluding individuals with PC values greater than six standard 

deviations from the mean. For the PGC samples genetic outliers were removed based on visual 

inspection of the first six PCs. PCA including samples from the 1000 Genomes Project was also 
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performed to confirm that the selected individuals matched the ancestry of European reference 

populations. 

PCA was redone after exclusion of genetic outliers. The first 20 principal components were tested for 

association with the phenotype using logistic regression and their impact on the genome-wide test 

statistics were evaluated using λ. In the iPSYCH GWAS PC1-4 and significant PCs were included as 

covariates. For PGC samples, the number of PCs was adjusted based on the cohort’s sample size in 

order to avoid overfitting and to reflect the differential power to capture true population structure by 

PCA. Specifically, the first five principal components were included as covariates for samples with 

fewer than 1000 individuals, and the first ten PCs were included for larger samples. Trio samples did 

not include PCs in the analysis unless strong population structure was evident (i.e. PUWMa). Where 

necessary, study specific design covariates were also included (e.g. indicators variables for IMAGE-

I sampling centres, alcohol dependence diagnosis for ascertainment in Yale-Penn). 

 

GWAS and meta-analysis 

Association analyses using the imputed marker dosages were performed separately for the 11 PGC 

samples and the 23 waves in iPSYCH by an additive logistic regression model using PLINK v1.936,37, 

with the derived principal components included as covariates as described above. 

 

The meta-analysis included summary statistics from GWASs of the 23 waves in iPSYCH and 11 

PGC samples, in total containing 20,183 cases and 35,191 controls. Only SNPs with imputation 

quality (INFO score) > 0.8 and MAF > 0.01 were included in the meta-analysis. Meta-analysis was 

performed using an inverse-weighted fixed effects model implemented in the software METAL 

(http://csg.sph.umich.edu//abecasis/Metal/)29.  Finally we filtered the GWAS meta-analysis, so only 



	 20	

markers which were supported by an effective sample size (Neff = 2/(1/Ncases + 1/Ncontrols)39 

greater than 70% were included (8,047,421 markers).  

In some of the secondary analyses (e.g. when using LD score regression40 and MAGMA41 (see 

below)), information about LD structure in a reference genome reflecting the ancestry of the analysed 

population is used. Such analyses therefore require results from a GWAS meta-analysis based on a 

genetic homogenous group reflecting the same ancestry. We therefore performed a GWAS of the 

iPSYCH samples and the PGC samples with European ancestry (subsequently referred to as European 

GWAS meta-analysis). In this GWAS meta-analysis the Chinese PGC sample was excluded and the 

PUWMa sample was replaced with the PUWMa (strict) sample, in which individuals with non-

European genetic ancestry were excluded, resulting in 19,099 cases and 34,194 controls with 

European ancestry.  

The GWAS meta-analysis identified 12 independent genome-wide significant (gws) loci (see 

Manhattan plot [Figure 1], forest plots [Supplementary Figure 3.A1 – 3.M1] and regional association 

plots [Supplementary Figure 3.A2 – 3.M2]). Independent loci were defined as described below. A 

more detailed description of potential risk genes located in the identified gws loci can be found in 

Supplementary Table 4. 

In the European GWAS meta-analysis the number of independent gws loci decreased to 11. The gws 

locus on chromosome 2 (located in SPAG16) in the GWAS meta-analysis did not pass the 

significance threshold when only including individuals with European ancestry (see Manhattan plot, 

Supplementary Figure 2). 

In addition, heterogeneity across studies/waves were tested with the Cochran’s Q test and quantified 

with the I2 heterogeneity index. No markers demonstrated significant heterogeneity (Supplementary 

Figure 6 and 7). 
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Defining independent genome-wide significant loci 

303 variants reached genome-wide significance (P < 5x10-8) in the meta-analysis. We then identified 

independent loci from these markers based on LD clumping (--clump in PLINK 1.936,37). Beginning 

with the most significantly associated variant as the first index variant, we labelled variants as being 

part of the same locus if they were within 500 kb and correlated with an index variant (r2 > 0.2). 

Variants not within 500 kb and not correlated with an existing index variant were labelled as a new 

index variant. Correlations were estimated from European-ancestry populations in the 1000 Genomes 

Phase 3 reference panel34. Clumping continued until all variants with P < 5 x 10-8 were either labelled 

as an index variant or assigned to a locus.  

A gws locus was then defined as the physical region containing the identified LD independent index 

variants and their correlated variants (r2 > 0.6) with P < 0.001. Associated loci located less than 400 kb 

apart were merged. The same process was applied to define independent genome-wide significant 

loci in subsequent meta-analyses. 

 

Evaluating putative secondary signals 

Correlation of secondary signals with their respective lead index variants 

Two of the genome-wide significant loci defined by this process in the ADHD meta-analysis include 

more than one index variant (Supplementary Table 2). In other words, they contain two genome-wide 

significant variants that are within 500 kb but are not correlated (r2 < 0.1). In this case, we label the 

less significantly associated index variant as a putative secondary signal and perform additional 

analyses to evaluate whether the second index variant can be confirmed as independent.  

First, we confirmed that the putative secondary signals are not strongly correlated with their 

respective lead index variants in the current genotype data. The correlation with the index variant was 

evaluated in (1) imputed best-guess genotype data (hard-called genotypes derived from imputed 
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genotype probabilities, for all variants with an imputation info score > 0.8) from the 11 PGC cohorts, 

and (2) imputed best-guess genotype data from iPSYCH. For both putative secondary effects, the 

correlation between the index variant and secondary effect is (r2 < 0.1) in both the PGC and iPSYCH 

imputed genotype data (Supplementary Table 2). This confirms that the putative secondary signal 

does not reflect LD structure in the ADHD cohorts that is not well captured by the 1000 Genomes 

Phase 3 European reference panel34.  

 

Conditional association analysis 

The two putative secondary signals were then evaluated by considering analysis conditional on the 

lead index variant in each locus. In each cohort, logistic regression was performed with the imputed 

genotype dosage for the lead index variant included as a covariate. All covariates from the primary 

GWAS (e.g. principle components, site indicators) were also included. The conditional association 

results were then combined in an inverse-variance weighted meta-analysis. 

Neither of the putative secondary signals achieve genome-wide significance in the conditional 

association analysis (Supplementary Table 2). The decreased significance observed in the conditional 

analysis reflects modestly attenuated estimates of the odds ratio and increased standard errors 

compared to the marginal association analysis in the primary GWAS. 

Based on the non-significant results for the putative secondary variants in the conditional analyses, 

we conclude that there is not yet sufficient evidence to confidently label these as independent effects 

in their respective loci.  

 

Bayesian credible set analysis 

In order to refine the genome-wide significant loci, we defined a credible set of variants in each locus 

using the method described by Maller et al.42. Under the assumption that (a) there is one causal variant 
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in each locus, and (b) the causal variant is observed in the genotype data, the credible set can be 

considered to have a 99% probability of containing the causal variant.  

 

Credible set estimation method 

We summarize the method here following the description of Gormley et al.43. Briefly, let D be the 

data including the genotype matrix X with P variants and the vector Y of phenotypes, and let " be 

the regression model parameters. Define P models #$ where variant j is causal and the remaining 

variants are not causal, and define the null model #% where no variants are causal. Then by Bayes’ 

rule the probability of model #$ is: 

Pr #$ ( = Pr	 (, " #$ ⋅
Pr #$
Pr (

⋅ -" 

Assuming a flat prior for the model parameters ", the integral can be approximated using the 

maximum likelihood estimates "., such that 

Pr #$ ( ≈ Pr ( #$, ". ⋅ 01
23
4 ⋅

Pr #$
Pr (

 

where 0 is the sample size and "$  denotes the number of fitted parameters for model #$. Given the 

assumption of one causal variant per locus, "$  is a constant for all #$ . Next, note that the 

conventional likelihood ratio test of model #$compared to the null model #% is defined as 

5$4 ≡ −2 log <=	(?|AB,2B)
<=	(?|A3,2D)

. 

Thus by substitution,  

Pr #$ ( ≈ exp
5$4

2
⋅ H% ⋅ 0

1
23
4 ⋅

Pr #$
Pr (

 

with H% = Pr ( #%, "% . Given a flat prior for models #$ the latter terms are constant, leaving 
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Pr #$ ( 	∝ 	 exp
J3
K

4
. 

Normalizing across all possible models #$ thus yields 

Pr	(#$) ≡ Pr #$ ( / Pr #M (M . 

Finally, the 99% credible set of variants is defined as the smallest set N of models such that 

Pr	(#$)A3∈P ≥ .99. 

If the model assumptions are correctly specified, then this credible set N has a 99% probability of 

containing the true causal variant. 

 

We implemented this approach using the published R script freely available online 

(https://github.com/hailianghuang/FM-summary). 

 

Variants considered for credible set analysis 

We applied the Bayesian credible set analysis to each of the 12 genome-wide significant loci 

identified in the primary meta-analysis of ADHD as described above. For each locus, variants within 

1MB and in linkage disequilibrium (LD) with correlation r2 > 0.4  to the index variant were considered 

for inclusion in the credible set. 

Because the credible set estimation is conditioned on LD structure, we performed the credible set 

analysis using the European GWAS meta-analysis to ensure consistent LD structure in the analyzed 

cohorts. Credible sets were also estimated based on both (a) the observed LD in European ancestry 

PGC datasets, and (b) the observed LD in the iPSYCH dataset.   

Observed LD with the index variant in each locus was computed using imputed best-guess genotype 

data (generated as described previously) with PLINK 1.9 (https://www.cog-genomics.org/plink2)37. 

For the European ancestry PGC datasets, imputed genotype data was merged across cohorts prior to 



	 25	

computed LD.  For the iPSYCH dataset, imputed genotyped data for the 23 genotying waves were 

similarly merged before computing LD. 

 

Credible set results in PGC and iPSYCH data 

Bayesian credible sets for each of the 12 genome-wide significant loci are reported in Supplementary 

eTable 1 (A-L). For the majority of the loci (7 of 12), there is no difference between the credible set 

results based on LD structure in the PGC datasets versus LD from the iPSYCH dataset 

(Supplementary Table 3). Differences between the credible sets for the remaining loci are modest, 

with no more than six non-overlapping variants between the two sets for each locus. The non-

overlapping variants also tend to have weak evidence for inclusion in the 99% credible set; of the 19 

non-overlapping variants, only six would be included in an 90% credible set (i.e. the smallest set of 

variants with an 90% probability of containing the true causal variant under the Bayesian model), and 

only one would be included in an 80% credible set. To be conservative, we define the final credible 

set as the union of the credible sets estimated from the PGC and iPSYCH LD structure. 

 

Functional annotation of variants in credible set 

To evaluate the potential impact of the variants in the credible set for each locus, we consider 

annotations of predicted functional consequences for those variants based on external reference data. 

In particular we evaluate: 

• Functional consequences: Coding and regulatory consequences of each variant were 

annotated using the Ensembl Variant Effect Predictor (VEP44) for genome build GRch37 

(hg19). Annotated consequences for transcripts without a HGNC gene symbol (e.g. clone-

based vega genes) were excluded. Gene names were updated to the current HGNC gene 

symbol where applicable. For each variant, we summarize (a) annotated genes, excluding 
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“upstream” and “downstream” annotations; (b) genes with an annotated consequence (i.e. 

excluding intronic annotations); and (c) annotated regulatory regions. 

• Transcription start site (TSS): We annotate variants within 2kb upstream of the TSS of at least 

one gene isoform based on Gencode v1945. 

• Hi-C interactions: Variants annotated as physically interacting with a given gene were 

identified based on Hi-C data from samples of developing human cerebral cortex during 

neurogenesis and migration46. Annotations are considered for both the germinal zone (GZ), 

primarily consisting of actively dividing neural progenitors, and the cortical and subcortical 

plate (CP), primarily consisting of post-mitotic neurons. 

• Expression quantitative trait loci (eQTLs): SNPs associated with gene expression were 

annotated using FUMA (http://fuma.ctglab.nl/). Annotated eQTLs were identified from GTEx 

v647 and BIOS48, and filtered for false discovery fate (FDR) < 1x 10-3 within each dataset. 

Annotations were updated to current HGNC gene symbols where applicable. For variants with 

multiple eQTL associations, we summarize the strongest eQTL association (i.e. the 

association with the lowest P-value) from each dataset. 

• Chromatin state: Chromatin states for each variant were annotated based on the 15-state 

chromHMM analysis of epigenomics data from Roadmap49. For each SNP, the most common 

chromatin state across 127 cell types was annotated using FUMA (http://fuma.ctglab.nl/). For 

all variants, we also annotate the predicted chromatin state in fetal brain. The 15 states are 

summarized to annotations of active chromatin marks (i.e. Active TSS, Flanking Active TSS, 

Flanking Transcription, Strong Transcription, Weak Transcription, Genic Enhancer, 

Enhancer, or Zinc Finger [ZNF] gene), repressive chromatin marks (Heterochromatin, 

Bivalent TSS, Flanking Bivalent TSS, Bivalent Enhancer, Repressed Polycomb, or Weak 

Repressed Polycomb), or quiescent.  
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• CADD: Combined Annotation Dependent Depletion (CADD v1.350) scores were annotated 

for each SNP using FUMA (http://fuma.ctglab.nl/). 

Supplementary eTable 2 summarizes the observed annotations for the credible set at each locus (see 

also Supplementary eTable 3 for variant-level annotations).  

 

Gene-based association analysis  

Exome-wide association of single genes with ADHD 

Gene-based association with ADHD was estimated by MAGMA 1.0541 using the summary statistics 

from the European GWAS meta-analysis (Ncases = 19,099; Ncontrols = 34,194; Supplementary Table 1) 

and summary statistics from the GWAS meta-analysis including the EAGLE sample (Ntotal = 70,959).  

We annotated SNPs to genes within their transcribed regions using the NCBI 37.3 gene definitions 

provided with MAGMA. We then calculated gene P-values using the SNP-wise mean model in which 

the sum of –log(SNP P-value) is used as a test statistic. The gene P-value was calculated using a 

known approximation of the sampling distribution51. MAGMA accounts for gene-size, number of 

SNPs in a gene and LD between markers. When using summary statistics in estimating gene-based 

P-values, MAGMA corrects for LD based on estimates from reference data with similar ancestry; for 

this we used the 1KGP3, European ancestry samples, as the reference34. 

In total 20 genes demonstrated significant gene-wise association with ADHD after Bonferroni 

correction (correction for 17,877 genes; Supplementary Table 5). 11 genes were located in the 

complex region on chromosome 1 demonstrating strong gws association with ADHD in the single 

marker GWAS meta-analysis (see regional association plot for this region, Supplementary Figure 

3.A2). Additional five genes overlapped with loci with gws single markers (MEF2C, FOXP2, 

SORCS3, DUSP6 and SEMA6D). Four genes (MANBA, CUBN, PIDD1, CDH8) not located in single 

marker gws loci showed significant association (Supplementary Table 5). The LD region around three 
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of the genes (MANBA, CUBN, CDH8) contains only the respective genes, indicating that the gene-

based association signals were driven by markers in the genes and were unlikely to be caused by 

extended LD with markers in neighbouring gene loci (see regional association plots for the four new 

genes; Supplementary Figure 4.A. – 4.D.). 

 

Gene-wise association of candidate genes for ADHD 

Prior to the availability of large-scale whole-genome methods and technologies, many candidate 

genes have been examined in relation to ADHD. Such candidate gene studies frequently fail to 

replicate52 and are likely to have been affected by publication bias, so it is unclear how many of the 

reported candidate genes are actually robustly associated with ADHD. As such, we set out to examine 

what the evidence for association is for the most highly studied candidate genes for ADHD, obtained 

from a recent review53, in the current GWAS dataset. Annotated ADHD SNP results were tested for 

enrichment in each of these candidate genes using MAGMA to obtain overall gene P-values. The 

results do not show any support for the majority of the candidate genes that have been historically 

studied in relation to ADHD (Supplementary Table 6). The only exception is SLC9A9 which shows 

nominal enrichment.  

 

Gene-set analyses 

Hypothesis free gene set analyses 

For gene set analyses, we applied MAGMA41. The analyses were based on the gene-based P-values 

generated as described above under “Gene-based association analysis“, based on summary statistics 

from the European GWAS meta-analysis. Those P-values were used to analyse sets of genes in order 

to test for enrichment in association signals in genes belong to specific to biological pathways or 
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processes. MAGMA applies a competitive test to analyse if the genes of a gene set are more strongly 

associated with the trait than other genes, while correcting for a series of confounding effects such as 

gene length and size of the gene-set. In the analysis only genes on autosomes, and genes located 

outside the broad MHC region (hg19:chr6:25-35M) were included in the analysis. We applied no 

padding around genes. We used the gene names/locations and the European genotype reference panel 

provided with the program. For gene sets we used the Gene Ontology54 sets curated in MsigDB 6.055 

keeping only gene sets with 10-1000 genes. No gene-sets remained significant after correction for 

multiple testing (Supplementary eTable 4).  

 

FOXP2 downstream target gene set analysis 

Targeted gene set analyses were run in MAGMA to determine whether FOXP2 downstream target 

gene sets are enriched in ADHD. Three sets of genes were examined: 1) Putative target genes of 

FOXP2 that were enriched in wild type compared to control FOXP2 knockout mouse brains in ChIP-

chip experiments, 2) Genes showing differential expression in wild type compared to FOXP2 

knockout mouse brains, and 3) FOXP2 target genes that were enriched in either or both basal ganglia 

(BG) and inferior frontal cortex (IFC) from human fetal brain samples in ChIP-chip experiments. 

Curated lists of high-confidence genes were obtained from Vernes et al.56 and Spiteri et al57. Mouse 

genes were mapped to human orthologues using MGI and NCBI. FOXP2 was excluded, only 8 genes 

were present on more than one list and only one gene was present on all three lists (NRN1). ADHD 

SNP results were annotated using MAGMA and used for gene set analyses. Competitive P-values, 

using a conditional model to correct for confounding due to gene size and gene density were obtained 

for each gene set. The results showed no evidence of enrichment for any of these gene sets 

(Supplementary Table 7). 
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Highly constrained gene set analysis 

We assessed whether genes that are intolerant to loss of function and thereby highly evolutionarily 

constrained are enriched in ADHD. The set of highly constrained genes was defined using a metric 

for probability of being loss-of-function (LoF) intolerant (pLI) based on the observed and expected 

protein-truncating variant (PTV) counts within each gene in a very large study of exome data (the 

Exome Aggregation Consortium; ExAC)58. Genes with observed <10% of expected PTVs were 

deemed haploinsufficient or highly constrained. Publically available results based on the full ExAC 

dataset were downloaded from: 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint 

Genes with pLI ≥0.9 were selected as the set of highly constrained genes. Annotated ADHD SNP 

results were tested for enrichment in this gene set in MAGMA using a competitive gene set analysis. 

Results showed a significant enrichment of this set of genes (see Supplementary Table 8).  

 

LD Score intercept evaluation 

A strong deviation from null was observed in the distribution of the test statistics in the quantile-

quantile plot (Q-Q plot) of the results from the GWAS meta-analyses (Supplementary Figure 5.A - 

5.B.). When using LD score regression it is possible to distinguish the contribution of polygenicity 

from other confounding factors such as cryptic relatedness and population stratification to the 

deviation in the distribution of the test statistics40. Under this model when regressing the chi-square 

statistics from GWAS against LD scores (pre-computed LD-scores downloaded from 

https://github.com/bulik/ldsc) for each SNP, the intercept minus one is an estimator for the mean 

contribution of confounding bias to the inflation in the test statistics.  LD score regression analysis of 

the European GWAS meta-analysis estimated that the intercept was close to one (intercept = 1.04 

(SE = 0.01)). Additionally, the ratio (ratio = (intercept-1)/(mean(chi^2)-1)), which estimate of the 
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proportion of the inflation in the mean chi-square that the LD Score regression intercept ascribes to 

causes other than polygenic heritability was estimated to ratio = 0.12 (SE = 0.03), indicating that the 

strong inflation in the distribution of the test statistics is caused primarily by polygenicity rather than 

confounding.  

 

Genetic correlations between PGC and iPSYCH ADHD samples 

In order to estimate the overlap in shared genetic risk factors between samples, genetic correlations 

rg were calculated using LD Score regression40. Pre-computed LD scores for HapMap3 SNPs 

calculated based on 378 phased European-ancestry individuals from the 1000 Genomes Project were 

used in the analysis (LD scores available on https://github.com/bulik/ldsc) and the summary statistics 

from European GWAS meta-analysis (iPSYCH + PGC European samples) and the PGC European 

samples27. The rg estimate was left unbounded in order to obtain unbiased estimates of SE. Only 

results for markers with an imputation INFO score > 0.90 were included in the analysis. The estimated 

genetic correlation between iPSYCH and PGC European GWAS was highly significant (rg = 1.17; 

SE = 0.2; P = 7.98 x10-9) and did not suggest imperfect correlation (i.e. rg < 1) of common genetic 

risk factors between the studies.  

 

Genetic correlation between PGC case-control and trio samples 

The PGC European ancestry dataset consisted of two kinds of association study designs: case-control 

(Bergen, Cardiff, Germany, IMAGE-II, Spain, Yale-Penn) and trios (CHOP, Canada, IMAGE-I, 

PUWMa). A previous analysis of the PGC samples showed a genetic correlation of 0.71 (SE=0.17) 

across case-control and trio studies59. We repeated this analysis within this newer set of PGC ADHD 

data.  
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For each of the PGC studies, best guess genotype data were generated using Ricopili and strictly 

filtered (MAF>0.05, in addition to previous frequency, imputation quality and other filters). 

Genotypes were merged together across studies using PLINK. Asymmetric/ambiguous (AT, TA, CG, 

GC) and duplicate position SNPs were excluded. GCTA60 was used to calculate a genomic 

relationship matrix for all individuals in this merged PGC sample for HapMap-3 SNPs. Analyses 

were based on 191,466 SNPs. One of each pair of individuals related at the level of 2nd cousins (pi-

hat>0.05) was excluded, preferentially keeping cases; this excluded: N=16 cases and N=91 controls. 

PCA was performed on the merged, unrelated samples using PLINK. The first 10 principal 

components as well as binary study/wave indicators were used as covariates for subsequent analyses.  

Univariate GREML analyses in GCTA were used to estimate SNP-h2 on the liability scale (assuming 

a population prevalence of 5%) in the case-control samples and the trio samples separately. The 

GREML method was used for consistency with the previously published comparison of trio and case-

control ADHD cohorts, and to accommodate the smaller sample sizes of the PGC subsets. As in the 

primary GWAS, trio studies were analysed using a case/pseudo-control design, where the pseudo-

control is composed of the un-transmitted chromosomes from the parents of the proband. Bivariate 

GREML was then used to estimate the genetic correlation across these sub-cohorts.  

The genetic correlation between the trio and case-control cohorts was strong and indistinguishable 

from 1 (rg=1.02, SE=0.32), though the standard error remains quite large (Supplementary Table 10). 

The observed SNP-h2 estimates were somewhat lower than the overall SNP-h2 estimated in the 

primary analyses for the full meta-analysed results, consistent with the somewhat lower SNP-h2 

estimated from the PGC samples compared to iPSYCH (see SNP heritability analysis below). 

 

Polygenic risk scores for ADHD 
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In addition to the genetic correlation analyses, we performed analyses of polygenic risk scores (PRS) 

to evaluate the consistency of common genetic effects and their predictive power across cohorts. We 

specifically considered PRS prediction within the iPSYCH samples, within the PGC cohorts, and in 

leave-one-out analysis across all cohorts.  

Polygenic risk score prediction in iPSYCH samples 

For analysis with the iPSYCH sample as the target cohort, the 23 genotyping-waves within the 

iPSYCH sample were split into five groups, aiming for approximately equal numbers of ADHD cases 

within each group. We then conducted two sets of five leave-one-out analyses, with each leave-one-

out analysis using four out of five iPSYCH groups as training datasets for estimation of SNP weights 

and then applying those weights to estimate PRS for the remaining target group61. One set of leave-

one-out analyses was performed with PGC European samples among the training datasets, while the 

other was without (only iPSYCH). The meta-analysis of the training samples was conducted using a 

SNP list filtered for minor allele frequency > 0.01 and an imputation threshold score above 0.8 

intersecting across waves. Indels and variants in the extended MHC region (chromosome 6: 25-34 

Mb) were also removed. Meta-analysis and  “clumping” of significant SNPs was conducted using the 

Ricopili pipeline30. PRS were then estimated for each target sample using a range of meta-analysis 

P-value thresholds (5x10-8, 1x10-6, 1x10-4, 1x10-3, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0), multiplying the 

natural log of the odds ratio of each variant by the allele-dosage (imputation probability) of each 

variant.  Whole genome PRS were obtained by summing values over variants for each individual.  

For each of the five groups of target samples PRS were normalized (subtracting the mean and dividing 

by the standard deviation), and the significance of the case-control score difference was tested by 

standard logistic regression including the first six principal components and a dummy variable 

indicating genotyping wave as covariates (using the glm() function of R 3.2.2). For each target group 

and for each P-value threshold the proportion of variance explained (i.e. Nagelkerke’s R2) was 
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estimated, comparing the full model to a reduced model without PRS and covariates only. The mean 

of the maximum Nagelkerke’s R2 across P-value thresholds for each group was R2 = 0.055 (SE = 

0.055, range 0.047 – 0.06). For the P-value threshold with the highest Nagelkerke’s R2, odds ratios 

for PRS decile groups compared to the lowest decile were estimated for each target group 

(Supplementary Figure 8) and for the normalized score pooled across groups (Figure 2). Odds ratios 

were also estimated using logistic regression on the continuous scores for each target group separately 

and finally an OR based on all samples was estimated by using the normalized PRS across all groups 

(Supplementary Figure 9). 

 

Polygenic risk score prediction in PGC samples 

Next the predictive utility of PRS was evaluated in the PGC samples. All European ancestry PGC 

best guess genotype data were merged together and iPSYCH-only summary statistics were used to 

calculate PRS in the PGC samples, using the approach described above. PRS in the PGC dataset were 

based on 9,323 clumped SNPs with P < 0.1 in the iPSYCH sample. The association between ADHD 

PRS and case status was significant in the merged PGC sample (OR=1.26 (1.22-1.31), variance 

explained on the liability scale (R2) = 0.0103, P = 2.4E-35). Figure 2 displays odds ratios for ADHD 

case status by ADHD PRS decile for the PGC datasets. In the merged dataset, PRS were converted 

to deciles (where 1 was the lowest decile and 10 was the highest). Deciles 2-10 were then compared 

to the lowest decile using logistic regression including PCs as covariates. There is a clear pattern of 

increasing ORs with increasing decile. 

To examine variation that could be related to differences in ascertainment of cases and controls within 

the PGC sample, mean PRS (residualised for PC covariates) were plotted stratified by case status and 

study (see Supplementary Figure 11). PGC cases had consistently higher PRS than PGC controls in 

the same study. There is some variation in PRS z-score across cases in different studies, for example 
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with ADHD cases from the Cardiff (UK) sample having particularly high scores. Within controls, 

individuals within the Yale-Penn study have particularly high PRS; this may be due to this sample’s 

ascertainment for the primary phenotype of substance abuse, with high levels of these problems in 

both the cases and controls21-23,62 . Variation in PRS in controls from different studies may be due to 

differences in ascertainment (e.g. pseudo-controls, screened or unscreened controls). 

 

Leave-one-out analysis across cohorts 

The odds ratio based on PRS over all PGC and iPSYCH waves/studies was also evaluated using a 

leave-one-study/wave-out approach. First, GWAS analyses of imputed dosage data were run for all 

samples in each PGC study and iPSYCH wave separately, as described previously, co-varying for 

relevant PCs. Meta-analyses using METAL29 (with the STDERR scheme) were run excluding one 

set of summary results at a time, for each combination of studies. For each set of discovery results, 

LD-clumping was run to obtain a relatively independent set of SNPs, while retaining the most 

significant SNP in each LD block. The following parameters were applied in PLINK: --clump-kb 500 

--clump-r2 0.3 --clump-p1 0.5 --clump-p2 0.5. Asymmetric/ambiguous (AT, TA, CG, GC) SNPs, 

indels and duplicate position SNPs were excluded. The SNP selection P-value threshold used was P 

< 0.1. The number of clumped SNPs for each study/wave varied from 20596-43427. Polygenic risk 

scores were calculated for each individual as described above. Scores were derived in best guess 

genotype data after filtering out SNPs with MAF < 0.05 and INFO < 0.8. The polygenic risk scores 

were standardized using z-score transformations. Logistic regression analyses including PCs tested 

for association of polygenic risk scores with case status. Finally, overall meta-analyses of the leave-

one-out analyses were performed (Supplementary Figure 10). 

 

SNP heritability 
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SNP heritability was estimated using LD score regression40 in order to evaluate how much of the 

variation in the phenotypic trait could be ascribed to common additive genetic variation. Summary 

statistics from GWAS meta-analyses and pre-computed LD scores (available from 

https://github.com/bulik/ldsc) were used in the analyses. The SNP heritability for ADHD was 

calculated on the liability scale when using summary statistics from analyses of diagnosed ADHD 

and assuming a 5% prevalence of ADHD in the population63. The SNP heritability (h2
SNP) was 

estimated to be 0.216 (SE = 0.014) based on the summary statistics from the European GWAS meta-

analysis (Supplementary Table 9).  

 

Partitioning heritability by functional annotation and cell type 

Partitioning of the heritability by functional categories was done using LD score regression and 53 

functional overlapping annotations described in Finucane et al.64 and the baseline model LD scores, 

regression weights and allele frequencies based on the 1KGP3 European ancestry samples were 

downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/. The summary statistics 

from the European GWAS meta-analysis were used in the analysis. Enrichment in the heritability of 

a functional category was defined as the proportion of SNP heritability explained divided by the 

proportion of SNPs64. Results from analysis of the 24 main annotations (no window around the 

functional categories) are displayed in Supplementary Figure 12. The analysis revealed significant 

enrichment in the heritability by SNPs located in conserved regions (P = 8.49 x 10-10; Supplementary 

Figure 12). 

Test for enrichment in the heritability of SNPs located in cell-type-specific regulatory elements was 

evaluated in two ways. One by using the 220 cell-type-specific annotations that have been grouped 

into 10 cell-type groups as described in Finucane et al.65. These annotations are based on cell-specific 

histone markers, related to H3K4me166, H3K4me366, H3K9ac66 and H3K27ac67.  The test was done 
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using the summary statistics from the European GWAS meta-analysis and cell-type specific LD 

scores, baseline model LD scores, regression weights and allele frequencies based on 1KGP3 

European ancestry samples available for download   at: 

https://data.broadinstitute.org/alkesgroup/LDSCORE/. In the analyses, it was tested if the cell-group 

specific annotations contributed significantly to the SNP heritability when controlling for the 

annotations in the full baseline model (the coefficient P-value). The analysis revealed a significant 

enrichment in the heritability by SNPs located in central nervous system specific enhancers and 

promoters (enrichment = 2.44, SE=0.35, P = 5.81 x 10-5; Supplementary Figure 13). 

Additionally we expanded the cell-type specific heritability analysis by including an annotation based 

on information about H3K4Me1 imputed gapped peaks excluding the broad MHC-region (chr6:25-

35MB), generated by the Roadmap Epigenomics Mapping Consortium67,68.  This mark has previously 

been used with success in identifying significant enrichments in tissues/cells and often in a 

biologically plausible manner66,67. This analysis identified enrichment in the heritability of SNPs 

located in specific regulatory elements of nine brain tissues as well as three stem-cell line 

(Supplementary Figure 14).  

 

Genetic correlations of ADHD with other traits 

The genetic correlation of ADHD with other traits were evaluated using LD Score regression40. 

Correlations were tested for 219 phenotypes with publically available GWAS summary statistics 

using LD Hub (http://ldsc.broadinstitute.org/ldhub/)69. This estimation was based on summary 

statistics from the European GWAS meta-analysis and summary statistics from published GWASs. 

In addition, correlation with Major Depressive Disorder was tested using GWAS results from an 

updated analysis of 130,664 cases and 330,470 controls from the Psychiatric Genomics Consortium 

(submitted). In total 220 phenotypes were tested for genetic overlap with ADHD and 38 demonstrated 
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significant correlation after Bonferroni correction (P < 2.27 x 10-4). Detailed information about 

significant genetic correlations can be found in Supplementary Table 11 and extended results for all 

phenotypes tested can be found in Supplementary eTable 5.  

 

Replication analysis in 23andMe and EAGLE cohorts 

To replicate the results of the ADHD GWAS meta-analysis we compared the results to analyses from 

23andMe and EAGLE. The sample design of these cohorts and the process for matching their GWAS 

results to the ADHD GWAS are described under the sample description section. We evaluated 

replication based on: (a) sign tests of concordance between the ADHD GWAS meta-analysis and 

each replication cohort; (b) genetic correlation between the ADHD GWAS and each replication 

cohort; (c) meta-analysis of the ADHD GWAS meta-analysis results with the results from analyses 

of the replication cohorts; and (d) tests of heterogeneity in the meta-analyses of the ADHD GWAS 

meta-analysis with the replication cohorts. 

Genetic correlation analyses were performed using LD score regression40 with the same procedure as 

described above. Methods for the remaining analyses are additionally described below. 

 

Sign test 

To evaluate concordance of the direction of effect between the ADHD GWAS and the replication 

cohorts, we first identified the 5,636,243 SNPs present in all three analyses (i.e. ADHD GWAS meta-

analysis, 23andMe meta-analysis, and EAGLE meta-analysis). The ADHD GWAS meta-analysis for 

these SNPs were then clumped to define independent loci using PLINK 1.937. Given that the previous 

conditional analysis was unable to conclusively confirm putative independent signals in the loci 

defined with LD r2 > 0.1 within 500 kb of the index variant, we apply more conservative clumping 

parameters to ensure independence for the sign test (r2 > 0.05 within 1 Mb) and merge index variants 
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within 1 Mb. This clumping was performed for all variants with P < 1 x 10-4 in the ADHD GWAS 

using 1000 Genomes Phase 3 data on European ancestry populations as reference. 

After clumping, sign tests were performed to compare the loci from the ADHD GWAS meta-analysis 

to 23andMe and EAGLE results. Specifically, for loci passing a given P-value threshold in the ADHD 

GWAS meta-analysis, we tested the proportion with a concordant direction of effect in the replication 

cohort (p) using a one sample test of the proportion with Yates’ continuity correction70 against a null 

hypothesis of p = 0.50 (i.e. the signs are concordant between the two analyses by chance) in R71. This 

test was evaluated separately for concordance in the 23andMe results and the EAGLE results for loci 

passing P-value thresholds of P < 5 x 10-8 (i.e. genome-wide significant loci), P < 1 x 10-7, P < 1x 10-

6, P < 1 x 10-5, and P < 1 x 10-4 in the ADHD GWAS meta-analysis. We note that only 11 of the 12 

genome-wide significant loci from the ADHD GWAS are present in all data sets; the significant 

variants from the chromosome 4 locus (index variant: rs28411770) are all absent in the 23andMe and 

EAGLE results.   

 

Replication meta-analyses and heterogeneity tests 

For the replication analysis, we considered three meta-analyses based on the ADHD GWAS meta-

analysis result and the results from the two replication cohorts.  

First, we performed an inverse variance-weighted meta-analysis of the ADHD GWAS meta-analysis 

with the 23andMe GWAS. This analysis focused on the case/control diagnosis of ADHD, combining 

the analysis of clinically ascertained ADHD cases in the ADHD GWAS meta-analysis with the 

analysis of self-reported ADHD case status in 23andMe data. We refer to this analysis as 

ADHD+23andMe. 

Second, we meta-analyzed the ADHD GWAS meta-analysis with the EAGLE GWAS results using 

a modified sample size-based weighting method (see detailed description of methods below). This 
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analysis focuses on concordant results between clinical diagnosed ADHD and continuous measures 

of ADHD-related behavior in childhood population samples. We refer to this analysis as 

ADHD+EAGLE. 

Finally, we applied the modified sample size-based weighting method to meta-analyze the EAGLE 

GWAS with the ADHD+23andMe analysis. Although this analysis does not account for imperfect 

correlation between the clinical ADHD GWAS and the self-report 23andMe GWAS, is does allow 

joint consideration of the ADHD GWAS meta-analysis with both replication cohorts. We refer to this 

analysis as ADHD+23andMe+EAGLE. 

For each of these three meta-analyses, we evaluated results for the genome-wide significant loci from 

the ADHD GWAS and identified new loci reaching genome-wide significance. In addition, for the 

first two replication meta-analyses we considered Cochran’s Q test of heterogeneity. Specifically, we 

focus on the 1 degree of freedom test for heterogeneity between the ADHD GWAS and the replication 

cohort.  

 

Results for replication in 23andMe 

We observed moderate concordance of genome-wide significant results between the ADHD GWAS 

meta-analysis and 23andMe. Of 94 clumped loci with P <1 x 10-5 in the ADHD GWAS meta-analysis, 

71 had effects in the same direction in the 23andMe GWAS, significantly greater than expected by 

chance (P = 1.25 x 10-6). The direction of effect from 23andMe was also concordant for 8 of the 11 

genome-wide significant loci in the ADHD GWAS meta-analysis included in the sign test, though 

that concordance rate was not statistically significant (P = 0.228; see Supplementary Table 12). Of 

the genome-wide significant loci, the estimated direction of effect in 23andMe was discordant for 

loci on chromosome 1 (rs112984125), chromosome 15 (rs281320) and chromosome 16 (rs212178; 

Supplementary Table 13). 
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Genetic correlation analysis using LD score regression similarly indicated significant but incomplete 

genome-wide correlation between the two analyses. The estimated genetic correlation between the 

23andMe and the ADHD GWAS was large and significant (rg = 0.653, SE = 0.114, P = 1.11 x 10-8), 

but also significantly less than 1 (one-sided P= 1.17 x 10-3). 

The ADHD+23andMe meta-analysis identified 11 genome-wide significant loci (Supplementary 

eTable 6, Supplementary Figure 15). Three of these loci were novel: rs30266 (chr5, Refseq gene 

LOC105379109), rs62250537 (chr3, CADM2), and rs2243638 (chr13, RNF219-AS1). Conversely, 4 

of the 12 genome-wide significant loci from the ADHD GWAS meta-analysis were no longer 

significant after meta-analyzing with 23andMe: rs281324 (chr15, SEMA6D), rs212178 (chr16, 

LINC01572), rs4916723 (chr5, LINC00461), rs74760947 (chr8, LINC01288). Two additional loci are 

only significant in the ADHD+23andMe meta-analysis for variants that are not present in the 

23andMe results: rs11420276 (chr1, ST3GAL3) and rs28411770 (chr4, PCDH7). 

Cochran’s Q test of heterogeneity identified genome-wide significant heterogeneity between the 

ADHD GWAS and the 23andMe GWAS in the top locus on chromosome 1 from the ADHD GWAS 

(Supplementary Figure 16-17). The strongest evidence for discordance was at rs12410155 

(ST3GAL3), with an estimated odds ratio of 1.111 (P = 3.63 x 10-13) in the ADHD GWAS, compared 

to an odds ratio of 0.954 (P = 0.0244) in the 23andMe analysis (heterogeneity P = 2.28 x 10-9,  I2 = 

97.2). 

 

Results for replication in EAGLE 

For the most strongly associated loci in the ADHD GWAS meta-analysis, the direction of effect 

observed in EAGLE was strongly concordant. The estimated effects had the same sign in 10 of the 

11 genome-wide significance loci from the ADHD GWAS meta-analysis (P = 0.0159), and for 65 of 

the 94 loci with P < 1 x 10-5 for the index variant in the ADHD GWAS (P = 3.06 x 10-4; Supplementary 
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Table 12). Genetic correlation analysis of the EAGLE and ADHD GWAS similarly suggests 

significant overlap between the two studies (rg = 0.943, SE = 0.204, P = 3.65 x 10-6). This genetic 

correlation was not significantly less than 1 (one-sided P = 0.389). 

The one genome-wide significant locus from the ADHD GWAS that is not sign concordant between 

the two studies is on chromosome 12 (index SNP rs1427829; Supplementary Table 13). The A allele 

for this SNP was associated with higher ADHD risk in the ADHD GWAS meta-analysis (OR = 1.083, 

P = 1.8x10-9), but slightly favours lower levels of ADHD-related behaviour in EAGLE (z = -0.110, P 

= 0.91). On the other hand, other SNPs in this locus were sign concordant between the EAGLE and 

ADHD GWAS results (e.g. rs704067; Supplementary eTable 6). 

Using the adjusted sample size-based weighting method described above, we meta-analyzed the 

EAGLE and ADHD GWAS meta-analysis results. The ADHD+EAGLE meta-analysis identified 15 

independent genome-wide significant loci (Supplementary eTable 6, Supplementary Figure 18). All 

12 genome-wide significant loci from the ADHD GWAS meta-analysis are significant in the 

ADHD+EAGLE meta-analysis, as well as new loci on chromosomes 10 (rs2483936, intergenic), 11 

(rs4275621, Refseq gene LOC105376602), and 13 (rs7997529, RNF219-AS1). The chromosome 13 

locus is the same one identified by the ADHD+23andMe meta-analysis above. Two of the loci – 

rs1222063 (chr1, intergenic) and rs9677504 (chr2, SPAG16) – are only significant for variants that 

are not present in the EAGLE results. No significant heterogeneity was observed between the EAGLE 

and ADHD GWAS meta-analysis (Supplementary Figure 19-20), consistent with the strong genetic 

correlation between the two studies. 

 

Results for ADHD+23andMe+EAGLE meta-analysis 

Meta-analysis of EAGLE and ADHD+23andMe using adjusted sample size-based weights identified 

16 independent genome-wide significant loci (Supplementary eTable 6, Supplementary Figure 21). 
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The genome-wide significant loci included 10 of the 12 loci that are significant in the ADHD GWAS; 

rs281324 (chr15, SEMA6D) and rs212178 (chr16, LINC01572) were no longer significant. The 

genome-wide significant loci also included three loci not identified in the ADHD, ADHD+23andMe, 

or ADHD+EAGLE meta-analyses: rs62444906 (chr7, MAD1L1), rs7459616 (chr8, DLGAP2), and 

rs10419998 (chr19, TM6SF2). 

 

Method for meta-analysis of continuous and dichotomous ADHD measures 

In order to integrate the EAGLE data with the current analysis, we need to define a framework for 

comparing the GWAS of (continuous) measures of ADHD-related behavior to the ADHD GWAS 

meta-analysis of (dichotomous) clinical diagnosis of ADHD.  

As a starting point, motivated by the strong genetic correlation between the EAGLE results and the 

ADHD GWAS meta-analysis, we could consider a conventional sample size-weighted meta-analysis 

of Z scores. Such an analysis however would not account for: (a) differences in power for continuous 

vs. dichotomous phenotypes, (b) differences in power from ascertainment on the dichotomous 

phenotype, (c) differences in the relative strength of overall genetic association (e.g. SNP heritability) 

for the phenotype measures, or (d) imperfect correlation between the continuous ADHD-related 

behaviours measured in EAGLE and clinical diagnosis of ADHD, with the matter being the 

phenotype of interest for the current study. 

Therefore, we instead define a basic model for the genetic relationship between clinical diagnosis of 

ADHD and continuous ADHD-related behaviours that allows us to derive modified sample size-

based weights that account for these factors. These weights should be better calibrated to provide a 

statistically efficient meta-analysis of the EAGLE results with the ADHD GWAS. 
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Basic genetic model for latent-scale phenotypes 

We begin by defining a joint model for the genetics of the two phenotypes. Let TU be the observed 

dichotomous phenotype and T4 be the observed continuous phenotype. For dichotomous phenotype 

TU, we assume there exists some latent continuous liability VU such that 

TU =
0, VU < YU
1, VU ≥ YU

 

where YU  is a threshold corresponding to the population prevalence [  of TU  consistent with the 

standard liability threshold model72. For convenience, assume that VUis standardized with mean zero 

and unit variance. Similarly, let V4 denote the continuous phenotype T4 normalized to have mean 0 

and unit variance in the population. 

We describe a model for the genetics of the latent continuous phenotypes VU and V4 before returning 

to the impact of the observed scale for each phenotype. Let \U and ]U be genetic and environment 

components of VU, respectively, and let \4 and ]4 be corresponding components of V4 such that 

VU	
V4

= 	
\U
\4 +

]U
]4  

_
θU	
V4

= E
gU
g4 = E

eU
e4 = 0

0  

bcd

\U
\4
]U
]4

=

ℎU4 fg 0 0
fg ℎ44 0 0
0 0 hU4 fi
0 0 fi h44

 

Note that we assume that not only are genetics and environment uncorrelated within phenotype (i.e. 

bcd \U, ]U = bcd \4, ]4 = 0), but also between phenotypes (bcd \U, ]4 = bcd \4, ]U = 0). 

Since VUand T4∗ are each defined to have unit variance, it follows that hU4 = 1 − ℎU4, h44 = 1 − ℎ44, and 



	 45	

fg  and fi  are the genetic and environmental covariances, respectively. The genetic correlation 

between the latent phenotypes VUand V4 can then be defined as kg ≡ lck \U, \4 = fg/ ℎU4ℎ44. 

Defining independent genetic factors 

We next seek to specify the covariance of \U and \4 in terms of two independent factors mU and m4. 

This transformation serves two purposes. First, for modeling the effects of individual SNPs it will 

allow us to define independent effects on mU and m4. Second, if we specify that \U depends only on mU 

while \4  may depend on both mU  and m4 , then it will be possible to focus on the factor mU  that 

determines the genetic component \U for TU separate from any independent factors m4 that contribute 

to T4 only. Separating these factors therefore allows us to move towards the goal of defining a scheme 

for meta-analysis that focuses only on genetic effects for the dichotomous phenotype (i.e. clinical 

ADHD diagnosis) while discounting any independent genetic effects that are only relevant to the 

continuous phenotype (i.e. ADHD-related behaviours). 

The desired transformation is given by the inverse of the Cholesky decomposition of the covariance 

matrix for \U and \4, which yields 

mU
m4

≡

1

ℎU4
0

−kg
1 − kg4 ℎU4

1

1 − kg4 ℎ44

\U
\4

. 

It can then be shown that 

bcd
mU
m4

= 1 0
0 1 , 

and _ mU = _ m4 = 0. By substitution for \U and \4, the latent phenotypes are related to these 

factors by 

VU = ℎU4 mU + ]U 
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V4 = kg ℎ44 mU + 1 − kg4 ℎ44 m4 + ]4	. 

 

Effects of individual variants 

The above model fully specifies the overall genetic components of the two phenotypes, but does not 

model the contribution of any specific variant. We now define the effects of individual variants so 

that we can work towards describing the GWAS results for each phenotype and the desired meta-

analysis in terms of parameters for a given variant. 

To consider effects for a given variant, let nU$∗  be the causal effect of variant o on mU, and let n4$∗  be 

the corresponding effect on m4. Then 

mU = nU$∗ p$
$

 

m4 = 	 n4$∗ p$
$

, 

where p$ is the standardized genotype of variant o. We denote these causal effects as n to distinguish 

them from marginal effects ", and use the * superscript here to indicate that these as effect sizes on 

the latent genetic components mU  and m4  as opposed to the standardized phenotypes. The 

corresponding causal effects on VU and V4 are 

nU$ = 	 ℎU4nU$
∗  

n4$ = kg ℎ44 nU$∗ + 1 − kg4 ℎ44 n4$∗  

respectively.  
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The marginal effect on mU and m4 will depend not only on the variant’s causal effect, but on the causal 

effect of other variants in LD with p$. We define the corresponding marginal effects "$∗ as 

"U$∗ = q$rq$
1U
q$rstu∗ = 	 nUM∗ k$M

M

 

"4$∗ = q$rq$
1U
q$rstv∗ = 	 n4M∗ k$M

M

 

where k$M = lcd p$, pM  and tu∗  and tv∗  are column vectors with elements nM∗ for all w. As with n∗, 

the superscript denotes these "$∗	as effect sizes on the latent genetic components mU and m4. 

 

To get marginal effect sizes on the phenotypes, we can denote  

mU,1$ = mU −	"U$∗ p$ 

m4,1$ = m4 −	"4$∗ p$ 

to indicate mU and m4 with the full marginal effect of p$ removed, so that we can then express the 

phenotypes in terms of the marginal effect of variant o as 

VU = (mU,1$ + "U$∗ p$) ℎU4 + ]U 

                   = "U$∗ ℎU4 p$ + ℎU4 mU,1$ + ]U 

V4 = kg ℎ44 (mU,1$ + "U$∗ p$) + ℎ44 1 − kg4 (m4,1$ + "4$∗ p$) + ]4	                                     

     = "U$∗ kg ℎ44 + "4$∗ ℎ44 1 − kg4 p$ + kg ℎ44 mU,1$ + ℎ44 1 − kg4 m4,1$ + ]4 

Therefore, given VU, V4 and p$ are all standardized and p$, mU,1$, m4,1$, ]U, and ]4 are all independent 

except for lcd ]U, ]4 = fi, 

"U$ = lck p$, VU = "U$∗ ℎU4                                              
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"4$ = lck p$, V4 = "U$∗ kg ℎ44 + "4$∗ ℎ44 1 − kg4  

These are the standardized marginal effect of variant o on each phenotype (defined on the latent 

liability scale in the case of the dichotomous phenotype TU). We denote them as "$ because they are 

the effects of interest for the GWASs of VU and V4. 

GWAS test statistics for ßj 

Given the above parameterization, we can now focus on the behavior of the test statistics from the 

GWAS of each phenotype. These test statistics are of primary interest since they are the intended 

input for the desired meta-analysis across the two phenotypes. In particular, we are focused on 

defining the relationship between these test statistics and "U$ , the effect of variant o  on the 

dichotomous phenotype, so that we can calibrate meta-analysis of the observed x scores to test the 

null hypothesis "U$ = 0. 

Before discussing the test statistics for the observed phenotypes however, it is instructive to describe 

test statistics for a hypothetical GWAS of the latent phenotypes (VU  and V4 ), as a foundation 

evaluating the impact of e.g. dichotomizing VU to a case/control phenotype. If both VU and V4 were 

observed, we could define x scores for the standardized effects "$ as 

xy,U$ = 0U"U$ 

                              = 0U$"U$ +	 0U$zU$ 

xy,4$ = 04"4$ 

                              = 04$"4$ +	 04$z4$ 

where "$	is the observed GWAS estimate of "$, 0$	is the sample size of the data used to estimate "$, 

and z$ is the corresponding sampling error of the estimate.  
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zU$	~	0 0,
1
0U$

d|k ℎU4 mU,1$ + ]U  

z4$	~	0 0,
1
04$

d|k kg ℎ44 mU,1$ + ℎ44 1 − kg4 m4,1$ + ]4  

Assuming the marginal effect of any given variant is small, we can approximate mU,1$ ≈ mU and 

m4,1$ ≈ m4, giving 

zU$	~	0 0,
1
0U$

ℎU4 + hU4  

							~	0 0, U
}~3

                  

z4$	~	0 0,
1
04$

kg4ℎ44 + 1 − kg4 ℎ44 + h44  

							~	0 0, U
}K3

ℎ44 + h44                             

							~	0 0, U
}K3

                                             

based on m and ] being independent, d|k m = 1, d|k ] = h4, and ℎ4 + h4 = 1. To the extent 

that m ≠ m1$, then this is an overestimate of the variance of z$ since d|k m1$ ≤ 1. Returning to the 

Z scores defined previously, this gives 

xy,U$~	0( 0U$"U$, 1) 

xy,4$~	0 04$"4$, 1  

which have the desired standard normal distribution when "$ = 0. We can also express these in 

terms of the latent effects "$∗ 

xy,U$	~	0( 0U$ℎU4"U$
∗ , 1) 

xy,4$	~	0 kg 04$ℎ44"U$
∗ + 04$ℎ44 1 − kg4 "4$

∗ , 1  
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							~	0 04$ℎ44 kg"U$
∗ + 1 − kg4"4$∗ , 1         

We now consider how the actual observed Z statistics for each phenotype will differ from these 

idealized tests of association with the latent phenotypes. 

Test of ßij in GWAS of dichotomous Y1 

For the dichotomous phenotype (i.e. ADHD diagnosis) we do not observe the latent liability VU, and 

thus we cannot compute xy,U$ . Instead the GWAS results come from logistic regression of the 

observed phenotype TU . The statistical properties of x4$  will be affected by two key features of 

GWAS with case/control phenotypes: dichotomization and ascertainment. For dichotomization, 

recall that  

"U$ = lck p$, VU  

It has been shown that dichotomizing one variable attenuates the correlation such that if p and T are 

approximated as bivariate normal 

lck p$, TU ≈
Å(Ç1U [ )

[(1 − [)
lck p$, VU  

where [  is the prevalence of TU = 1  after dichotomization, and Å ⋅  and Ç1U ⋅  are the density 

function and inverse of the cumulative density function of the standard normal distribution, 

respectively73,74.  

 

With respect to case/control ascertainment, we note that the power of logistic regression is 

approximately proportional to É∗ 1 − É∗ , where É∗ is the probability T = 1 at the mean liability 

in the sample75. Given a symmetric distribution of liability, É∗ ≈ É where É is the sample proportion 

of cases. Therefore, power for the analysis in an ascertained sample differs from power in a population 

sample with the sample size by a factor of É(1 − É) [(1 − [). 
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Putting together these adjustments for dichotomization and ascertainment, we adopt the 

approximation 

xU$	~	0
Å(Ç1U [ )

[(1 − [)

É(1 − É)

[(1 − [)
0U$"U$, 1  

Importantly, we note that this adjustment mirrors the conversion between observed scale heritability 

and liability scale heritability derived by Lee at al76. 

ℎÑÖÜ4 = ℎáàâÖ4 Ç1U [ 4

[(1 − [)
É(1 − É)
[(1 − [)

 

Indeed, noting that  

"U$ = "U$∗ ℎU4 

we can equate 

_ xU$ =
Å(Ç1U [ )

[(1 − [)

É(1 − É)

[(1 − [)
0U$"U$ 

                   = ä(ãå~ ç )
ç(U1ç)

é(U1é)
ç(U1ç)

0U$"U$∗ ℎU4 

              = 0U$ ℎU4
ãå~ ç K

ç(U1ç)
é(U1é)
ç(U1ç)

"U$∗  

= 0U$ ℎU,ÑÖÜ4 "U$∗                  

which highlights the parallel between the observed xU$, the test the effect of variant o on the 

observed scale, and the corresponding xy,U$ testing on the latent scale. 

 

Finally, we can define an effective sample size adjustment for 0U 

0U$ ≡ 0U$
É 1 − É 	Å Ç1U [ 4

[ 1 − [ 4  
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so that the approximate distribution of xU$ from logistic regression of the dichotomous phenotype 

can be expressed as 

xU$	~	0 0U$"U$, 1  

This formulation, with xU$ following a standard normal distribution conditional on (adjusted) sample 

size and the effect of interest ("U$), is central to allowing the desired meta-analysis. 

Test of ß1j in GWAS of continuous Y2 

For the continuous phenotype T4 , the observed x  scores are computed from conventional linear 

regression of the observed phenotype. The observed phenotype only differs from the latent V4 by a 

linear transformation to center and scale to unit variance. Thus since x scores are invariant linear 

transformations of the phenotype, 

x4$ = xy,4$ 

But unlike the dichotomous phenotype analysis, the GWAS of T4 is a test of "4$ = 0 rather than 

"U$ = 0. For the current analysis, our primary interest is in the latter test to identify effects "U$ of 

each variant on the dichotomous phenotype of ADHD diagnosis. The residual effects from m4 in "4$∗  

that are unique to the continuous trait (population measures of ADHD-related behavior) are of less 

relevance, and given a high kg are anticipated to have a limited contribution even to the continuous 

measure (proportional to 1 − kg4).  

 

For that reason, we adopt a random effects framework for "4$∗ , and treat them as nuisance 

parameters. Specifically, we assume that the causal effect sizes 

n4$∗ ~0 0,
1
è
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where M is the total number of variants o. This is equivalent to the standard infinitesimal random 

effects model used by40,77, but specified here in terms of n4$∗  on the latent scale of m4 prior to scaling 

by ℎ44 for the phenotype. For the marginal effects 

"4$∗ = 	 n4M∗ k$M
M

 

 we additionally assume that n4M∗  and k$M are independent, meaning that the causal effect size of 

variant w is independent of its LD with other variants. This leads to 

"4$∗ ~0 0,
1
è

M

k$M4  

"4$∗ ~0 0,
1
è
H$  

where we note that  

H$ = k$M4

M

 

is the LD score of variant o as defined by Bulik-Sullivan et al40. 

 

Returning to the x score, we note that the previous expression for x4$∗  is now a conditional 

distribution given a particular value of "4$∗ . 

x4$|"4$∗ 	~		0 04$ℎ44 kg"U$∗ + 1 − kg4"4$∗ , 1  

Substituting "U$ = "U$∗ ℎU4 as the actual parameter of interest and marginalizing over "4$∗  as a 

random effect yields 

x4$	~	0 kg 04$ℎU4ℎ44"U$, 1 + 1 − kg4
04$ℎ44

è
H$  

To construct the intended meta-analysis for genetics effects on the diagnosis of ADHD, we want to 

have a test statistic that has a standard normal distribution under the null hypothesis "U$ = 0 . 
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Although x4$  is normally distributed with mean zero under that null hypothesis, it’s variance is 

inflated if T4 is heritable (i.e. ℎ44 > 0) and is not completely genetically correlated with TU (i.e. kg <

1). We note that inflation proportional to 04$ℎ44H$ è is consistent the expected values derived by 

Bulik-Sullivan et al.40 To obtain a statistic with the desired distribution, we define a new modified x 

score 

x4$ =
x4$

1 + 1 − kg4
04$ℎ44
è H$

 

which is distributed as 

x4$~	0
kg 04$ℎ44 ℎU4

1 + 1 − kg4
04$ℎ44
è H$

"U$, 1  

We note that x4$ ≤ x4$  since 1 + 1 − kg4 04$ℎ44H$ è ≥ 1	 by definition for the involved 

quantities. Therefore x4$ can be interpreted as a more conservative estimate for inference about "U$ 

that has been attenuated from the raw observation proportional to the potential for genetic effects on 

the continuous phenotype to be unique to that phenotype rather than shared with the dichotomous 

outcome (i.e. 1 − kg4 ℎ44). 

 

Lastly, if we define adjusted 04 as 

04$ ≡ 04$
kg4ℎ44 ℎU4

1 + (1 − kg4)04$ℎ44H$ è
 

then the distribution of the modified test statistic can be expressed as 

x4$~0 04$"U$, 1  
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This provides a clear parallel to xU$ for the dichotomous phenotype, and sets up the meta-analysis 

of the two x scores.  

Meta-analysis for ß1j from GWAS of dichotomous Y1 and continuous Y2 

Summarizing the above derivations, we have now established a framework for the GWAS results of 

dichotomous phenotype TU and continuous phenotype T4, respectively, where we can approximate 

xU$	~	0 0U$"U$, 1  

x4$	~	0 04$"U$, 1  

where 

x4$ =
x4$

1 + 1 − kg4 04$ℎ44 H$ è
 

0U$ = 0U$
É 1 − É 	Å Ç1U [ 4

[ 1 − [ 4  

04$ = 04$
kg4ℎ44 ℎU4

1 + (1 − kg4)04$ℎ44H$ è
 

 

From this form, we have a pair of x statistics for "U$ with corresponding (adjusted) sample sizes. 

This is sufficient to then proceed with a conventional sample size-weighted meta-analysis78.  

x$,ëiíâ =
0U$xU$ + 04$x4$

0U$ + 04$
 

Expanding the numerator makes it clear that the adjusted sample size weights corresponds to 

weighting each x proportional to the observed heritability and then balancing by genetic correlation. 
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x$,ëiíâ =

0U$
É 1 − É 	Å Ç1U [ 4

[ 1 − [ 4 xU$ + 04$
kg4ℎ44 ℎU4

1 + (1 − kg4)04$ℎ44H$ è x4$

0U$ + 04$
 

x$,ëiíâ ∝ ℎU,ÑÖÜ4 0U$xU$ + kg ℎ44 04$
x4$

1 + (1 − kg4)04$ℎ44H$ è
 

We use these weights to implement the meta-analysis of the GWAS of ADHD-related behavior 

from EAGLE with the ADHD GWAS. 

 

Notes on Implementation 

It may be noted that x4$, 0U$, and 04$ are computed from both observed values (xU$, x4$, 0U$, 04$, 

and É) and unknown population parameters ([, kg4, ℎU4, ℎ44, H$, and è). Sensible estimates for each of 

these population parameters can be obtained as described below and plugged into the expression for 

the weights. Importantly, estimation error in [, kg4, ℎU4, ℎ44, H$, and è is only expected to affect the 

efficiency (i.e. power) of the meta-analysis. For a fully null variant (i.e. "U$∗ = "4$∗ = 0), xU$ and x4$ 

both have standard normal distributions, and since they are independent any weighted combination 

of these Z scores will also follow the null distribution. Suboptimal weights will only affect the power 

of the meta-analysis when the null hypothesis does not hold. In addition, since we use x4$ in place of 

x4$ and x4$ ≤ x4$ , the test of x$,ëiíâ will be conservative when there is no genetic effect specific 

to the continuous phenotype (i.e. "4$∗ = 0).  

 

With this reassurance, we obtain estimates of [, kg4, ℎU4, ℎ44, H$, and è as follows: 

• Estimates of [  can be derived from the literature. We use [ = .05 for the prevelance of 

ADHD here and throughout this paper79. 
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• Estimates of kg4, ℎU4 and ℎ44 are computed from the GWAS results using LD score regression40. 

For meta-analysis with the ADHD GWAS, we use the European ADHD GWAS to estimate 

these parameters in order to ensure that the population ancestry is matched between the input 

GWAS for ADHD, EAGLE, and the European reference panel used for computing LD scores. 

• For è, we utilize the value è = 5,961,159 corresponding to LD scores computed from 1000 

Genomes Project Phase 3 data on individuals of European ancestry34. These LD scores have 

been described previously64 and are publically available for download at: 

http://data.broadinstitute.org/alkesgroup/LDSCORE/  

• We estimate H$ = 124.718, the mean LD score of common HapMap3 SNPs as computed from 

1000 Genomes Project Phase 3 data on individuals of European ancestry (as above). We use 

this value for two reasons: (a) using a single value is convenient and allows meta-analysis for 

all variants in the GWAS, including variants that may not be present in the precomputed LD 

scores from the 1000 Genomes Project reference data; and (b) we can demonstrate that the 

value of H$ has a trivial impact on the derived meta-analysis weights when the sample sizes, 

heritabilities, and genetic correlation are at the levels observed in the current study. 

 

To demonstrate this final point, we consider the relative difference in x4$ and 04$ conditional on a 

range of possible values of H$ with fixed values of  0U$, 04$, and É and fixed estimates of [, kg4, ℎU4, 

ℎ44, and è. First, we observe that the >99.5% of 1000 Genomes LD scores have values between 0 and 

1000 (Supplementary Figure 22); variants with higher LD scores are predominantly from known 

regions of long-range LD (e.g. the MHC region35). Then we show that for LD scores in this range the 

value of 1 + 1 − kg4 04$ℎ44 H$ è, the term used to adjust the magnitude of x4$	to account for 

polygenic effects specific to the second phenotype, is minimally affected by the value of H$ 
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conditional on the estimates of kg4, 04$, and ℎ44, observed in the current study (Supplementary Figure 

23). The impact of H$  on the relative effective sample size 04$  is also limited, with the weight 

effectively unchanged for values of H$ between 0 and 1000 (Supplementary Figure 24). 

We note however that the limited effect of H$ on the shrinkage parameter and the relative effective 

sample size is conditional on the estimated values for the other parameters in the current study. 

Specifically, H$ contributes to the meta-analysis weights through the term 1 + 1 − kg4 04$ℎ44 H$ è. 

When kg is large (e.g. kg = .94 for the ADHD GWAS and EAGLE) and 04$ and ℎ44 are modest (e.g. 

04$ = 17,666 and ℎ44 = .078 for EAGLE) the potential contribution of H$ to the value of this term is 

limited. On the other hand, if the genetic correlation is further from 1 (e.g. kg =.7) or the GWAS of 

the continuous phenotype is better powered (e.g. 04$ = 40,000 and ℎ44 = .40) then the influence of 

H$  on the meta-analysis weights becomes non-negligible (Supplementary Figures 23-24). Thus 

although the parameters for the current study enable the convenient use of mean H$ for all variants, 

this simplification cannot be expected to hold for all studies. 
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Supplementary Tables 

Supplementary Table 1. Samples included in the GWAS meta-analyses of diagnosed ADHD 

Samples marked in bold are included in the GWAS meta-analysis. The European GWAS meta-analysis excludes samples marked with “*” and 

PUWMa (strict) is used in place of PUWMa. “% F” reports the percentages of females among cases and controls. “Children/Adults” indicates 

the age range of the participants with ADHD. “Literature” lists previously published studies including the ADHD cohort. 

 Sample Cases % F cases Controls % F controls Children/Adults Sample design Ancestry Genotyping chip Literature  

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) 

 iPSYCH-ADHD, Denmark  14584 26.6%  22492   49.2% Children & adults Case-control European PsychChip New 

Psychiatric Genomics Consortium (PGC) 

Barcelona, Spain 572 30.20% 425 23.50% Adults Case-control European Illumina Omni1-Quad  Ribases et al.80,  
Sanchez-Mora et al.13 

Beijing, China* 1012 15.70% 925 37.80% Children Case-control Han Chinese Affymetrix 6.0 Yang et al.14 

Bergen, Norway 295 53.60% 202 60.90% Adults Case-control European Illumina OmniExpress-12v1 Zayats et al.15  

Cardiff, UK 721 12.90% 5081 49.40% Children Case-control European Illumina 660K (cases) & 
Illumina 1.2M (controls) Stergiakouli et al.16 

CHOP, USA 262 24.40% 262 24.40% Children Trios European Illumina 550K Elia et al.8, Neale et al.10 

Germany 487 19.30% 1290 49.10% Children Case-control European Illumina 660K (cases) & 
Illumina 550v3 (controls) Hinney et al.17 

IMAGE-I 700 12.10% 700 12.10% Children Trios European Perlegen 600K Neale et al.9,10 

IMAGE-II 624 18.60% 1755 50.00% Children Case-control European Affymetrix 5.0 &  
Affymetrix 6.0 Neale et al.10 

PUWMa* 635 35.70% 635 35.70% Children Trios Diverse (USA) Illumina 1M-Duo Mick et al.11, Neale et al.10 

PUWMa (strict) 563 35.90% 563 35.90% Children Trios European Illumina 1M-Duo  

Toronto, Canada 109 24.80% 109 24.80% Children Trios European Affymetrix 6.0 Lionel et al.12 

Yale-Penn 182 30.20% 1315 42.20% Adults Case-control European 
Illumina HumanOmni1-

Quad & Illumina Infinium 
Human Core Exome 

Gelernter et al.21-23 (studies 
of substance use disorders) 
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Supplementary Table 2. Conditional Analysis of Secondary GWAS Signals 

Linkage disequilibrium (r2) computed between the putative secondary effect variant and the index variant in individuals of European ancestry 

from the 1000 Genomes Project (1KG), and imputed genotypes in the merged PGC and iPSYCH cohorts. Odds ratio (OR) and standard error 

(SE) of the secondary variant reported for the primary GWAS and conditional on the corresponding index variant. 

 
 
 
 
 

 

    r2 with Index Variant Marginal Association Conditional Association 
Variant CHR BP Index Var. 1KG PGC iPSYCH OR SE P OR SE P 

rs3952787 1 44323244 rs11420276 0.054 0.046 0.064 1.085 0.015 3.49 x10-8 1.063 0.015 6.02 x10-5 
rs304132 5 88215594 rs4916723 0.051 0.059 0.091 0.925 0.014 4.23 x10-8 0.939 0.015 2.03 x10-5 
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Supplementary Table 3. Summary of Bayesian Credible Set Results 

For each genome-wide significant locus (denoted with the chromosome [CHR] and base pair [BP] position of the index variant), the number of 

variants that are the in the 99% credible set computed based on linkage disequilibrium (LD) in the PGC cohorts, the 99% credible set computed 

based on LD in the iPSYCH data, and their overlap.  

 
   Number of Variants in Credible Set 

CHR Index Variant BP PGC only iPSYCH only Both sets 
1 rs11420276 44184192 0 0 96 

12 rs1427829 89760744 0 0 13 
16 rs212178 72578131 0 3 21 

4 rs28411770 31151456 0 0 53 
10 rs11591402 106747354 0 0 87 

8 rs74760947 34352610 0 1 13 
2 rs9677504 215181889 0 0 23 
5 rs4916723 87854395 0 0 67 
7 rs5886709 114086133 5 0 63 
3 rs4858241 20669071 1 5 44 

15 rs281324 47754018 0 0 43 
1 rs1222063 96602440 0 4 4 
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Supplementary Table 4. Biological function of potential ADHD risk genes located in genome-wide significantly associated loci 

Literature review of biological function, mutational constraint, tissue-specific expression, and relevant phenotypic associations for genes 

affiliated with the 12 loci significantly associated with ADHD. Mutational constraint is indexed by the estimated probability of loss-of-function 

intolerance (pLI) reported by the Exome Aggregation Consortium (ExAC; release 0.3.1)58.  

 
Chr Gene Index SNP P-value Function of encoded product pLI Tissue specificity ADHD-related phenotype 

associations 

1 ST3GAL3 rs11420276 2.14 x 10-13 ST3 Beta-Galactoside Alpha-2,3-
Sialyltransferase 3 (ST3GAL3), encodes 
a membrane protein (ST3Gal III) that 
adds sialic acid to the terminal site of 
glycolipids or glycoproteins. ST3Gal III 
may play an important role in brain 
development as the human brain is 
especially enriched in sialic acid-
containing glycolipids (termed 
gangliosides)81-83 and in mice St3gal2 
and St3gal3 were found to be 
responsible for nearly all the terminal 
sialylation of brain gangliosides84 as 
well as playing an important role for 
normal cognition82. Gangliosides are 
known to modulate Ca(2+) homeostasis 
and signal transduction in neurons85,86. 

0.57 This gene is expressed in 
several tissues including 
neurons82. 

Mutations in this gene have been 
associated with autosomal recessive 
mental retardation83 and early infantile 
epileptic encephalopathy87. DNA 
methylation at sites annotated to 
ST3GAL3 were reported capable to 
differentiate individuals with high and 
low ADHD symptomatology ratings88. 
Variants in ST3GAL3 have also been 
associated with educational 
attainment89. 

1 PTPRF rs3001723  3.62 x 10−10 Homo sapiens protein tyrosine 
phosphatase, receptor type, F (PTPRF). 
PTPRF encodes the leukocyte common 
antigen-related (LAR) receptor PTP 
which is present in neurons expressing 
TrkB, and LAR is associated with 
caveolae and regulates survival and 

1.00 This gene is expressed in 
several tissues including 
neurons91. 

Gws association of genetic markers in 
PTPRF with schizophrenia has been 
found30. Gws association of genetic 
markers in PTPRF with educational 
attainment has been found in a study of 
individuals from the UK Biobank 
(N=112,151)92. Overexpression of the 
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neurite outgrowth 90. The LAR receptor 
is present in neurons expressing TrkB, 
which is receptor for the brain-derived 
neurotrophic factor (BDNF), and it has 
been demonstrated that LAR, through 
its interaction with TrkB can affect the 
neurotrophic activity of BDNF91. 

LAR receptor encoded by PTPRF may 
contribute to insulin resistance93.  

1 Intergenic rs1222063  3.07 x 10-8 Not applicable. n/a Not applicable. Not applicable. 

2 SPAG16 rs9677504  1.39 x 10-8 Homo sapiens sperm associated antigen 
16 (SPAG16). SPAG16 encodes two 
major proteins that associate with the 
microtubular backbone of sperm tails 
and the nucleus of postmeiotic germ 
cells 94,95. 

0.00 Highly expressed in testis, 
but also detected 
throughout many tissues 
including brain, spinal cord, 
pituitary ovary, esophagus, 
thyroid, vagina, tibial 
nerve, bladder 
(http://www.gtexportal.org/
home/gene/ENSG00000144
451.14) 

Studies have suggested that SPAG16 
may play a role in multiple 
sclerosis96,97. 

3 Intergenic rs4858241 1.74 x 10-8 Not applicable. n/a Not applicable. Not applicable. 

4 PCDH7 rs28411770 1.15 x 10-8 Homo sapiens protocadherin 7 
(PCDH7). This gene belongs to the 
protocadherin gene family, a subfamily 
of the cadherin superfamily. It encodes 
an integral membrane protein that is 
thought to function in cell-cell 
recognition and calcium-dependent 
adhesion98,99 and plays an important 
role in neuron development100. 

n/a The gene is expressed in 
several brain regions 
especially the thalamus, 
cerebral cortex and 
brainstem circuits101. 

Variants in PCDH7 have been 
significantly associated with 
generalised epilepsy in GWAS102. 
PCDH7 is a target gene for MECP2103 
and MECP2 mutations causes Rett 
syndrome, which is a is a 
neurodevelopmental disorder 
characterized by loss of speech, 
microcephaly, seizures, and mental 
retardation 
(http://omim.org/entry/312750). 

5 LINC00461 rs4916723 1.58 x 10-8 Homo sapiens long intergenic 
noncoding RNA 461 (LINC00461), also 
known as visual cortex-expressed gene 
(Visc). The locus is conserved across 

n/a Primarily expressed in the 
brain47 
(https://www.gtexportal.org
/home/gene/LINC00461). 

Variants in LINC00461 have been 
associated with educational 
attainment89. 
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diverse mammals, but mouse knockouts 
of the Visc-2 transcript do no exhibit 
any clear anatomical phenotype104.  

In mice, it’s strongly 
localized in the cortex and 
sites of neurogenesis during 
neurodevelopment and 
continuing into 
adulthood104. 

5 MEF2C / 
MEF2C−AS1 

rs304132  4.22 x 10-8 Homo sapiens myocyte enhancer factor 
2C (MEF2C). MEF2C encodes a 
member of the MADS box transcription 
factors, which binds to the conserved 
MADS box sequence motif105. MEF2C 
is important for normal neuronal 
function by regulating neuronal 
proliferation, differentiation, survival 
and synapse development106-108. Plays a 
role in hippocampal-dependent learning 
and memory, possibly by controlling 
the number of excitatory synapses107,109.  

0.00 MEF2C is expressed in 
brain especially the frontal 
cortex, cortex and skeletal 
muscle 
(http://www.gtexportal.org/
home/gene/MEF2) 

Mutations and deletions in MEF2C 
have been associated with severe 
mental retardation, stereotypic 
movements, epilepsy, lack of speech 
and cerebral malformation 
(http://omim.org/entry/613443).  
GWAS studies have identified genome-
wide significant association of variants 
in loci implicating MEF2C with 
Alzheimer´s disease110, depression111 
and schizophrenia30. Mef2c knockout 
mice have demonstrated autism like 
behaviours106,108, and individuals with 
MEF2C deletions have been found to 
display autism like traits 112,113.  

7 FOXP2 rs5886709  1.66 x 10-8 Homo sapiens forkhead box P2 
(FOXP2). This gene encodes a member 
of the forkhead/winged-helix (FOX) 
family of transcription factors. FOXP2 
is involved in e.g. synapse formation 
and neural mechanisms mediating the 
development of speech and language 
and learning related to linguistic issues 
114-116. It influences a large number of 
downstream gene targets57,114,117 with 
potential regional or tissue-specific 
differences in activity57.  

1.00 FOXP2 is expressed in both 
fetal and adult human 
brain118,119.  

Deletions in FOXP2 may cause speech-
language disorder 1 (SPCH1) inherited 
in an autosomal dominant manner. The 
disorder is characterized by abnormal 
development of several brain areas 
critical for both orofacial movements 
and sequential articulation117,120  
(http://omim.org/entry/602081). 
Candidate gene analysis previously 
suggested tentative evidence for 
association between FOXP2 and 
ADHD121. Variants in FOXP2 have also 
been associated with educational 
attainment89, and age of having a 
child122. 
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8 LINC01288 rs74760947 1.35 x 10-8 Homo sapiens long intergenic non-
protein coding RNA 1288 
(LINC01288). No additional 
information available. 

n/a No information available. No information available. 

10 SORCS3 rs11591402 1.34 x 10-8 Homo sapiens sortilin-related VPS10 
domain containing receptor 3 
(SORCS3). This gene encodes a 
transmembrane receptor that is a 
member of the vacuolar protein sorting 
10 receptor family123. SORCS3 is 
involved in signalling and intracellular 
sorting124 important for neuronal 
development and synaptic 
plasticity125,126. 

0.33 Expressed in both the 
prenatal and adult brain 
regions 126 
(http://www.gtexportal.org/
home/gene/SORCS3) 

Rare CNVs overlapping SORCS3 have 
been suggested to be involved in 
ADHD12. Decreased expression of 
SORCS3 in brains from patients with 
Alzheimer´s disease compared to 
controls has been found127. GWAS 
studies have demonstrated strong 
association of variants in SORCS3 with 
schizophrenia (however not gws)30 and 
gws association with depression111. 

12 DUSP6 rs1427829 1.82 x 10-9 Homo sapiens dual specificity 
phosphatase 6 (DUSP6). The protein 
encoded by DUSP6 is a member of the 
dual specificity protein phosphatase 
subfamily128. DUSP6 (also referred to 
as mitogen kinase phosphatase 3 (MKP-
3)) is involved in negative regulation 
of mitogen-activated protein kinases 
(MAPKs) by acting as a dual 
phosphatase that dephosphorylate 
MAPKs at both threonine and tyrosine 
residues and thereby inactivate them129. 
DUSP6 is a cytoplasmic enzyme which 
has preference for extracellular signal-
regulated MAPKs129-131. MAPKs are 
components of highly conserved signal 
transduction pathways, responding to a 
wide variety of extracellular and 
intracellular stimuli, and they are 
involved in e.g. embryogenesis, cellular 
proliferation and differentiation132-134. 
Additionally MKP-3 has been suggested 
to play a role in regulating 

0.91 Generally expressed at low 
levels in the brain 
(http://gtexportal.org/home/
gene/DUSP6) and is 
strongly regulated during 
development134. 

Rare mutations in DUSP6 may lead to 
congenital hypogonadotropic 
hypogonadism138 
(http://omim.org/entry/602748). DUSP6 
may play a role in Hirschsprung´s 
disease, due to decreased expression 139. 
DUSP6 have been found in reduced 
levels in Alzheimer brains140. 
Additionally, MKP-3 may play a 
critical role in cancer 
development141,142. 
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neurotransmitter homeostasis, as 
increased MKP-3  was found to reduce 
depolarization-dependent release of 
dopamine in rat PC12 cells, possibly 
through a down regulation of 
Cacna1c135. It has been suggested that 
MKP-3 stabilizes the dopamine 
transporter in the presynaptic 
dopaminergic neuron136. MKP-3 is 
upregulated by methamphetamine137. 

15 SEMA6D rs281324  2.68 x 10-8 Homo sapiens sema domain, 
transmembrane domain (TM), and 
cytoplasmic domain, (semaphorin) 6D 
(SEMA6D). The product encoded by 
this gene is a transmembrane 
semaphoring which play role in 
maintenance and remodeling of 
neuronal connections143. 
Sema6D acts as ligand for PlexinA1 
which is involved in critical steps of 
neuronal development in the spinal 
cord144 as well as cardiac 
development145,146. 

1.00 Expressed in adult brain, 
spinal cord, and fetal 
brains143. 

Variants in SEMA6D have been 
associated with educational 
attainment89. 

16 LINC01572 rs212178  7.68 x 10-9 Homo sapiens long intergenic non-
protein coding RNA 1572 
(LINC01572). No additional 
information available. 

n/a No information available. No information available. 
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Supplementary Table 5. Results from MAGMA gene-based association with ADHD 

Genes demonstrating significant gene-wise association with ADHD after Bonferroni correction in the 

MAGMA41 analysis. Chromosome (CHR), number of SNPs in the genes (N SNPS) and number of 

relevant parameters used in the model (N PARAM) are shown. Chromosome band location of the 

associated gene and the chromosome band location of the nearest gws single marker are shown. Genes 

marked in bold are not overlapping with loci with gws single markers.  

Gene CHR N SNPS N PARAM P Location of Gene Location of nearest gws marker 

ST3GAL3 1 483 57 7.38 x 10-12 1p34.1 1p34.1 
KDM4A 1 71 28 2.15 x 10-11 1p34.1 1p34.1 
PTPRF 1 226 60 5.68 x 10-10 1p34.2 1p34.2 
SZT2 1 87 25 8.47 x 10-9 1p34.2 1p34.2 
TIE1 1 30 15 2.01 x 10-8 1p34.2 1p34.2 
MPL 1 13 6 3.33 x 10-8 1p34.2 1p34.2 

CDC20 1 5 5 6.34 x 10-8 1p34.2 1p34.2 
HYI 1 5 4 3.28 x 10-7 1p34.2 1p34.2 

SLC6A9 1 60 31 7.58 x 10-7 1p34.1 1p34.1 
ELOVL1 1 3 3 1.26 x 10-6 1p34.2 1p34.2 
CCDC24 1 6 5 2.12 x 10-6 1p34.1 1p34.1 
MANBA 4 203 55 6.00 x 10-8 4q24 4p15.1(PCDH7) 

MEF2C 5 320 54 3.19 x 10-8 5q14.3 5q14.3 
FOXP2 7 812 110 5.50 x 10-7 7q31.1 7q31.1 
SORCS3 10 1823 106 2.18 x 10-9 10q25.1 10q25.1 
CUBN 10 1172 167 1.59 x 10-7 10p13 10q25.1 (SORCS3) 
PIDD1 11 27 12 5.30 x 10-7 11p15.5 NA 
DUSP6 12 20 8 2.24 x 10-9 12q21.33 12q21.33 

SEMA6D 15 1458 138 2.63 x 10-10 15q21.1 15q21.1 
CDH8 16 764 79 4.67 x 10-8 16q21 16q22.2 (LINC01572) 
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Supplementary Table 6. Results from MAGMA gene-based association of ADHD candidate 

genes 

MAGMA41 analysis of previously reported candidate genes for ADHD from a recent review53. 

Number of SNPs in the genes (N SNPS), number of relevant parameters used in the model (N 

PARAM) are shown. 

 
Gene symbol Entrez ID N SNPS N PARAM Z P 

SLC9A9 285195 1609 129 3.395 3.40 x10-4 

DRD5 1816 4 2 -1.374 0.92 
SLC6A3 6531 101 12 -0.975 0.84 
HTR1B 3351 3 1 2.246 0.012 
DRD4 1815 5 2 -0.192 0.58 
NOS1 4842 410 30 1.088 0.14 
GIT1 28964 21 5 0.77 0.22 
SLC6A4 6532 67 12 -0.021 0.51 
SNAP25 6616 180 25 -0.512 0.7 
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Supplementary Table 7. Enrichment analysis of gene sets related to FOXP2 downstream target 

genes 

Competitive gene set analysis of each set of FOXP2 target genes performed using MAGMA41. For 

each gene set, the number of genes (N Genes), raw and semi-standardized (Std.) regression 

coefficients, and corresponding standard error (SE) are reported. 

 
Gene Set N Genes Beta Beta (Std.) SE P 

Mouse brain (ChIP-chip) 219 0.016 0.002 0.06 0.39 
Mouse brain (knockout) 243 0.034 0.004 0.055 0.27 
Human brain (ChIP-chip) 258 -0.094 -0.011 0.053 0.96 
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Supplementary Table 8. Enrichment analysis for a set of highly constrained genes 

Competitive gene set analysis of highly constrained genes (pLI > 0.9) performed using MAGMA41. 

The number of genes (N Genes), raw and semi-standardized (Std.) regression coefficients, and 

corresponding standard error (SE) are reported. 

 
Gene Set N Genes Beta Beta (Std.) SE P 

Highly constrained genes 2932 0.062 0.023 0.018 2.60 x10-4 
 
 

Supplementary Table 9.  SNP heritability of ADHD 

SNP heritability estimated (h2) and standard error (SE) using LD score regression and summary 

statistics from GWAS meta-analyses. Estimates are reported on the liability scale assuming a 5% 

population prevalence of ADHD. Only PGC European samples (Eur samples) were included. 

 Sample h2 (liability scale) SE 

iPSYCH 0.26  0.02 
PGC (Eur samples) 0.12 0.03 
iPSYCH+PGC (Eur samples) 0.22 0.01 
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Supplementary Table 10. Heritability and genetic correlations for PGC ADHD samples 

Univariate and bivariate heritability estimates for PGC ADHD samples stratified by study design type 

(case-control vs. parent-offspring trios). The estimated SNP heritability (SNP-h2) of each subset and 

the genetic correlation (rg) between the two sets are reported with their respective standard errors 

(SE). Heritability estimates are reported on the liability scale assuming a 5% population prevalence 

of ADHD. 

Cohort N cases N controls SNP-h2 (SE) rg (SE) 

PGC case-control 2871 9983 0.138 (0.019) 1.02 (0.32) 
PGC trios 1628 1629 0.081 (0.045)  
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Supplementary Table 11. Genetic correlations of ADHD with other selected traits 

Genetic correlation (rg) and its standard error (SE) is estimated using LD score regression and 

summary statistics from the European GWAS meta-analysis (iPSYCH + PGC European samples (Eur 

samples)) and summary statistics from published GWASs of other selected traits available at LDhub 

(http://ldsc.broadinstitute.org/ldhub/). Genetic correlations (based on analyses of European 

populations) significant after Bonferroni correction are presented in the table (correction for 220 

tests). Extended table with results for all 220 phenotypes can be found in Supplementary eTable 5). 

Four significant results are omitted here as they were based on analyses of populations with mixed 

ancestry (Body fat and Coronary artery disease) and large overlap in samples already represented in 

other analyses (Years of schooling 2013 and 2014), results for correlation with these traits can be 

found in supplementary eTable 5. 

Trait Trait type N rg SE P-value 

Childhood IQ147 Cognition/education 17,989 -0.411 0.082 5.09 x 10-7 
Years of schooling89 Cognition/education 328,917 -0.535 0.028 1.44 x 10-80 
College completion148 Cognition/education 126,559 -0.538 0.046 3.30 x 10-31 

Neuroticism149 Personality 170,911 0.264 0.046 1.02 x 10-8 
Depressive symptoms149 Psychiatric 161,460 0.446 0.050 7.00 x 10-19 
Subjective well being149 Psychiatric 298,420 -0.283 0.048 3.73 x 10-9 
Major depressive disorder (submitted) Psychiatric 461,134 0.424 0.033 7.38 x 10-38 
PGC cross-disorder analysis150 Psychiatric 61,220 0.266 0.046 5.58 x 10-9 

Body mass index151 Weight related 123,865 0.258 0.032 1.68 x 10-15 
Waist circumference152 Weight related 224,459 0.269 0.034 2.20 x 10-15 
Hip circumference152 Weight related 254,459 0.160 0.034 2.13 x 10-6 
Waist-to-hip ratio153 Weight related 254,459 0.304 0.036 1.16 x 10-17 
Overweight152 Weight related 158,855 0.275 0.036 1.73 x 10-14 
Obesity class 1152 Weight related 98,697 0.285 0.036 1.81 x 10-15 
Obesity class 2152 Weight related 75,729 0.320 0.046 5.10 x 10-12 
Obesity class 3152 Weight related 50,364 0.338 0.067 4.05 x 10-7 
Extreme BMI152 Weight related 16,068 0.254 0.052 9.31 x 10-7 
Childhood obesity154 Weight related 13,848 0.216 0.046 3.29 x 10-6 
Type 2 Diabetes155 Glycemic 149,821 0.185 0.047 7.80 x 10-5 
HDL cholesterol156 Lipids 99,900 -0.217 0.042 2.44 x 10-7 
Triglycerides156 Lipids 96,598 0.159 0.040 6.49 x 10-5 

Ever vs never smoked157 Smoking behaviour 74,035 0.478 0.059 4.33 x 10-16 
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Cigarettes smoked per day157 Smoking behaviour 68,028 0.451 0.103 1.07 x 10-5 
Former vs Current smoker157 Smoking behaviour 41,969 -0.344 0.086 6.74 x 10-5 
Lung cancer158 Cancer 56,697 0.390 0.063 6.35 x 10-10 
Lung cancer (all)159 Cancer 27,209 0.368 0.071 2.53 x 10-7 
Squamous cell lung cancer158 Cancer 56,697 0.549 0.135 4.57 x 10-5 

Age of first birth122 Reproductive 251,151 -0.612 0.037 3.70 x 10-61 
Number of children ever born122 Reproductive  343,072 0.421 0.051 8.51 x 10-17 
Age at Menopause54 Reproductive 69,360 -0.161 0.042 1.50 x 10-4 

Mothers age at death160 Aging 52,776 -0.432 0.087 6.48 x 10-7 
Fathers age at death160 Aging 63,775 -0.298 0.066 7.19 x 10-6 
Parents age at death160 Aging 45,627 -0.376 0.091 3.51 x 10-5 

Rheumatoid Arthritis161 Autoimmune 103,638 0.162 0.042 1.32 x 10-4 
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Supplementary Table 12.  Sign test results in 23andMe and EAGLE replication cohorts 

Test of whether the proportion of loci with estimated effects in the same direction as the ADHD 

GWAS (p) is greater than expected by chance. Values in bold are nominally significant after 

Bonferroni correction for testing in 2 replication cohorts (P < 0.025). 

 
    23andMe Concordance   EAGLE Concordance 

P Threshold Number of Loci p P  p P 

5.00 x10-8 11 0.727 2.28 x10-1  0.909 1.59 x10-2 

1.00 x10-7 13 0.615 5.79 x10-1  0.846 2.65 x10-2 
1.00 x10-6 34 0.735 1.01 x10-2  0.765 3.55 x10-3 
1.00 x10-5 94 0.755 1.25 x10-6  0.691 3.06 x10-4 

1.00 x10-4 288 0.622 4.79 x10-5   0.670 5.42 x10-9 
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Supplementary Table 13. Replication of significant ADHD loci in 23andMe and EAGLE  

GWAS results from EAGLE and 23andMe for the genome-wide significant loci identified in the ADHD GWAS. Replication is tested for the 

index variant from the ADHD GWAS, or for a proxy variant when the index variant is not present in the replication cohort. Proxy variants are 

identified by linkage disequilibrium (LD) clumping of the ADHD GWAS results using European ancestry samples from the 1000 Genomes 

Project after restricting to variants present in EAGLE and 23andMe results. No proxy variant is available for rs28411770. Effects (Z or odds 

ratio [OR]) that are sign concordant with the ADHD GWAS are indicated in bold. Genome-wide significant p-values from meta-analysis of the 

ADHD GWAS and replication cohorts are indicated in bold. 

 
Variant   EAGLE 23andMe Meta-Analysis P-values 

Index Proxy 
Effect 
Allele 

LD to 
Index  Z p OR p 

ADHD 
+EAGLE 

ADHD 
+23andMe 

ADHD 
+EAGLE+23andMe 

rs11420276 rs112984125 A 0.980 -2.248 2.5 x 10-02 1.044 4.0 x 10-02 2.76 x 10-14 1.69 x 10-06 1.58 x 10-07 

rs1222063 rs2391769 A 0.093 -0.248 8.0 x 10-01 0.957 3.2 x 10-02 9.89 x10-08 7.76 x 10-09 2.45 x 10-08 

rs9677504 -- A -- 0.030 9.8 x 10-01 1.068 3.5 x 10-02 5.33 x10-08 3.64 x 10-09 1.79 x 10-08 

rs4858241 -- T -- 0.842 4.0 x 10-01 1.016 4.4 x 10-01 1.77 x 10-08 3.78 x 10-07 1.56 x 10-08 

rs4916723 -- A -- -2.816 4.9 x 10-03 0.989 5.9 x 10-01 4.80 x 10-10 5.60 x 10-07 1.90 x 10-08 

rs5886709 rs10262192 A 0.955 1.540 1.2 x 10-01 1.045 2.6 x 10-02 4.91 x 10-09 8.63 x 10-09 1.53 x 10-09 

rs74760947 -- A -- -1.168 2.4 x 10-01 0.955 3.9 x 10-01 7.89 x 10-09 1.08 x 10-07 6.18 x 10-08 

rs11591402 -- A -- -1.540 1.2 x 10-01 0.957 6.3 x 10-02 4.10 x 10-09 1.10 x 10-08 3.30 x 10-09 

rs1427829 -- A -- -0.110 9.1 x 10-01 1.036 7.0 x 10-02 1.05 x 10-08 2.15 x 10-09 1.42 x 10-08 

rs281324 rs281320 T 0.992 -0.995 3.2 x 10-01 1.010 6.1 x 10-01 2.21 x 10-08 1.77 x 10-05 1.10 x 10-05 

rs212178 -- A -- -1.216 2.2 x 10-01 1.030 3.8 x 10-01 4.00 x 10-09 6.80 x 10-06 3.20 x 10-06 
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Supplementary Figures 

 

Supplementary Figure 1. Genotyping iPSYCH-ADHD sample, main steps and sample loss 

Flowchart demonstrating the main steps and sample loss during the process of obtaining high quality genotypes for the iPSYCH sample. 

Detailed description of the Danish registers, DNA generation, genotyping and QC is described under the detailed description of the iPSYCH 

sample.  

Step	1
Identification	of	
samples	in	Danish	
registers	
Samples	after	step	1:
18,726	cases
30,000	controls	(28,768				
do	not	have	a	psychiatric	
disorder	investigated	 in	
iPSYCH)
Total	cohort	size	of	
1,472,762	individuals

Step	2
Identification	of	
samples	in	DNSB,	DNA	
extraction	and	WGA
Samples	after	step	2:
17,099	cases
27,788	controls
3,839	excluded	due	to	no	
Guthrie	card	in	DNSB	or	
failed	pre-genotyping	QC

Step	3
Genotyping	of	samples	
(Illumina PsychChip)	
and	initial	sample	QC
Samples	after	step	3:
16,649	cases	
25,835	controls
2,403	samples	excluded	
due	to	gender	
inconsistencies	and	low	
genotyping	call	rate	<	
0.95

Step	4
Test	for	relatedness	
and	removal	of	genetic	
outliers
Samples	after	step	4:
14,584	cases	
22,492	controls
5,408	samples	excluded	
due	to,	relatedness	or	
being	genetic	outliers
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Supplementary Figure 2. Manhattan plot from ADHD European GWAS meta-analysis 

Results from GWAS meta-analysis of iPSYCH and PGC European samples.
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Supplementary Figure 3.A1 - M1. Forest plots for index SNPs in gws loci 

Forest plots for the index SNP in each of the gws associated regions in the GWAS meta-analysis. 

Each plot provides a visualization of the effect size estimates for each wave in the iPSYCH sample 

and each PGC sample and for the summary meta-analysis in addition the 95% confidence intervals 

are included for the estimates.  

 

Supplementary Figure 3.A2 - M2. Regional association plots for index SNPs in gws loci 

Regional association plots of the local association results. Each plot includes information about the 

gws locus, the location and orientation of the genes in the region, LD estimates of surrounding SNPs 

with the index SNP (r2 values estimated based on 1KGP3) is indicated by colour (colour bar in upper 

left corner indicates r2 values), if multiple index SNPs then different colour scheme for each index 

SNP. Additionally the local estimates of recombination rate. Detailed SNP info in upper right corner 

(blue letters): snp-name, P, OR, MAF, imputation INFO score, directions in the analysed 

samples/waves (left - right - missing). Gene lists were downloaded from 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz. Previously reported gws 

regions were downloaded from the NHGRI GWAS catalogue available from 

http://www.ebi.ac.uk/gwas. 
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Figure 3.A1. Forest plot for rs11420276 

 

Figure 3.A2. Regional association plot for rs11420076 
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Figure 3.B1. Forest plot for rs1222063 

 

 

Figure 3.B2. Regional association plot for rs1222063 
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Figure 3.C1. Forest plot for rs2391769 

 

 

Figure 3.C2. Regional association plot for rs2391769 
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Figure 3.D1. Forest plot for rs9677504 

 

 

 

Figure 3.D2. Regional association plot for rs9677504 
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Figure 3.E1. Forest plot for rs4858241 

 

 

 

Figure 3.E2. Regional association plot for rs4858241 
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Figure 3.F1. Forest plot for rs28411770 

 

Figure 3.F2. Regional association plot for rs2811770 
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Figure 3.G1. Forest plot for rs4916723 

 

 

Figure 3.G2. Regional association plot for rs4916723 
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Figure 3.H1. Forest plot for rs304132 

 

 

Figure 3.H2. Regional association plot for rs304132 
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Figure 3.I1. Forest plot for rs5886709 

 

Figuren 3.I2. Regional association plot for rs5886709 
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Figure 3.J1. Forest plot for rs74760947 

 

 

 

Figure 3.J2. Regional association plot for rs74760947 
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Figure 3.K1. Forest plot for rs11591402 

 

 

Figure 3.K2. Regional association plot for rs11591402 
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Figure 3.L1. Forest plot for rs1427829 

 

 
Figure 3.L2. Regional association plot for rs1427829 
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Figure 3.M1. Forest plot for rs281324 

 

Figure 3.M2. Regional association plot for rs281324 
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Figure 3.N1. Forest plot for rs212178 

 

Figure 3.N2. Regional association plot for rs212178 
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Supplementary Figure 4.A – 4.D. Gene-based association, regional association plots 

LD structure in the region around the four new genes (genes not overlapping with loci being gws in 

the single marker GWAS meta-analysis) significantly association with ADHD in the MAGMA 

gene-based association analysis.  

 

Supplementary Figure 4.A. Regional association plot for MANBA (+/- 100,000 bp up- and down 

stream the gene). 

 

  

Supplementary Figure 4.B. Regional association plot for CUBN (+/- 100,000 bp up- and down 

stream the gene). 
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Supplementary Figure 4.C. Regional association plot for PIDD1 (+/- 100,000 bp up- and down 

stream the gene). 

 

Supplementary Figure 4.D. Regional association plot for CDH8 (+/- 100,000 bp up- and down 

stream the gene). 
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Supplementary Figure 5.A. – 5.B. Q-Q plot from GWAS meta-analyses  

Quantile-quantile plot of the -log10 P-values from GWAS meta-analyses. PGCeur refers to analysis 

only including individuals with European ancestry. 

 

 

Supplementary Figure 5.A. Q-Q plot from GWAS meta-analysis 

 

 

Supplementary Figure 5.B. Q-Q plot from European GWAS meta-analysis 
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Supplementary Figure 6. Manhattan plot from test for heterogeneity between studies/waves in 

the ADHD GWAS meta-analysis 
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Supplementary Figure 7. Q-Q plot from test for heterogeneity between samples/waves in the 

ADHD GWAS meta-analysis 
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Supplementary Figure 8. Odds ratios by PRS within deciles in target groups 

Odds ratio by PRS within each decile for each of the five target groups (G1-G5) and for the pooled 

(G0) analysis with (upper panels) and without (lower panels) PGC European samples included among 

the training data sets. Plots are shown for the P-value threshold with the highest Nagelkerke’s R2 

(Smax). Error bars indicate 95% confidence limits. 
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Supplementary Figure 9. Odds ratios within target groups in iPSYCH 

PRS-based odds ratio and 95% confidence limits from logistic regression of continuous PRS 

(normalized by target group) for each target group considered separately (G1-G5) and pooled (G0). 

PRS estimated using iPSYCH waves alone as training sample (wopgc) or iPSYCH waves together 

with PGC European samples (wpgc). 

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

OR at max(R2(S))

OR (95% CI)

G5.wopgc

G5.wpgc

G4.wopgc

G4.wpgc

G3.wopgc

G3.wpgc

G2.wopgc

G2.wpgc

G1.wopgc

G1.wpgc

G0.wopgc

G0.wpgc



	 101	

 

Supplementary Figure 10. PRS based odds ratios within each study/wave 

PRS based Odds Ratio and 95% confidence limits from logistic regression of standardised PRS for 

each target study/wave. 
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Supplementary Figure 11. ADHD PRS stratified by case-control status and PGC study 

Mean PRS z-score (+/- standard error) plotted stratified by case status and PGC study. 
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Supplementary Figure 12. Partitioning of h2 by functional annotations 

Enrichment of heritability per SNP in 24 functional annotations defined by Finucane et al.64 Error 

bars represent 95% confidence intervals. P-values for annotation categories with nominal significant 

enrichment are shown and values on bold indicate significance after Bonferroni correction.  
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Supplementary Figure 13. Partitioning of h2 by tissue-group annotations 

Results from partitioning heritability by SNPs located in cell-group specific regulatory elements. The 

line indicate significance after Bonferroni correction (P = 0.005). 
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Supplementary Figure 14. Partitioning of h2 by tissue-specific H3K4Me1 annotations 

P-values for enrichment in the SNP heritability of ADHD by variants located within regulatory 

regions (H3K4Me1 peaks) of various cells and tissues (annotations from the Roadmap Epigenomics 

Mapping Consortium67). Dashed line: threshold for nominal significance. Full line: threshold for 

significance after Bonferonni correction. 
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Supplementary Figure 15. Manhattan plot of results from meta-analysis of ADHD+23andMe 
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Supplementary Figure 16. Q-Q plot from test for heterogeneity between ADHD GWAS meta-

analysis and 23andMe 

 



	 109	

 

Supplementary Figure 17. Manhattan plot from test for heterogeneity between ADHD GWAS 

meta-analysis and 23andMe 
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Supplementary Figure 18. Manhattan plot of results from meta-analysis of ADHD+EAGLE 
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Supplementary Figure 19. Q-Q plot from test for heterogeneity between ADHD GWAS meta-

analysis and EAGLE 

 

 

Supplementary Figure 20. Manhattan plot from test for heterogeneity between ADHD GWAS 

meta-analysis and EAGLE 
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Supplementary Figure 21. Manhattan plot of results from meta-analysis of 

ADHD+23andMe+EAGLE 
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Supplementary Figure 22. Distribution of 1000 Genomes Phase 3 European LD Scores 

Distribution of LD scores !" for common HapMap3 SNPs estimated in 1000 Genomes Phase 3 data 

using individuals of European ancestry. LD scores downloaded from 

http://data.broadinstitute.org/alkesgroup/LDSCORE/. Red reference line indicates mean LD score. 

Blue reference lines indicate 0.5% and 99.5% quantiles of the distribution. 
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Supplementary Figure 23. Shrinkage factor for Z̃2j with varying lj 

Value of 1 1 + 1 − &'( )("ℎ(( !" +, the reduction in ,(" to account for polygenic effects specific 

to the second phenotype, across the range of observed values for !". We compare the value of this 

term at the estimates of  &'(, )(, ℎ((, and + observed in the current study, as well as with example 

values for scenarios with lower &'( or a more highly powered GWAS of the second phenotype (i.e. 

increased )( and ℎ((). The red reference line indicates the fixed value of !" = 124.718 used for the 

current study. 
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Supplementary Figure 24. Relative effective sample size Ñ2j  with varying lj 

Value of )("/()6" + )("), the relative effective sample size for the second phenotype, across the 

range of observed values for !". We compare the value of this term at the estimates of  

)6,)(, &'(, ℎ6(, ℎ((, 8, 9, and + observed in the current study, as well as with example values for 

scenarios with lower &'( or a more highly powered GWAS of the second phenotype (i.e. increased 

)( and ℎ((). The red reference line indicates the fixed value of !" = 124.718 used for the current 

study. 
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